1
|
Liu Z, Deng X, Wang Z, Guo Y, Hameed MMA, El-Newehy M, Zhang J, Shi X, Shen M. A biomimetic therapeutic nanovaccine based on dendrimer-drug conjugates coated with metal-phenolic networks for combination therapy of nasopharyngeal carcinoma: an in vitro investigation. J Mater Chem B 2025; 13:5440-5452. [PMID: 40241472 DOI: 10.1039/d5tb00226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Developing a minimally invasive and potent therapy for nasopharyngeal carcinoma is still challenging. In this study, we report a photothermal nanovaccine based on phenylboronic acid (PBA)-modified poly(amidoamine) dendrimers of generation 5 (G5) attached with indocyanine green (ICG) as a photothermal agent, toyocamycin (Toy) as an endoplasmic reticulum stress (ERS) drug, and Mn2+-coordinated metal-phenolic networks. The developed nanocomplexes are camouflaged with homologous apoptotic cancer cell membranes, leveraging membrane proteins as an antigenic reservoir and incorporating the immune adjuvant cytosine-guanine (CpG) oligonucleotide to obtain the final nanovaccine formulation. The prepared nanovaccine with a size of 72.4 nm displays satisfactory colloidal stability and photothermal conversion efficiency (36.7%), and is capable of targeting cancer cells and inducing apoptosis under laser irradiation through combined ICG-mediated photothermal therapy, Toy-enabled chemotherapy and Mn2+-mediated chemodynamic therapy. Meanwhile, the combined therapeutic effects can elicit immune responses to mature dendritic cells through the immunogenic cell death of cancer cells and the inserted CpG adjuvant/apoptotic cancer cell membranes, and polarize tumor-associated macrophage cells to the antitumor M1 phenotype. The antitumor efficacy of the nanomedicine platform was proven by the test of the penetration and therapeutic inhibition of 3-dimensional tumor spheroids in vitro. The developed functional nanomedicine integrated with different therapeutic modes may be developed as a biomimetic therapeutic nanovaccine for nasopharyngeal carcinoma treatment.
Collapse
Affiliation(s)
- Zhiyun Liu
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaochun Deng
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yunqi Guo
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jianjun Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiangyang Shi
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mingwu Shen
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Liu X, Zhang H, Guan S, Tan J, Yeung KWK, Ouyang L, Liu X. Electron Pump and Photon Trap Effect-Derived Selective Antitumor of Fe-Ppy@CaO 2-Modified Polyetheretherketone for Bone Tumor Therapy. ACS NANO 2025; 19:14954-14971. [PMID: 40197016 DOI: 10.1021/acsnano.5c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bone tumors with high mortality and disability have become a major clinical challenge. Herewith, it is necessary to design materials for bone tumor therapy and bone repair. In this work, Fe-doped polypyrrole (Fe-Ppy) and CaO2 are constructed on sulfonated polyetheretherketone (SP) to form a multistage-responsive coating. The coating achieves long-lasting antitumor through chemodynamic therapy (CDT), photothermal therapy (PTT), and combined immunotherapy. Fe-Ppy acts as an electron pump to replenish Fe2+ through oxidizing -NH- to -N+-, which lasts the Fenton reaction and persistently produces reactive oxygen species (ROS) in the tumor microenvironment (TME). CaO2 selectively provides exogenous H2O2 in response to TME to boost the electron cycle. Stronger near-infrared light absorption due to Fe doping and more photon traps caused by porous structure-induced scattering and refraction diminishment improve the photothermal conversion of modified SP. Furthermore, long-lasting ROS and effective photothermal conversion enhance M1 activation to secrete TNF-α and IFN to kill tumor cells. After tumor therapy, Fe-Ppy@CaO2-modified SP could adaptively switch the macrophage to M2 and promote osteogenesis with the abolishment of TME and NIR stimulation. In summary, Fe-Ppy@CaO2-modified SP with long-lasting ROS, enhanced photothermal conversion, and immunomodulation is a potential candidate for bone tumor therapy and tissue repair.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200336, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Shiwei Guan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Liping Ouyang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200336, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
3
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Qu J, Zhang Y, Song C, Wang Y. Effects of resveratrol-loaded dendrimer nanomedicine on hepatocellular carcinoma cells. Front Immunol 2024; 15:1500998. [PMID: 39611153 PMCID: PMC11602518 DOI: 10.3389/fimmu.2024.1500998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Resveratrol (Res), a Chinese herbal extract, has demonstrated a remarkable and distinct antitumor effect, characterized by prolonged efficacy and minimal adverse reactions. However, the bioavailability of Res in animals is hindered by limited absorption rates. Therefore, it is crucial to enhance the tumor-targeting ability of resveratrol to optimize cancer treatment outcomes by improving its bioavailability. Herein, we attempt to employ a functionalized nanoparticle drug carrier system based on polyamine-amine (PAMAM) dendrimers for targeted delivery of resveratrol in hepatocellular carcinoma cancer treatment. Initially, galactose-modified fifth-generation (G5) PAMAM dendrimers (G5-Gal) were synthesized through coupling reactions, followed by the synthesis of glycosylated dendrimers incorporating resveratrol (G5(Res)-Gal) via physical encapsulation. The G5-Gal or G5(Res)-Gal complexes were characterized using 1H NMR spectroscopy, zeta and size analysis, and UV spectrophotometry. Additionally, Hepa1-6 mouse hepatoma cells were utilized as model cells to assess the targeting capability of G5-Gal toward hepatoma cells using flow cytometry. Finally, CCK-8 assay was employed to evaluate the impact of G5(Res)-Gal on normal liver cells as well as its cytotoxicity against different types of hepatoma cells. Furthermore, cell apoptosis experiments were conducted to further evaluate the effects of G5(Res)-Gal on Hepa1-6 cells. The aim of this project is to establish a solid theoretical framework and provide technical expertise to optimize the application of resveratrol and advance its delivery system.
Collapse
Affiliation(s)
- Jiao Qu
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqin Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Wang
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Fu S, Li Y, Shen L, Chen Y, Lu J, Ran Y, Zhao Y, Tang H, Tan L, Lin Q, Hao Y. Cu 2WS 4-PEG Nanozyme as Multifunctional Sensitizers for Enhancing Immuno-Radiotherapy by Inducing Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309537. [PMID: 38323716 DOI: 10.1002/smll.202309537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Unavoidable damage to normal tissues and tumor microenvironment (TME) resistance make it challenging to eradicate breast carcinoma through radiotherapy. Therefore, it is urgent to develop radiotherapy sensitizers that can effectively reduce radiation doses and reverse the suppressive TME. Here, a novel biomimetic PEGylated Cu2WS4 nanozyme (CWP) with multiple enzymatic activities is synthesized by the sacrificing template method to have physical radiosensitization and biocatalyzer-responsive effects on the TME. Experiment results show that CWP can improve the damage efficiency of radiotherapy on breast cancer cell 4T1 through its large X-ray attenuation coefficient of tungsten and nucleus-penetrating capacity. CWP also exhibit strong Fenton-like reactions that produced abundant ROS and GSH oxidase-like activity decreasing GSH. This destruction of redox balance further promotes the effectiveness of radiotherapy. Transcriptome sequencing reveals that CWP induced ferroptosis by regulating the KEAP1/NRF2/HMOX1/GPX4 molecules. Therefore, owing to its multiple enzymatic activities, high-atomic W elements, nucleus-penetrating, and ferroptosis-inducing capacities, CWP effectively improves the efficiency of radiotherapy for breast carcinoma in vitro and in vivo. Furthermore, CWP-mediated radiosensitization can trigger immunogenic cell death (ICD) to improve the anti-PD-L1 treatments to inhibit the growth of primary and distant tumors effectively. These results indicate that CWP is a multifunctional nano-sensitizers for radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Shiyan Fu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonglai Chen
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Jingxuan Lu
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Hong Tang
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Qinyang Lin
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning Chongqing Engineering Research Center for Nanomedicine Institute of Combined Injury College of Preventive Medicine, Army Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
6
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Duan Y, Zhang W, Ouyang Y, Yang Q, Zhang Q, Zhao S, Chen C, Xu T, Zhang Q, Ran H, Liu H. Proton Sponge Nanocomposites for Synergistic Tumor Elimination via Autophagy Inhibition-Promoted Cell Apoptosis and Macrophage Repolarization-Enhanced Immune Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17285-17299. [PMID: 38539044 DOI: 10.1021/acsami.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.
Collapse
Affiliation(s)
- Yifan Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qiang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qiuye Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
8
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|