1
|
Adlimoghaddam A, Fayazbakhsh F, Mohammadi M, Babaei Z, Behrooz AB, Tabasi F, Guan T, Beheshti I, Aghaei M, Klionsky DJ, Albensi BC, Ghavami S. Sex and region-specific disruption of autophagy and mitophagy in Alzheimer's disease: linking cellular dysfunction to cognitive decline. Cell Death Discov 2025; 11:204. [PMID: 40287423 DOI: 10.1038/s41420-025-02490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Macroautophagy and mitophagy are critical processes in Alzheimer's disease (AD), yet their links to behavioral outcomes, particularly sex-specific differences, are not fully understood. This study investigates autophagic (LC3B-II, SQSTM1) and mitophagic (BNIP3L, BNIP3, BCL2L13) markers in the cortex and hippocampus of male and female 3xTg-AD mice, using western blotting, transmission electron microscopy (TEM), and behavioral tests (novel object recognition and novel object placement). Significant sex-specific differences emerged: female 3xTg-AD mice exhibited autophagosome accumulation due to impaired degradation in the cortex, while males showed fewer autophagosomes, especially in the hippocampus, without significant degradation changes. TEM analyses demonstrated variations in mitochondrial and mitophagosome numbers correlated with memory outcomes. Females had enhanced mitophagy, with higher BNIP3L and BCL2L13 levels, whereas males showed elevated BNIP3 dimers. Cognitive deficits in females correlated with mitochondrial dysfunction in the cortex, while in males, higher LC3B-II levels associated positively with cognitive performance, suggesting protective autophagy effects. Using machine learning, we predicted mitophagosome and mitochondrial numbers based on behavioral data, pioneering a predictive approach to cellular outcomes in AD. These findings underscore the importance of sex-specific regulation of autophagy and mitophagy in AD and support personalized therapeutic approaches targeting these pathways. Integrating machine learning emphasizes its potential to advance neurodegenerative research. Sex-specific differences in autophagy and mitophagy regulation in Alzheimer's disease (AD) are highlighted. Female 3xTg-AD mice show autophagosome accumulation and cognitive deficits, while males exhibit variations in mitophagy markers and behavior.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Autophagy Research Centre, SUMS, Shiraz, Fars, Iran
| | - Fariba Fayazbakhsh
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Mohsen Mohammadi
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Zeinab Babaei
- Department of Clinical Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Benedict C Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
- St. Boniface Hospital Research, Winnipeg, MB, Canada.
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland.
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Zhou Q, Wang W, Deng C. Advancements in Proteolysis Targeting Chimeras for Targeted Therapeutic Strategies in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04838-0. [PMID: 40133753 DOI: 10.1007/s12035-025-04838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/09/2025] [Indexed: 03/27/2025]
Abstract
The presence of hyperphosphorylated Tau proteins, which mislocalize and form neurofibrillary tangles, and the accumulation of amyloid-β plaques are hallmark features of Alzheimer's disease (AD). These toxic protein aggregates contribute to synaptic impairment and neuronal dysfunction, underscoring the need for strategies aimed at effectively clearing or reducing these aggregates in the treatment of AD. In recent years, proteolysis targeting chimera (PROTAC) technology has emerged as a promising approach for selectively degrading dysfunctional proteins rather than merely inhibiting their function. This approach holds great potential for developing more effective interventions that could slow AD progression and improve patient outcomes. In this review, we first examine the pathological mechanisms underlying AD, focusing on abnormal protein degradation and accumulation. We then explore the evolution of PROTAC technology, its mechanisms of action, and the current status of drug development. Finally, we discuss the latest findings regarding the application of PROTACs in AD therapy, highlighting the potential benefits and limitations of this technology. Although promising, further clinical research is necessary to fully assess the safety and efficacy of PROTAC-based therapies for AD treatment.
Collapse
Affiliation(s)
- Qiuzhi Zhou
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixia Wang
- School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Yi X, Wei R, Huang S, Wei P, Li H, Li Z, Aschner M, Jiang Y, Ou S, Li S. The effect of resveratrol on lead-induced oxidative damage and apoptosis in HT-22 cells. Food Chem Toxicol 2025; 197:115274. [PMID: 39864579 DOI: 10.1016/j.fct.2025.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE The purpose of this work was to investigate whether resveratrol affects lead-induced oxidative damage in HT-22 cells, characterizing mechanisms and strategies for preventing and treating lead-induced neurotoxicity. METHODS Various lead and resveratrol concentrations were applied to HT-22 cells over different time periods. First, we established the lead treatment (12.5, 50 and 200 μmol/L) and resveratrol (40 μmol/L) intervention model for the study. MTT was used to analyze HT-22 cell survival rate. The rates of cell death, mitochondrial membrane potential, lipid peroxidation, and reactive oxygen species (ROS) generation were all measured by flow cytometry. Cellular oxidant (MDA) and antioxidant (SOD, GSH-Px) levels were measured with test kits. Western blotting was used to assess the expression of proteins related to autophagy and apoptosis. RESULTS Lead reduced HT-22 cell viability in a concentration/time-dependent manner. In addition, lead (200 μmol/L) decreased the protein expression of BCL2, while increasing PARP and BAX expression and apoptotic rate. Moreover, the lead-exposed group had significantly higher levels of ROS, lipid-ROS, and MDA than the control group. This was accompanied by increased MDA levels and decreased SOD, GSH-Px, and MMP levels in the lead-exposed cells. Furthermore, lead lowered SIRT1 protein expression, while increasing the levels of autophagy-related proteins, including P62, ATG5, Beclin-1 and LC3 Ⅱ/Ⅰ. Resveratrol (40 μmol/L), an agonist of SIRT1, restored the effects of lead (200 μmol/L) to levelsindistinguishable from controls. CONCLUSION Resveratrol inhibited mitochondrial damage and restored the lead-induced block of autophagic flux and oxidative stress by activating SIRT1, thereby alleviating lead-induced damage in HT-22 cells.
Collapse
Affiliation(s)
- Xiang Yi
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; School of Public Health, Xiangnan University, Chenzhou, 423000, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Ruokun Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaoni Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Peiqi Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - HuiShuai Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhenning Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167617. [PMID: 39647244 DOI: 10.1016/j.bbadis.2024.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) poses a considerable worldwide health obstacle, marked by gradual cognitive deterioration and neuronal loss. While the molecular mechanisms underlying AD pathology have been elucidated to some extent, therapeutic options remain limited. Mitochondrial dysfunction has become recognized as a significant factor in the development of AD, with oxidative stress and disrupted energy metabolism being critical elements. This review explores the mechanistic aspects of small molecule targeting of mitochondria as a potential therapeutic approach for AD. The review explores the role of mitochondrial dysfunction in AD, including its involvement in the accumulation of β-amyloid plaques and neurofibrillary tangles, synaptic dysfunction, and neuronal death. Furthermore, the effects of oxidative stress on mitochondrial function were investigated, including the resulting damage to mitochondrial components. Mitochondrial-targeted therapies have attracted attention for their potential to restore mitochondrial function and reduce AD pathology. The review outlines the latest preclinical and clinical evidence supporting the effectiveness of small molecules in targeting mitochondrial dysfunction in AD. Additionally, it discusses the molecular pathways involved in mitochondrial dysfunction and examines how small molecules can intervene to address these abnormalities. By providing a comprehensive overview of the latest research in this field, this review aims to shed light on the therapeutic potential of small molecule targeting of mitochondria in AD and stimulate further research in this promising area of drug development.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
5
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Bondy SC, Wu M. The Critical Role of Autophagy and Phagocytosis in the Aging Brain. Int J Mol Sci 2024; 26:57. [PMID: 39795916 PMCID: PMC11720579 DOI: 10.3390/ijms26010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
As the organism ages, there is a decline in effective energy supply, and this retards the ability to elaborate new proteins. The consequences of this are especially marked in the gradual decline in brain function. The senescence of cells and their constituent organelles is ultimately the cause of aging of the entire nervous system. What is less immediately obvious is that brain aging is also accompanied by the failure of catabolic events that lead to the removal of non-functional cells and ineffective subcellular components. The removal of non-working cellular and subcellular elements within the brain is essential in order to allow the appearance of fresh cells and organelles with a full range of capacities. Thus, the maintenance of operative mechanisms for the dispersal of failed tissue components is important, and its diminished capacity with aging is a significant contributory factor to the onset and progression of age-related neurological disorder. This report discusses the mechanisms underlying autophagy and phagocytosis and how these can be adversely modulated as aging proceeds. The means by which the effective recycling of cellular components may be reinstated in the aged brain are considered.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Occupational and Environmental Health and Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Evergreen World ADHC, Westminster, CA 92844, USA;
| |
Collapse
|
7
|
Araujo APB, Vargas G, Hayashide LDS, Matias I, Andrade CBV, de Carvalho JJ, Gomes FCA, Diniz LP. Aging promotes an increase in mitochondrial fragmentation in astrocytes. Front Cell Neurosci 2024; 18:1496163. [PMID: 39703460 PMCID: PMC11655212 DOI: 10.3389/fncel.2024.1496163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Brain aging involves a complex interplay of cellular and molecular changes, including metabolic alterations and the accumulation of senescent cells. These changes frequently manifest as dysregulation in glucose metabolism and mitochondrial function, leading to reduced energy production, increased oxidative stress, and mitochondrial dysfunction-key contributors to age-related neurodegenerative diseases. Methods We conducted experiments on two models: young (3-4 months) and aged (over 18 months) mice, as well as cultures of senescent and control mouse astrocytes. Mitochondrial content and biogenesis were analyzed in astrocytes and neurons from aged and young animals. Cultured senescent astrocytes were examined for mitochondrial membrane potential and fragmentation. Quantitative PCR (qPCR) and immunocytochemistry were used to measure fusion- and fission-related protein levels. Additionally, transmission electron microscopy provided morphological data on mitochondria. Results Astrocytes and neurons from aged animals showed a significant reduction in mitochondrial content and a decrease in mitochondrial biogenesis. Senescent astrocytes in culture exhibited lower mitochondrial membrane potential and increased mitochondrial fragmentation. qPCR and immunocytochemistry analyses revealed a 68% increase in fusion-related proteins (mitofusin 1 and 2) and a 10-fold rise in DRP1, a key regulator of mitochondrial fission. Transmission electron microscopy showed reduced perimeter, area, and length-to-diameter ratio of mitochondria in astrocytes from aged mice, supported by elevated DRP1 phosphorylation in astrocytes of the cerebral cortex. Discussion Our findings provide novel evidence of increased mitochondrial fragmentation in astrocytes from aged animals. This study sheds light on mechanisms of astrocytic metabolic dysfunction and mitochondrial dysregulation in brain aging, highlighting mitochondrial fragmentation as a potential target for therapeutic interventions in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Paula Bergamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Sá Hayashide
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
García Porta C, Mahfooz K, Komorowska J, Garcia-Rates S, Greenfield S. A Novel 14mer Peptide Inhibits Autophagic Flux via Selective Activation of the mTORC1 Signalling Pathway: Implications for Alzheimer's Disease. Int J Mol Sci 2024; 25:12837. [PMID: 39684549 DOI: 10.3390/ijms252312837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
During development, a 14mer peptide, T14, modulates cell growth via the α-7 nicotinic acetylcholine receptor (α7 nAChR). However, this process could become excitotoxic in the context of the adult brain, leading to pathologies such as Alzheimer's disease (AD). Recent work shows that T14 acts selectively via the mammalian target of rapamycin complex 1 (mTORC1). This pathway is essential for normal development but is overactive in AD. The triggering of mTORC1 has also been associated with the suppression of autophagy, commonly observed in ageing and neurodegeneration. We therefore investigated the relationship between T14 and autophagic flux in tissue cultures, mouse brain slices, and human Alzheimer's disease hippocampus. Here, we demonstrate that T14 and p-mTOR s2448 expression significantly increases in AD human hippocampus, which was associated with the gradual decrease in the autophagosome number across Braak stages. During development, the reduction in T14 positively correlated with pTau (Ser202, Thr205) and two selective autophagy receptors: p62 and optineurin. In vitro studies also indicated that T14 increases p-mTOR s2448 expression, resulting in the aggregation of polyubiquinated substances. The effective blockade of T14 via its cyclic variant, NBP14, has been validated in vitro, in vivo, and ex vivo. In this study, NBP14 significantly attenuated p-mTOR s2448 expression and restored normal autophagic flux, as seen with rapamycin. We conclude that T14 acts at the α-7 receptor to selectively activate the mTORC1 pathway and consequently inhibit autophagic flux. Hence, this study describes a further step in the process by which T14 could drive neurodegeneration.
Collapse
Affiliation(s)
- Cloe García Porta
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Kashif Mahfooz
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Joanna Komorowska
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Sara Garcia-Rates
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Susan Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| |
Collapse
|
9
|
Cicali KA, Tapia-Rojas C. Synaptic mitochondria: A crucial factor in the aged hippocampus. Ageing Res Rev 2024; 101:102524. [PMID: 39369797 DOI: 10.1016/j.arr.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
Collapse
Affiliation(s)
- Karina A Cicali
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
| |
Collapse
|
10
|
Adlimoghaddam A, Fayazbakhsh F, Mohammadi M, Babaei Z, Behrooz AB, Tabasi F, Guan T, Beheshti I, Aghaei M, Klionsky DJ, Albensi BC, Ghavami S. Sex and Region-Specific Disruption of Autophagy and Mitophagy in Alzheimer's Disease: Linking Cellular Dysfunction to Cognitive Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621097. [PMID: 39554142 PMCID: PMC11565785 DOI: 10.1101/2024.10.30.621097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Macroautophagy and mitophagy are critical processes in Alzheimer's disease (AD), yet their links to behavioral outcomes, particularly sex-specific differences, are not fully understood. This study investigates autophagy (LC3B-II, SQSTM1) and mitophagy (BNIP3L, BNIP3, BCL2L13) markers in the cortex and hippocampus of male and female 3xTg-AD mice, using western blotting, transmission electron microscopy (TEM), and behavioral tests (novel object recognition and novel object placement). Significant sex-specific differences emerged: female 3xTg-AD mice exhibited autophagosome accumulation due to impaired degradation in the cortex, while males showed fewer autophagosomes, especially in the hippocampus, without significant degradation changes. TEM analyses demonstrated variations in mitochondrial and mitophagosome numbers correlated with memory outcomes. Females had enhanced mitophagy, with higher BNIP3L and BCL2L13 levels, whereas males showed elevated BNIP3 dimers. Cognitive deficits in females correlated with mitochondrial dysfunction in the cortex, while in males, higher LC3B-II levels associated positively with cognitive performance, suggesting protective autophagy effects. Using machine learning, we predicted mitophagosome and mitochondrial numbers based on behavioral data, pioneering a predictive approach to cellular outcomes in AD. These findings underscore the importance of sex-specific regulation of autophagy and mitophagy in AD and support personalized therapeutic approaches targeting these pathways. Integrating machine learning emphasizes its potential to advance neurodegenerative research. Abstract Figure
Collapse
|
11
|
Loers G, Bork U, Schachner M. Functional Relationships between L1CAM, LC3, ATG12, and Aβ. Int J Mol Sci 2024; 25:10829. [PMID: 39409157 PMCID: PMC11476435 DOI: 10.3390/ijms251910829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal protein accumulations in the brain are linked to aging and the pathogenesis of dementia of various types, including Alzheimer's disease. These accumulations can be reduced by cell indigenous mechanisms. Among these is autophagy, whereby proteins are transferred to lysosomes for degradation. Autophagic dysfunction hampers the elimination of pathogenic protein aggregations that contribute to cell death. We had observed that the adhesion molecule L1 interacts with microtubule-associated protein 1 light-chain 3 (LC3), which is needed for autophagy substrate selection. L1 increases cell survival in an LC3-dependent manner via its extracellular LC3 interacting region (LIR). L1 also interacts with Aβ and reduces the Aβ plaque load in an AD model mouse. Based on these results, we investigated whether L1 could contribute to autophagy of aggregated Aβ and its clearance. We here show that L1 interacts with autophagy-related protein 12 (ATG12) via its LIR domain, whereas interaction with ubiquitin-binding protein p62/SQSTM1 does not depend on LIR. Aβ, bound to L1, is carried to the autophagosome leading to Aβ elimination. Showing that the mitophagy-related L1-70 fragment is ubiquitinated, we expect that the p62/SQSTM1 pathway also contributes to Aβ elimination. We propose that enhancing L1 functions may contribute to therapy in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Sleigh JN, Mattedi F, Richter S, Annuario E, Ng K, Steinmark IE, Ivanova I, Darabán IL, Joshi PP, Rhymes ER, Awale S, Yahioglu G, Mitchell JC, Suhling K, Schiavo G, Vagnoni A. Age-specific and compartment-dependent changes in mitochondrial homeostasis and cytoplasmic viscosity in mouse peripheral neurons. Aging Cell 2024; 23:e14250. [PMID: 38881280 PMCID: PMC11464114 DOI: 10.1111/acel.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are dynamic bioenergetic hubs that become compromised with age. In neurons, declining mitochondrial axonal transport has been associated with reduced cellular health. However, it is still unclear to what extent the decline of mitochondrial transport and function observed during ageing are coupled, and if somal and axonal mitochondria display compartment-specific features that make them more susceptible to the ageing process. It is also not known whether the biophysical state of the cytoplasm, thought to affect many cellular functions, changes with age to impact mitochondrial trafficking and homeostasis. Focusing on the mouse peripheral nervous system, we show that age-dependent decline in mitochondrial trafficking is accompanied by reduction of mitochondrial membrane potential and intramitochondrial viscosity, but not calcium buffering, in both somal and axonal mitochondria. Intriguingly, we observe a specific increase in cytoplasmic viscosity in the neuronal cell body, where mitochondria are most polarised, which correlates with decreased cytoplasmic diffusiveness. Increasing cytoplasmic crowding in the somatic compartment of DRG neurons grown in microfluidic chambers reduces mitochondrial axonal trafficking, suggesting a mechanistic link between the regulation of cytoplasmic viscosity and mitochondrial dynamics. Our work provides a reference for studying the relationship between neuronal mitochondrial homeostasis and the viscoelasticity of the cytoplasm in a compartment-dependent manner during ageing.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Francesca Mattedi
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sandy Richter
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Emily Annuario
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Kristal Ng
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | | | - István L. Darabán
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Parth P. Joshi
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Sunderland Medical School, University of SunderlandSunderlandUK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Shirwa Awale
- Department of PhysicsKing's College LondonLondonUK
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd, Stevenage Bioscience CatalystStevenageUK
| | - Jacqueline C. Mitchell
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Alessio Vagnoni
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- MIA‐PortugalMultidisciplinary Institute of Ageing, University of CoimbraCoimbraPortugal
| |
Collapse
|
13
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public
Technology Service Center, Fujian Medical
University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical
Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health
Hospital College of Clinical Medicine for Obstetrics & Gynecology
and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department
of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department
of Epidemiology and Population Health, School of Public Health and
Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
14
|
Veverová K, Laczó J, Katonová A, Horáková H, Matušková V, Angelucci F, Laczó M, Nedelská Z, Hort J, Wang HL, Zhang J, Shi L, Fei Fang E, Vyhnálek M. Alterations of human CSF and serum-based mitophagy biomarkers in the continuum of Alzheimer disease. Autophagy 2024; 20:1868-1878. [PMID: 38695174 PMCID: PMC11262225 DOI: 10.1080/15548627.2024.2340408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 07/23/2024] Open
Abstract
Defective mitophagy is consistently found in postmortem brain and iPSC-derived neurons from Alzheimer disease (AD) patients. However, there is a lack of extensive examination of mitophagy status in serum or cerebrospinal fluid (CSF), and the clinical potential of mitophagy biomarkers has not been tested. We quantified biomarkers of mitophagy/autophagy and lysosomal degradation (PINK1, BNIP3L and TFEB) in CSF and serum from 246 individuals, covering mild cognitive impairment due to AD (MCI-AD, n = 100), dementia due to AD (AD-dementia, n = 100), and cognitively unimpaired individuals (CU, n = 46), recruited from the Czech Brain Aging Study. Cognitive function and brain atrophy were also assessed. Our data show that serum and CSF PINK1 and serum BNIP3L were higher, and serum TFEB was lower in individuals with AD than in corresponding CU individuals. Additionally, the magnitude of mitophagy impairment correlated with the severity of clinical indicators in AD patients. Specifically, levels of PINK1 positively correlated with phosphorylated (p)-MAPT/tau (181), total (t)-MAPT/tau, NEFL (neurofilament light chain), and NRGN (neurogranin) levels in CSF and negatively with memory, executive function, and language domain. Serum TFEB levels negatively correlated with NEFL and positively with executive function and language. This study reveals mitophagy impairment reflected in biofluid biomarkers of individuals with AD and associated with more advanced AD pathology.Abbreviation: Aβ: amyloid beta; AD: Alzheimer disease; AVs: autophagic vacuoles; BNIP3L: BCL2 interacting protein 3 like; CU: cognitively unimpaired; CSF: cerebrospinal fluid; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCI: mild cognitive impairment; NRGN: neurogranin; NEFL: neurofilament light chain; p-MAPT/tau: phosphorylated microtubule associated protein tau; PINK1: PTEN induced kinase 1; t-MAPT/tau: total microtubule associated protein tau; TFEB: transcription factor EB; TMT: Trail Making Test.
Collapse
Affiliation(s)
- Kateřina Veverová
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alžběta Katonová
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Horáková
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Veronika Matušková
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Nedelská
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Martin Vyhnálek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Bondy SC. Mitochondrial Dysfunction as the Major Basis of Brain Aging. Biomolecules 2024; 14:402. [PMID: 38672420 PMCID: PMC11048299 DOI: 10.3390/biom14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The changes in the properties of three biological events that occur with cerebral aging are discussed. These adverse changes already begin to develop early in mid-life and gradually become more pronounced with senescence. Essentially, they are reflections of the progressive decline in effectiveness of key processes, resulting in the deviation of essential biochemical trajectories to ineffective and ultimately harmful variants of these programs. The emphasis of this review is the major role played by the mitochondria in the transition of these three important processes toward more deleterious variants as brain aging proceeds. The immune system: the shift away from an efficient immune response to a more unfocused, continuing inflammatory condition. Such a state is both ineffective and harmful. Reactive oxygen species are important intracellular signaling systems. Additionally, microglial phagocytic activity utilizing short lived reactive oxygen species contribute to the removal of aberrant or dead cells and bacteria. These processes are transformed into an excessive, untargeted, and persistent generation of pro-oxidant free radicals (oxidative stress). The normal efficient neural transmission is modified to a state of undirected, chronic low-level excitatory activity. Each of these changes is characterized by the occurrence of continuous activity that is inefficient and diffused. The signal/noise ratio of several critical biological events is thus reduced as beneficial responses are gradually replaced by their impaired and deleterious variants.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA;
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Chen N, Wan X, Cheng S, Tang G, Xia D, Xu Y, Shen Y. Defective autophagic flux aggravates cadmium-induced Sertoli cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116095. [PMID: 38367604 DOI: 10.1016/j.ecoenv.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The male reproductive dysfunction accounts for 50% of infertile couples in the world. Cadmium (Cd) is one of the most harmful heavy metals to both the environment and inhabitants. Accumulating data suggest that Cd could cause male infertility. Sertoli cell (SC) is a somatic cell of testis and a key regulator of spermatogenesis by providing physical and nutritional support for developing sperm. Many studies showed that Cd induced dysfunction of SCs was directly related to male reproductive damage. However, the mechanism of SCs injury caused by Cd remains to be clarified. We found that Cd treatment caused a significant increase of apoptosis in SCs cells, accompanied by a marked increase in the production of ROS. These results were associated with the formation of mitochondria-containing autophagosomes and increased expression of LC3-II in vitro. Interestingly, our results showed that Cd did not promote but inhibited the fusion of mitochondria-containing autophagosomes with lysosomes by reducing the function of lysosomes. Together, this study provides insight into the negative effects of Cd, which interferes with autophagic flux and induces the apoptosis of SCs.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510620, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan 430011, PR China
| | - Guiju Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Dan Xia
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yanling Xu
- Department of Hematology, Shanghai Jiaotong University School of Medicine Affiliated Ruijin Hospital Wuxi Hospital, Wuxi, Jiangsu 214000, PR China.
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
18
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Yang X, Zhou P, Zhao Z, Li J, Fan Z, Li X, Cui Z, Fu A. Improvement Effect of Mitotherapy on the Cognitive Ability of Alzheimer's Disease through NAD +/SIRT1-Mediated Autophagy. Antioxidants (Basel) 2023; 12:2006. [PMID: 38001859 PMCID: PMC10669341 DOI: 10.3390/antiox12112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
To date, Alzheimer's disease (AD) has grown to be a predominant health challenge that disturbs the elderly population. Studies have shown that mitochondrial dysfunction is one of the most significant features of AD. Transplantation therapy of healthy mitochondria (mitotherapy), as a novel therapeutic strategy to restore mitochondrial function, is proposed to treat the mitochondria-associated disease. Also, the molecular mechanism of mitotherapy remains unclear. Here, we applied the mitotherapy in AD model mice induced by amyloid-β (Aβ) plaque deposition and suggested that autophagy would be an important mechanism of the mitotherapy. After the healthy mitochondria entered the defective neuronal cells damaged by the misfolded Aβ protein, autophagy was activated through the NAD+-dependent deacetylase sirtuin 1 (SIRT1) signal. The damaged mitochondria and Aβ protein were eliminated by autophagy, which could also decrease the content of radical oxygen species (ROS). Moreover, the levels of brain-derived neurotrophic factor (BDNF) and extracellular-regulated protein kinases (ERK) phosphorylation increased after mitotherapy, which would be beneficial to repair neuronal function. As a result, the cognitive ability of AD animals was ameliorated in a water maze test after the healthy mitochondria were administrated to the mice. The study indicated that mitotherapy would be an effective approach to AD treatment through the mechanism of autophagy activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.Y.); (P.Z.); (Z.Z.); (J.L.); (Z.F.); (X.L.); (Z.C.)
| |
Collapse
|
21
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
23
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Yang H, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Yildirim S, Arif M, Shoaie S, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023; 12:4. [PMID: 36703196 PMCID: PMC9879258 DOI: 10.1186/s40035-023-00336-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|