1
|
Fodor B, Álvarez-Miguel I, Biglione C, López GG, González-Fernández Á, Salles F, Hidalgo T, Horcajada P. A Potential 3-in-1 Combined AntiSARS-CoV-2 Therapy Using Pulmonary MIL-100(Fe) Formulation. Adv Healthc Mater 2025:e2403988. [PMID: 39905976 DOI: 10.1002/adhm.202403988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Indexed: 02/06/2025]
Abstract
The emergence and rapid propagation of infectious diseases, including the COVID-19 pandemic, has evidenced the vulnerabilities in global health surveillance, the ease of transmission, and the imperative need for effective treatments. In this context, nanomedicines based on metal-organic frameworks (MOFs) have garnered great relevance as promising drug delivery platforms in a large range of complex diseases (e.g., cancer, and infections). However, most research has focused on sensing with scarce examples in antiviral therapies. Hence, here a pioneer combined 3-in-1 effect anti-COVID pulmonary multitherapy based on the mesoporous iron(III) carboxylate MIL-100(Fe) nanoparticles is proposed, with the proven intrinsic MOF effect, associated with favipiravir drug into their porosity and heparin on their external surface. A significant antiviral effect against a real scenario of COVID-19 infection is demonstrated (≈70% inhibition), ensuring a suitable cellular viability. Further, a convenient pulmonary formulation is prepared based on mannitol-based microspheres, testing its safety and biodistribution in healthy mice. No significant side effects are observed, reaching successfully the deep lungs, emphasizing a reduced immunological response compared to their controls. Therefore, these promising results open new horizons for future (pre)clinical trials targeting challenging infectious/pulmonary pathologies, enhancing the feasibility of designing customized therapeutic MOF platforms.
Collapse
Affiliation(s)
- Beatrice Fodor
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
- Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Inés Álvarez-Miguel
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Guillermo G López
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - África González-Fernández
- CINBIO, Immunology Group, Universidade de Vigo, Vigo, 36310, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Pontevedra, 36312, Spain
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS ENSCM, Montpellier, 34090, France
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy, Ramón de la Sagra 3, Móstoles-Madrid, 28935, Spain
| |
Collapse
|
2
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Malle M, Song P, Löffler PMG, Kalisi N, Yan Y, Valero J, Vogel S, Kjems J. Programmable RNA Loading of Extracellular Vesicles with Toehold-Release Purification. J Am Chem Soc 2024; 146:12410-12422. [PMID: 38669207 PMCID: PMC11082903 DOI: 10.1021/jacs.3c13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Synthetic nanoparticles as lipid nanoparticles (LNPs) are widely used as drug delivery vesicles. However, they hold several drawbacks, including low biocompatibility and unfavorable immune responses. Naturally occurring extracellular vesicles (EVs) hold the potential as native, safe, and multifunctional nanovesicle carriers. However, loading of EVs with large biomolecules remains a challenge. Here, we present a controlled loading methodology using DNA-mediated and programmed fusion between EVs and messenger RNA (mRNA)-loaded liposomes. The fusion efficiency is characterized at the single-particle level by real-time microscopy through EV surface immobilization via lipidated biotin-DNA handles. Subsequently, fused EV-liposome particles (EVLs) can be collected by employing a DNA strand-replacement reaction. Transferring the fusion reaction to magnetic beads enables us to scale up the production of EVLs one million times. Finally, we demonstrated encapsulation of mCherry mRNA, transfection, and improved translation using the EVLs compared to liposomes or LNPs in HEK293-H cells. We envision this as an important tool for the EV-mediated delivery of RNA therapeutics.
Collapse
Affiliation(s)
| | - Ping Song
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Philipp M. G. Löffler
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Nazmie Kalisi
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Yan Yan
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Omiics
ApS, 8200 Aarhus N, Denmark
| | - Julián Valero
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| | - Stefan Vogel
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Jørgen Kjems
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
6
|
Bock von Wülfingen B. Circulation of Coronavirus Images: Helping Social Distancing? BERICHTE ZUR WISSENSCHAFTSGESCHICHTE 2023; 46:259-282. [PMID: 37585553 DOI: 10.1002/bewi.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As soon as the SARS-Cov2 disease was recognized by experts to potentially cause a serious pandemic, a three dimensional diagrammatic image of the virus, colored in strong red, conquered public media globally. This study confronts this iconic virus image with a historic image analysis of 33,000 biomedical articles on coronaviruses published between 1968-2020 and interviews with some of their authors. Only a small fraction of scientific virus publications entail images of the complete virus. Red as an alarm color is not used at all by scientists who don't aim for a non-scientific public. Circulation in this case concerns the movement of iconic images from a scientific context into a general public. On the basis of hps-studies on scientific diagrams and especially on color use in scientific diagrams to convey specific messages in public, the paper discusses the role of the claim of public corona-virus diagram as "scientific." It points at relevant differences between most frequent scientific corona-virus images and the diagrammatic image used in public. Both author- and readerships (in science and public) follow contrasting aims and values. Thus, the images meet non-expert readers for whom the images entail very different - and potentially unintended - meanings then to virus experts.
Collapse
|
7
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
8
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
9
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
11
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
12
|
Cao M, Zhang K, Zhang S, Wang Y, Chen C. Advanced Light Source Analytical Techniques for Exploring the Biological Behavior and Fate of Nanomedicines. ACS CENTRAL SCIENCE 2022; 8:1063-1080. [PMID: 36032763 PMCID: PMC9413437 DOI: 10.1021/acscentsci.2c00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 05/09/2023]
Abstract
Exploration of the biological behavior and fate of nanoparticles, as affected by the nanomaterial-biology (nano-bio) interaction, has become progressively critical for guiding the rational design and optimization of nanomedicines to minimize adverse effects, support clinical translation, and aid in evaluation by regulatory agencies. Because of the complexity of the biological environment and the dynamic variations in the bioactivity of nanomedicines, in-situ, label-free analysis of the transport and transformation of nanomedicines has remained a challenge. Recent improvements in optics, detectors, and light sources have allowed the expansion of advanced light source (ALS) analytical technologies to dig into the underexplored behavior and fate of nanomedicines in vivo. It is increasingly important to further develop ALS-based analytical technologies with higher spatial and temporal resolution, multimodal data fusion, and intelligent prediction abilities to fully unlock the potential of nanomedicines. In this Outlook, we focus on several selected ALS analytical technologies, including imaging and spectroscopy, and provide an overview of the emerging opportunities for their applications in the exploration of the biological behavior and fate of nanomedicines. We also discuss the challenges and limitations faced by current approaches and tools and the expectations for the future development of advanced light sources and technologies. Improved ALS imaging and spectroscopy techniques will accelerate a profound understanding of the biological behavior of new nanomedicines. Such advancements are expected to inspire new insights into nanomedicine research and promote the development of ALS capabilities and methods more suitable for nanomedicine evaluation with the goal of clinical translation.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Kai Zhang
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhan Zhang
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yaling Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
13
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022; 40:3931-3941. [PMID: 35660038 PMCID: PMC9149150 DOI: 10.1016/j.vaccine.2022.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease (COVID-19) was first reported in December 2019, China and later it was found that the causative microorganism is severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As on 3rd June 2021, SARS-CoV-2 has affected 171049741 people worldwide with 3549710 deaths. Nanomedicine such as nanoparticles, liposomes, lipid nanoparticles, virus-like nanoparticles offer tremendous hopes to treat viral infections including COVID-19. Most importantly target specific ligands can be attached on the surface of them and this makes them more target specific and the loaded drug can be delivered to cellular and molecular level. These properties of nanomedicines can be utilized to deliver drugs or vaccines to treat viral diseases including SARS-CoV-2 infection. This review discusses about SARS-CoV-2 and the potential application of nanomedicines for delivering biological macromolecules like vaccines and drugs for treating COVID-19.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
15
|
Alqosaibi AI. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J Biol Sci 2022; 29:103298. [PMID: 35645591 PMCID: PMC9130109 DOI: 10.1016/j.sjbs.2022.103298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death globally, surpassed only by cardiovascular disease. One of the hallmarks of cancer is uncontrolled cell division and resistance to cell death. Multiple approaches have been developed to tackle this disease, including surgery, radiotherapy and chemotherapy. Although chemotherapy is used primarily to control cell division and induce cell death, some cancer cells are able to resist apoptosis and develop tolerance to these drugs. The side effects of chemotherapy are often overwhelming, and patients can experience more adverse effects than benefits. Furthermore, the bioavailability and stability of drugs used for chemotherapy are crucial issues that must be addressed, and there is therefore a high demand for a reliable delivery system that ensures fast and accurate targeting of treatment. In this review, we discuss the different types of nanocarriers, their properties and recent advances in formulations, with respect to relevant advantages and disadvantages of each.
Collapse
Affiliation(s)
- Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
16
|
Villacrés B, Paz E, Burbano MJ, Villacrés-Granda I, Armijos D, Aguirre M. Neutralizing activity to SARS-CoV-2 in 1.2 to 10.0 month convalescent plasma samples of COVID-19: a transversal surrogate in vitro study performed in Quito-Ecuador. J Med Virol 2022; 94:4246-4252. [PMID: 35585654 PMCID: PMC9347805 DOI: 10.1002/jmv.27866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, was first reported in Wuhan, China, in December 2019. Diagnostic methods for the detection of the virus and seroconversion of neutralizing antibodies (NAbs) in plasma have been developed specifically, but some of them require a BSL3 facility. In this study, we used the SARS‐CoV‐2 Surrogate Virus Neutralization Test Kit to determine the presence or absence of NAbs anti‐receptor binding domain of the viral spike (S) glycoprotein in a BSL2 facility. The sample population was chosen in Quito, Ecuador, with a total of 88 COVID‐19 positive convalescent patients. We determined that 97.7% of the analyzed convalescent sera maintained the presence of NAbs with neutralizing activity, and this activity remained until 10 months after the infection in some cases. In addition, the relationship between the presence of NAbs and immunoglobulin G was significant compared to immunoglobulin M, which tended to be absent over time.
Collapse
Affiliation(s)
| | - Elius Paz
- Centro de Investigación Genética y Genómica - UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
17
|
Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1602. [PMID: 35564311 PMCID: PMC9104235 DOI: 10.3390/nano12091602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/18/2023]
Abstract
More than 2 years have passed since the SARS-CoV-2 outbreak began, and many challenges that existed at the beginning of this pandemic have been solved. Some countries have been able to overcome this global challenge by relying on vaccines against the virus, and vaccination has begun in many countries. Many of the proposed vaccines have nanoparticles as carriers, and there are different nano-based diagnostic approaches for rapid detection of the virus. In this review article, we briefly examine the biology of SARS-CoV-2, including the structure of the virus and what makes it pathogenic, as well as describe biotechnological methods of vaccine production, and types of the available and published nano-based ideas for overcoming the virus pandemic. Among these issues, various physical and chemical properties of nanoparticles are discussed to evaluate the optimal conditions for the production of the nano-mediated vaccines. At the end, challenges facing the international community and biotechnological answers for future viral attacks are reviewed.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’’, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
18
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
19
|
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49:4943-4957. [PMID: 35235159 PMCID: PMC8890022 DOI: 10.1007/s11033-022-07132-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The world is grappling with an unprecedented public health crisis COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Due to the high transmission/mortality rates and socioeconomic impacts of the COVID-19, its control is crucial. In the absence of specific treatment, vaccines represent the most efficient way to control and stop the pandemic. Many companies around the world are currently making efforts to develop the vaccine to combat COVID-19. This review outlines key strategies for generating SARS-CoV-2 vaccine candidates, along with the mechanism of action, advantages, and potential limitations of each vaccine. The use of nanomaterials and nanotechnology for COVID-19 vaccines development will also be discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Abdollahpour-Alitappeh
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.,Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Souri M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M. Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:783. [PMID: 35269270 PMCID: PMC8912597 DOI: 10.3390/nano12050783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Following the announcement of the outbreak of COVID-19 by the World Health Organization, unprecedented efforts were made by researchers around the world to combat the disease. So far, various methods have been developed to combat this "virus" nano enemy, in close collaboration with the clinical and scientific communities. Nanotechnology based on modifiable engineering materials and useful physicochemical properties has demonstrated several methods in the fight against SARS-CoV-2. Here, based on what has been clarified so far from the life cycle of SARS-CoV-2, through an interdisciplinary perspective based on computational science, engineering, pharmacology, medicine, biology, and virology, the role of nano-tools in the trio of prevention, diagnosis, and treatment is highlighted. The special properties of different nanomaterials have led to their widespread use in the development of personal protective equipment, anti-viral nano-coats, and disinfectants in the fight against SARS-CoV-2 out-body. The development of nano-based vaccines acts as a strong shield in-body. In addition, fast detection with high efficiency of SARS-CoV-2 by nanomaterial-based point-of-care devices is another nanotechnology capability. Finally, nanotechnology can play an effective role as an agents carrier, such as agents for blocking angiotensin-converting enzyme 2 (ACE2) receptors, gene editing agents, and therapeutic agents. As a general conclusion, it can be said that nanoparticles can be widely used in disinfection applications outside in vivo. However, in in vivo applications, although it has provided promising results, it still needs to be evaluated for possible unintended immunotoxicity. Reviews like these can be important documents for future unwanted pandemics.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Dariush Nourouzian
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| |
Collapse
|
21
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
22
|
Morgulchik N, Athanasopoulou F, Chu E, Lam Y, Kamaly N. Potential therapeutic approaches for targeted inhibition of inflammatory cytokines following COVID-19 infection-induced cytokine storm. Interface Focus 2022; 12:20210006. [PMID: 34956607 PMCID: PMC8662389 DOI: 10.1098/rsfs.2021.0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a deadly respiratory disease caused by severe acute respiratory syndrome coronavirus 2, which has caused a global pandemic since early 2020 and severely threatened people's livelihoods and health. Patients with pre-diagnosed conditions admitted to hospital often develop complications leading to mortality due to acute respiratory distress syndrome (ARDS) and associated multiorgan failure and blood clots. ARDS is associated with a cytokine storm. Cytokine storms arise due to elevated levels of circulating cytokines and are associated with infections. Targeting various pro-inflammatory cytokines in a specific manner can result in a potent therapeutic approach with minimal host collateral damage. Immunoregulatory therapies are now of interest in order to regulate the cytokine storm, and this review will summarize and discuss advances in targeted therapies against cytokine storms induced by COVID-19.
Collapse
Affiliation(s)
- Nelli Morgulchik
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Edmund Chu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yoriko Lam
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| |
Collapse
|
23
|
Feng T, Nie C, Peng P, Lu H, Wang T, Li P, Huang W. Nanoagent-based theranostic strategies against human coronaviruses. NANO RESEARCH 2022; 15:3323-3337. [PMID: 35003529 PMCID: PMC8727479 DOI: 10.1007/s12274-021-3949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 05/08/2023]
Abstract
The emergence of human coronaviruses (HCoVs), especially the current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), engender severe threats to public health globally. Despite the outstanding breakthrough of new vaccines and therapeutic medicines in the past years, HCoVs still undergo unpredictable mutations, thus demanding more effective diagnostic and therapeutic strategies. Benefitting from the unique physicochemical properties and multiple nano-bio interactions, nanomaterials hold promising potential to fight against various HCoVs, either by providing sensitive and economic nanosensors for rapid viral detection, or by developing translatable nanovaccines and broad-spectrum nanomedicines for HCoV treatment. Herein, we systemically summarized the recent applications of nanoagents in diagnostics and therapeutics for HCoV-induced diseases, as well as their limitations and perspectives against HCoV variants. We believe this review will promote the design of innovative theranostic nanoagents for the current and future HCoV-caused pandemics.
Collapse
Affiliation(s)
- Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Chaofan Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Hui Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| |
Collapse
|
24
|
Jermy BR, Ravinayagam V, Almohazey D, Alamoudi WA, Dafalla H, Akhtar S, Tanimu G. PEGylated green halloysite/spinel ferrite nanocomposites for pH sensitive delivery of dexamethasone: A potential pulmonary drug delivery treatment option for COVID-19. APPLIED CLAY SCIENCE 2022; 216:106333. [PMID: 34776567 PMCID: PMC8576101 DOI: 10.1016/j.clay.2021.106333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 05/07/2023]
Abstract
Dexamethasone (Dex) is used in drug regimen for treatment of Coronavirus disease (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fusion and entry into the cell occurs at pH 5.5. In our present study, we have identified a green, cheap clay based halloysite (Hal) nanoformulation with release capability of Dex at such interactive pH condition. 30%ZnFe2O4/Hal and 30%NiFe2O4/Hal were prepared by one-pot synthesis technique. Dex (5% wt/wt) was functionalized over both nanocomposites. Finally, polyethylene glycol (PEG) was coated over ZnFe2O4/Hal/Dex and NiFe2O4/Hal/Dex nanocomposite using lyophilization technique (0.08 μl/mg of nanocarrier). The release ability of Dex was studied under pulmonary infection and normal pH conditions (pH = 5.6 and 7.4). The characterization study using X-ray diffraction (XRD) and UV-visible diffuse reflectance (DRS) spectra confirmed the presence of spinel ferrites over Hal. Nitrogen adsorption isotherm showed the surface area of ZnFe2O4/Hal (75 m2/g), pore volume (0.27 cm3/g) with average pore size (14.5 nm). Scanning electron microscope/Energy dispersive spectroscopy (SEM-EDS) and Transmission electron microscopy analysis revealed a textural change in halloysite tubular type indicating drug adsorption and PEG adhesion. DRS spectra indicated an intergrowth of zinc ferrite nanoparticles on the halloysite nanotubes. Interestingly, ZnFe2O4/Hal/Dex/PEG exhibited a high Dex release ability (17.5%, 168 h) at pH = 5.6 relevant to SARS-CoV-2 fusion entry into the cell pH condition of 5.5. Comparatively, the nanocomposite showed a less Dex release (<5%) release for 168 h at neutral pH = 7.4. The drug release kinetics were studied and the obtained data were fitted for the release constant and release exponent, using the Korsmeyer-Peppas model. To test the compatibility of our nanocomposites, we performed the cell viability assay (MTT) using HEK293 cells. Our results showed that at 0.3 mg/ml, Dex-loaded nanocomposite had a statistically significant improvement in cell viability compared to Dex alone. These results suggest that our nanocomposite has prevented the toxic effect of Dex and has huge potential to act as pulmonary drug delivery system for targeted lung infection therapeutics.
Collapse
Affiliation(s)
- B Rabindran Jermy
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Vijaya Ravinayagam
- Deanship of Scientific Research & Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - D Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 3144 Dammam, Saudi Arabia
| | - W A Alamoudi
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 3144 Dammam, Saudi Arabia
| | - H Dafalla
- College of Engineering Research (CER), King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Gazali Tanimu
- Center for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
| |
Collapse
|
25
|
The Future of Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
26
|
Bioeconomy during the COVID-19 and perspectives for the post-pandemic world: Example from EU. EFB BIOECONOMY JOURNAL 2021. [PMCID: PMC8683579 DOI: 10.1016/j.bioeco.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Brain D, Plant-Hately A, Heaton B, Arshad U, David C, Hedrich C, Owen A, Liptrott NJ. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv Drug Deliv Rev 2021; 178:113848. [PMID: 34182016 PMCID: PMC8233062 DOI: 10.1016/j.addr.2021.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The emergence of SARS-CoV-2, and the ensuing global pandemic, has resulted in an unprecedented response to identify therapies that can limit uncontrolled inflammation observed in patients with moderate to severe COVID-19. The immune pathology behind COVID-19 is complex and involves the activation and interaction of multiple systems including, but not limited to, complement, inflammasomes, endothelial as well as innate and adaptive immune cells to bring about a convoluted profile of inflammation, coagulation and tissue damage. To date, therapeutic approaches have focussed on inhibition of coagulation, untargeted immune suppression and/or cytokine-directed blocking agents. Regardless of recently achieved improvements in individual patient outcomes and survival rates, improved and focussed approaches targeting individual systems involved is needed to further improve prognosis and wellbeing. This review summarizes the current understanding of molecular and cellular systems involved in the pathophysiology of COVID-19, and their contribution to pathogen clearance and damage to then discuss possible therapeutic options involving immunomodulatory drug delivery systems as well as summarising the complex interplay between them.
Collapse
Affiliation(s)
- Danielle Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alex Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bethany Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Usman Arshad
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christian Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
28
|
Yang X, You J, Wei Y, Li H, Gao L, Guo Q, Huang Y, Gong C, Yi C. Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 2021; 9:8185-8201. [PMID: 34528037 DOI: 10.1039/d1tb01446c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the global outbreak of coronavirus disease 2019 (COVID-19), a hyperinflammatory state called the cytokine storm was recognized as a major contributor to multiple organ failure and mortality. However, to date, the diagnosis and treatment of the cytokine storm remain major challenges for the clinical prognosis of COVID-19. In this review, we outline various nanomaterial-based strategies for preventing the COVID-19 cytokine storm. We highlight the contribution of nanomaterials to directly inhibit cytokine release. We then discuss how nanomaterials can be used to deliver anti-inflammatory drugs to calm the cytokine storm. Nanomaterials also play crucial roles in diagnostics. Nanomaterial-based biosensors with improved sensitivity and specificity can be used to detect cytokines. In summary, emerging nanomaterials offer platforms and tools for the detection and treatment of the COVID-19 cytokine storm and future pandemic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
30
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
32
|
Kashapov RR, Kashapova NE, Ziganshina AY, Syakaev VV, Khutoryanskiy VV, Zakharova LY. Interaction of mucin with viologen and acetate derivatives of calix[4]resorcinols. Colloids Surf B Biointerfaces 2021; 208:112089. [PMID: 34500201 DOI: 10.1016/j.colsurfb.2021.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
The mucus layer acts as a selective diffusion barrier that has an important effect on the efficiency of drug delivery systems in the human body. In this regard, currently the drug nanocarriers of various sizes and compositions are being widely developed to study their mucoadhesive properties i.e., the ability to interact with mucin. However, the effective interaction of drug composition with mucin does not guarantee the success due to the fact that there is a further barrier in the form of epithelial cells retained by calcium ions under the mucus layer. In this work, the interaction of mucin (porcine gastric mucin) with calixarenes is considered for the first time. The study of interaction between calixarenes, mucin and calcium ions by a complex of physicochemical methods showed that effective interaction with mucin requires cationic fragments, and binding with calcium is realized due to anionic fragments in the calixarene structure. Therefore, the combination of different chemical groups in the structure of drug nanocarrier plays an important role in successful mucosal drug delivery. Taking into account the wide possibilities of synthetic modification of the macrocyclic platform, calixarenes can find the application in the drug delivery across mucous barriers.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia; Kazan National Research Technological University, 68 Karl Marx Str., 420015, Kazan, Russia.
| | - Nadezda E Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | | | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia; Kazan National Research Technological University, 68 Karl Marx Str., 420015, Kazan, Russia
| |
Collapse
|
33
|
Zare M, Thomas V, Ramakrishna S. Nanoscience and quantum science-led biocidal and antiviral strategies. J Mater Chem B 2021; 9:7328-7346. [PMID: 34378553 DOI: 10.1039/d0tb02639e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) caused the COVID-19 pandemic. According to the World Health Organization, this pandemic continues to be a serious threat to public health due to the worldwide spread of variants and their higher rate of transmissibility. A range of measures are necessary to slow the pandemic and save lives, which include constant evaluation and the careful adjustment of public-health responses augmented by medical treatments, vaccines and protective gear. It is hypothesized that nanostructured particulates underpinned by nanoscience and quantum science yield high-performing antiviral strategies, which can be applied in preventive, diagnostic, and therapeutic applications such as face masks, respirators, COVID test kits, vaccines, and drugs. This review is aimed at providing comprehensive and cohesive perspectives on various nanostructures that are suited to intensifying and amplifying the effectiveness of antiviral strategies. Growing scientific literature over the past eighteen months indicates that quantum dots, iron oxide, silicon oxide, polymeric and metallic nanoparticles have been employed in COVID-19 diagnostic assays, vaccines, and personal protective equipment (PPE). Quantum dots have displayed their suitability as more sensitive imaging probes in diagnostics and prognostics, and as controlled drug-release carriers that target the virus. Nanoscience and quantum science have assisted the design of advanced vaccine delivery since nanostructured materials are suited for antigen delivery, as mimics of viral structures and as adjuvants. Furthermore, the quantum science- and nanoscience-supported tailored functionalization of nanostructured materials offers insight and pathways to deal with future pandemics. This review seeks to illustrate several examples, and to explain the underpinning quantum science and nanoscience phenomena, which include wave functions, electrostatic interactions, van der Waals forces, thermal and electrodynamic fluctuations, dispersion forces, local field-enhancement effects, and the generation of reactive oxygen species (ROS). This review discusses how nanostructured materials are helpful in the detection, prevention, and treatment of the SARS-CoV-2 infection, other known viral infection diseases, and future pandemics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
34
|
Azhar A, Hassan N, Singh M, Al-Hosaini K, Kamal MA. Synopsis on Pharmotechnological Approaches in Diagnostic to Management Strategies in Fighting Against COVID-19. Curr Pharm Des 2021; 27:4086-4099. [PMID: 34269664 DOI: 10.2174/1381612827666210715154004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) are projected to play a significant role in fighting against coronavirus disease (COVID-19). The various properties of NPs like magnetic and optical can be exploited to build diagnostic test kits. The unembellished morphological and physiochemical resemblances of SARS-CoV-2 with synthetic NPs make them a potent tool for mediation. Nanoparticles can be analytically functionalized with different proteins, polymers, and functional groups to perform specific inhibitory functions while also serving as delivery vehicles . Moreover, NPs can also be employed to prepare broad-spectrum respiratory drugs and vaccines that can guard seasonal flu and prepare the human race for the pandemic in the future. The present review outlines the role of NPs in detection, diagnostic and therapeutic against members of the coronavirus family. We emphasize nanomaterial-based approaches to address coronaviruses in general and SARS-CoV-2 in particular. We discuss NPs based detection systems like graphene (G-FET), biosensors, and plasmonic photothermal associated sensors. Inorganic, organic virus-like & self-assembly protein (VLP), and photodynamic inactivation of SARS-CoV-2 are also presented as therapeutic approaches exploiting NPs.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh Uttar Pradesh, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451. Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
35
|
Guo W, Lakshminarayanan H, Rodriguez-Palacios A, Salata RA, Xu K, Draz MS. Glycan Nanostructures of Human Coronaviruses. Int J Nanomedicine 2021; 16:4813-4830. [PMID: 34290504 PMCID: PMC8289332 DOI: 10.2147/ijn.s302516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Human coronaviruses present a substantial global disease burden, causing damage to populations’ health, economy, and social well-being. Glycans are one of the main structural components of all microbes and organismic structures, including viruses—playing multiple essential roles in virus infection and immunity. Studying and understanding virus glycans at the nanoscale provide new insights into the diagnosis and treatment of viruses. Glycan nanostructures are considered potential targets for molecular diagnosis, antiviral therapeutics, and the development of vaccines. This review article describes glycan nanostructures (eg, glycoproteins and glycolipids) that exist in cells, subcellular structures, and microbes. We detail the structure, characterization, synthesis, and functions of virus glycans. Furthermore, we describe the glycan nanostructures of different human coronaviruses, such as human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome-associated coronavirus (SARS-CoV), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1 (HCoV-HKU1), the Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and how glycan nanotechnology can be useful to prevent and combat human coronaviruses infections, along with possibilities that are not yet explored.
Collapse
Affiliation(s)
- Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Harini Lakshminarayanan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.,Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
36
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
37
|
Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. Nano-therapeutic strategies to target coronavirus. VIEW 2021; 2:20200155. [PMID: 34766165 PMCID: PMC8250313 DOI: 10.1002/viw.20200155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The coronaviruses have caused severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS), and the more recent coronavirus pneumonia (COVID-19). The global COVID-19 pandemic requires urgent action to develop anti-virals, new therapeutics, and vaccines. In this review, we discuss potential therapeutics including human recombinant ACE2 soluble, inflammatory cytokine inhibitors, and direct anti-viral agents such as remdesivir and favipiravir, to limit their fatality. We also discuss the structure of the SARS-CoV-2, which is crucial to the timely development of therapeutics, and previous attempts to generate vaccines against SARS-CoV and MERS-CoV. Finally, we provide an overview of the role of nanotechnology in the development of therapeutics as well as in the diagnosis of the infection. This information is key for computational modeling and nanomedicine-based new therapeutics by counteracting the variable proteins in the virus. Further, we also try to effectively share the latest information about many different aspects of COVID-19 vaccine developments and possible management to further scientific endeavors.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Munazzah Tasleem
- Bioinformatics Infrastructure Facility, Department of Computer ScienceJamia Millia Islamia UniversityNew Delhi110025India
| | - Ketki Bhise
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Katyayani Tatiparti
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Samaresh Sau
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Arun K. Iyer
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
- Molecular Imaging ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichigan
| |
Collapse
|
38
|
Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1219-1249. [PMID: 33787467 PMCID: PMC8054481 DOI: 10.1080/09205063.2021.1909412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The recent coronavirus disease-2019 (COVID-19) outbreak has increased at an alarming rate, representing a substantial cause of mortality worldwide. Respiratory injuries are major COVID-19 related complications, leading to poor lung circulation, tissue scarring, and airway obstruction. Despite an in-depth investigation of respiratory injury's molecular pathogenesis, effective treatments have yet to be developed. Moreover, early detection of viral infection is required to halt the disease-related long-term complications, including respiratory injuries. The currently employed detection technique (quantitative real-time polymerase chain reaction or qRT-PCR) failed to meet this need at some point because it is costly, time-consuming, and requires higher expertise and technical skills. Polymer-based nanobiosensing techniques can be employed to overcome these limitations. Polymeric nanomaterials have the potential for clinical applications due to their versatile features like low cytotoxicity, biodegradability, bioavailability, biocompatibility, and specific delivery at the targeted site of action. In recent years, innovative polymeric nanomedicine approaches have been developed to deliver therapeutic agents and support tissue growth for the inflamed organs, including the lung. This review highlights the most recent advances of polymer-based nanomedicine approaches in infectious disease diagnosis and treatments. This paper also focuses on the potential of novel nanomedicine techniques that may prove to be therapeutically efficient in fighting against COVID-19 related respiratory injuries.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Serag E, El-Zeftawy M. Environmental aspect and applications of nanotechnology to eliminate COVID-19 epidemiology risk. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7917956 DOI: 10.1007/s41204-021-00108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we discuss fast development of the new coronavirus disease COVID-19, emerged in late 2019 in Wuhan, Hubei Province, China, the ground zero of the coronavirus pandemic, and associated with relatively high mortality rate. COVID-19 risk originates from its ability to transmit easily from person to person through the respiratory droplets released during sneezing, breathing, talking, singing, or coughing within a range of nearly 1.5–2 m. The review begins with an overview of COVID-19 origin and symptoms that range from common cold to severe respiratory illnesses and death. Then, it sheds light on the role of nanotechnology as an effective tool for fighting COVID-19 via contributions in diagnosis, treatment, and manufacture of protective equipment for people and healthcare workers. Emergency-approved therapeutics for clinical trial and prospective vaccines are discussed. Additionally, the present work addresses the risk of severe acute respiratory syndrome coronavirus transmission via wastewater and means of wastewater treatment and disinfection via nanoscale materials. The review concludes with a brief assessment of the government's efforts and contemporary propositions to minimize COVID-19 hazard and spreading.
Collapse
Affiliation(s)
- Eman Serag
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley Egypt
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
41
|
Cai Y, Tang C, Wei Z, Song C, Zou H, Zhang G, Ran J, Han W. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1942-1949. [PMID: 35014463 DOI: 10.1021/acsabm.0c01576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Cai
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang
Province, P.R. China
| | - Chuanchao Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Chuanhui Song
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Huihui Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Guorong Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Jianchuan Ran
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| | - Wei Han
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing 210008, China
| |
Collapse
|