1
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Kaindlstorfer C, Stefanova N, Garcia J, Krismer F, Döbrössy M, Göbel G, Jellinger K, Granata R, Wenning GK. L-dopa response pattern in a rat model of mild striatonigral degeneration. PLoS One 2019; 14:e0218130. [PMID: 31181111 PMCID: PMC6557500 DOI: 10.1371/journal.pone.0218130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background Unresponsiveness to dopaminergic therapies is a key feature in the diagnosis of multiple system atrophy (MSA) and a major unmet need in the treatment of MSA patients caused by combined striatonigral degeneration (SND). Transgenic, alpha-synuclein animal models do not recapitulate this lack of levodopa responsiveness. In order to preclinically study interventions including striatal cell grafts, models that feature SND are required. Most of the previous studies focused on extensive nigral and striatal lesions corresponding to advanced MSA-P/SND. The aim of the current study was to replicate mild stage MSA-P/SND with L-dopa failure. Methods and results Two different striatal quinolinic acid (QA) lesions following a striatal 6-OHDA lesion replicating mild and severe MSA-P/SND, respectively, were investigated and compared to 6-OHDA lesioned animals. After the initial 6-OHDA lesion there was a significant improvement of motor performance after dopaminergic stimulation in the cylinder and stepping test (p<0.001). Response to L-dopa treatment declined in both MSA-P/SND groups reflecting striatal damage of lateral motor areas in contrast to the 6-OHDA only lesioned animals (p<0.01). The remaining striatal volume correlated strongly with contralateral apomorphine induced rotation behaviour and contralateral paw use during L-dopa treatment in cylinder and stepping test (p<0.001). Conclusion Our novel L-dopa response data suggest that L-dopa failure can be induced by restricted lateral striatal lesions combined with dopaminergic denervation. We propose that this sequential striatal double-lesion model replicates a mild stage of MSA-P/SND and is suitable to address neuro-regenerative therapies aimed at restoring dopaminergic responsiveness.
Collapse
Affiliation(s)
- Christine Kaindlstorfer
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joanna Garcia
- University Medical Centre Freiburg, Department of Neurosurgery, Freiburg, Germany
| | - Florian Krismer
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Máté Döbrössy
- University Medical Centre Freiburg, Department of Neurosurgery, Freiburg, Germany
| | - Georg Göbel
- Medical University Innsbruck, Department of Medical Statistics, Informatics and Health Economics, Innsbruck, Austria
| | | | - Roberta Granata
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Gregor Karl Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
4
|
Stefanova N, Wenning GK. Animal models of multiple system atrophy. Clin Auton Res 2015; 25:9-17. [PMID: 25585910 PMCID: PMC4412689 DOI: 10.1007/s10286-014-0266-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
Abstract
Since their introduction in 1996, animal models of multiple system atrophy (MSA) have generated important insights into pathogenesis and interventional therapies. Toxin and genetic approaches have been used alone or in combination to replicate progressive motor and non-motor symptoms reflecting human neuropathology. Here, we review these developments and discuss the advantages and limitations of the MSA animal models, as well as their application in preclinical target validation.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstr. 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
5
|
Krismer F, Kuzdas D, Colosimo C, Stefanova N, Wenning GK. Animal Models of Multiple-System Atrophy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
6
|
Abstract
Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson's disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells . This pathological hallmark, also called glial cytoplasmic inclusions (GCIs) , is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson's syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | | | |
Collapse
|
7
|
Fernagut PO, Tison F. Animal models of multiple system atrophy. Neuroscience 2012; 211:77-82. [DOI: 10.1016/j.neuroscience.2011.09.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
8
|
BN82451 attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson's disease. Neuropharmacology 2010; 60:692-700. [PMID: 21129389 DOI: 10.1016/j.neuropharm.2010.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/20/2022]
Abstract
The development of L-dopa-induced dyskinesia (LID) remains a major problem in the long-term treatment of Parkinson's disease (PD). This study aimed to assess the effect of the multitargeting molecule BN82451 on LID and to measure striatal mRNA expression of several genes in a rat model of PD. Rats were administered two unilateral injections of 6-OHDA in the striatum. After four weeks, the animals started a chronic daily treatment with increasing doses of L-dopa over a further four-week period. Over the course of L-dopa treatment, the rats developed abnormal involuntary movements (AIMs) classified as locomotive, axial, orolingual and forelimb dyskinesia. In animals rendered dyskinetic by L-dopa, administration of BN82451 at doses ranging from 1 to 10 mg/kg p.o. attenuated the severity of fully-established AIMs in a dose-related manner. This anti-dyskinetic effect could be achieved with lower doses of BN82451 administered sub chronically vs. acute single treatment. The improvement of AIMs is not due to a reduction in the general motor activity of dyskinetic rats. BN82451 treatment significantly reversed the overexpression of c-Fos, FosB and Arc mRNA associated with the dyskinesiogenic action of L-dopa. A significant correlation between the degree of overexpression of c-Fos, FosB and Arc mRNA and the dyskinesiogenic action of L-dopa was observed. The data demonstrate that BN82451 effectively attenuates LID and the associated molecular alterations in an animal model of PD and may represent a treatment option for managing dyskinesia.
Collapse
|
9
|
Malmlöf T, Rylander D, Alken RG, Schneider F, Svensson TH, Cenci MA, Schilström B. Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias. Exp Neurol 2010; 225:408-15. [DOI: 10.1016/j.expneurol.2010.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/08/2010] [Accepted: 07/19/2010] [Indexed: 11/28/2022]
|
10
|
|
11
|
Wenning GK, Stefanova N. Recent developments in multiple system atrophy. J Neurol 2009; 256:1791-808. [PMID: 19471850 DOI: 10.1007/s00415-009-5173-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Multiple system atrophy (MSA) is a rare late onset neurodegenerative disorder which presents with autonomic failure and a complicated motor syndrome including atypical parkinsonism, ataxia and pyramidal signs. MSA is a glial alpha-synucleinopathy with rapid progression and currently poor therapeutic management. This paper reviews the clinical features, natural history and novel diagnostic criteria for MSA as well as contemporary knowledge on pathogenesis based on evidence from neuropathological studies and experimental models. An outline of the rationale for managing symptomatic deterioration in MSA is provided together with a summary of novel experimental therapeutic approaches to decrease disease progression.
Collapse
Affiliation(s)
- Gregor K Wenning
- Section of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
12
|
Köllensperger M, Stefanova N, Pallua A, Puschban Z, Dechant G, Hainzer M, Reindl M, Poewe W, Nikkhah G, Wenning GK. Striatal transplantation in a rodent model of multiple system atrophy: effects on L-Dopa response. J Neurosci Res 2009; 87:1679-85. [PMID: 19115416 DOI: 10.1002/jnr.21972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progressive degeneration of striatal projection neurons is thought to account for the loss of L-Dopa response observed in the majority of patients with the parkinsonian variant of multiple system atrophy (MSA-P). Here we have investigated the effects of E14 embryonic striatal allografts on dopaminergic responsiveness in the unilateral double-lesion rat model of MSA-P by using tests of complex motor behavior. Both sham and graft animals showed an increase in apomorphine-induced rotations as well as an improvement in cylinder test performance following surgical intervention. In contrast, L-Dopa responsiveness of stepping behavior was improved only in grafted animals. The restoration of apomorphine-induced rotation correlated with the P-zone volume of grafts. Our findings indicate that transplantation of embryonic striatal grafts might, at least to some extent, restore responsiveness to L-Dopa in tasks of complex motor behavior. Therefore, striatal transplantation should be further defined preclinically as a possible therapeutic option for patients with MSA-P and a failing L-Dopa response.
Collapse
Affiliation(s)
- Martin Köllensperger
- Section for Clinical Neurobiology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fornai F, Biagioni F, Fulceri F, Murri L, Ruggieri S, Paparelli A. Intermittent Dopaminergic stimulation causes behavioral sensitization in the addicted brain and parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:371-98. [PMID: 19897084 DOI: 10.1016/s0074-7742(09)88013-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gold standard therapy for Parkinson's disease (PD) consists in chronic administration of pulses of the dopamine (DA) precursor l-dihydroxyphenylalanine (l-DOPA). Although the main brain area which is DA-deficient is the dorsal striatum (more the putamen than the caudate nucleus), other DA-innervated brain regions (i.e., the ventral striatum and other limbic areas) are affected by systemic administration of l-DOPA. While such a therapy produces an increase in synaptic and nonsynaptic DA, which replace the neurotransmitter deficiency, peaks of extracellular DA in the course of disease progression produce abnormal involuntary movements related to behavioral sensitization. Methamphetamine (METH), a widely abused drug, is known to produce behavioral sensitization, related to DA release (more in the ventral than dorsal striatum as well as other limbic regions). The present review discusses the overlapping between these treatments, based on pulses of DA stimulation with an emphasis on the class of DA receptors; signal transduction pathways; rearranged expression of neurotransmitters, cotransmitters, and their receptors coupled with ultrastructural changes. In fact, all these levels of synaptic plasticity show a surprising homology following these treatments, posing the mechanisms of behavioral sensitization during DA-replacement therapy in PD very close to the neurobiological mechanisms operating during METH abuse. In line with this view is the growing evidence of addictive behaviors in PD patients during the course of DA-replacement therapy.
Collapse
Affiliation(s)
- Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Cenci MA, Lundblad M. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.25. [PMID: 18428668 DOI: 10.1002/0471142301.ns0925s41] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit provides detailed protocols for establishing rodent models of L-DOPA-induced dyskinesia. The 6-hydroxydopamine (6-OHDA) lesion procedure is described in more detail for mice than for rats since the lesioning procedure in rats has been described extensively in previous work and is less difficult to perform. Unlike primate models, rodent models of L-DOPA-induced dyskinesia are relatively simple and fast to set up, thus being affordable to most laboratories. These models allow for studying the dyskinetic complications of L-DOPA treatment on large groups of animals under strictly controlled experimental conditions. Along with information and structured protocols for the practical execution of the test, this unit provides a detailed description of the rating scale and the phenomenology of rodent abnormal involuntary movements, and suggestions for beginners.
Collapse
|
15
|
Lyoo CH, Oh SH, Lee KO, Lee SY, Ryu YH, Lee MS. Relationship Between the Striatal and Cerebellar Glucose Metabolism and the Response to Levodopa Treatment in Patients With Multiple System Atrophy. J Mov Disord 2008. [DOI: 10.14802/jmd.08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Köllensperger M, Stefanova N, Reindl M, Poewe W, Wenning GK. Loss of dopaminergic responsiveness in a double lesion rat model of the Parkinson variant of multiple system atrophy. Mov Disord 2007; 22:353-8. [PMID: 17149724 DOI: 10.1002/mds.21251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Parkinson variant of multiple system atrophy (MSA-P) is a distinct atypical parkinsonian disorder with a loss of dopaminergic neurons comparable to that found in Parkinson's disease (PD). The additional loss of striatopallidal projections is thought to account for levodopa unresponsiveness in MSA-P. Whereas histological features of MSA-P have been successfully reproduced in the double lesion rat model, loss of levodopa responsiveness has so far not been demonstrated. In the current study, 6-hydroxydopamine (6-OHDA) induced unilateral lesions of the substantia nigra produced a marked contralateral forelimb stepping deficit, which improved significantly after challenge with levodopa (P < 0.001). This response was abolished by the subsequent striatal quinolinic acid (QA) lesion. In the cylinder test, the marked asymmetry observed after 6-OHDA lesioning was reversed by levodopa to baseline levels. After QA, cylinder test performance under levodopa failed to reach baseline (P = 0.001) or 6-OHDA + levodopa (P = 0.002) levels. Nigral cell loss (90% +/- 5%) correlated with both stepping test (r = 0.608; P = 0.008) and cylinder test results (r = 0.656; P = 0.005). Lesion extent of the dorsal striatum correlated significantly with the loss of levodopa response (r = 0.593; P = 0.01) in the stepping test. These findings contribute further to the behavioral characterization of the double lesion rat model of MSA, improving its value in the evaluation of future neurorestorative strategies.
Collapse
|
17
|
Lindgren HS, Rylander D, Ohlin KE, Lundblad M, Cenci MA. The “motor complication syndrome” in rats with 6-OHDA lesions treated chronically with l-DOPA: Relation to dose and route of administration. Behav Brain Res 2007; 177:150-9. [PMID: 17157933 DOI: 10.1016/j.bbr.2006.09.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 10/23/2022]
Abstract
L-DOPA-induced motor complications can be modelled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injections of L-DOPA. We have compared the sensitisation and duration of rotational responses, and the occurrence of dose-failure episodes and abnormal involuntary movements (AIMs) in 6-OHDA-lesioned rats with regard to the dose and route of administration of L-DOPA. Rats were treated with either low (6mg/kg) or high (25mg/kg) doses of L-DOPA twice daily for 21 days whereas control animals received injections of either saline or bromocriptine (2.5mg/kg). A dose-dependent and gradual development of AIMs and contralateral turning was observed in rats treated chronically with l-DOPA. Rats treated with bromocriptine exhibited rotational sensitisation but no AIMs. A shortening of motor response duration was not seen in any of the drug-treated groups. In contrast, dose-failure episodes occurred frequently in both L-DOPA- and bromocriptine-treated animals. Changing the route of L-DOPA administration from intraperitoneal to subcutaneous completely abolished failures in motor response without affecting the development of dyskinesia. Based on the hypothesis that higher doses of L-DOPA may be toxic to dopaminoceptive structures, we compared the total number of neurons and the levels of activated microglia in the striatum. No signs of neurodegenerative changes could be seen in any of the treatment groups. In conclusion, both body AIMs and rotations were dose-dependently evoked by L-DOPA. Only AIMs, however, provided a specific measure of dyskinesia since rotations also were induced by bromocriptine, a drug with low dyskinesiogenic potential. Dose-failure episodes were not specific to L-DOPA treatment and could be attributed to erratic drug absorption from the peritoneal route.
Collapse
Affiliation(s)
- Hanna S Lindgren
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, 221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Bonsi P, Cuomo D, Martella G, Sciamanna G, Tolu M, Calabresi P, Bernardi G, Pisani A. Mitochondrial toxins in Basal Ganglia disorders: from animal models to therapeutic strategies. Curr Neuropharmacol 2006; 4:69-75. [PMID: 18615133 PMCID: PMC2430675 DOI: 10.2174/157015906775203039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/21/2005] [Accepted: 09/07/2005] [Indexed: 12/21/2022] Open
Abstract
Current knowledge of the pathogenesis of basal ganglia disorders, such as Huntington's disease (HD) and Parkinson's disease (PD) appoints a central role to a dysfunction in mitochondrial metabolism. The development of animal models, based upon the use of mitochondrial toxins has been successfully introduced to reproduce human disease, leading to important acquisitions. Most notably, experimental evidence supports the existence, within basal ganglia, of a peculiar regional vulnerability to distinct mitochondrial toxins. MPTP and rotenone, both selective inhibitors of mitochondrial complex I have been extensively used to mimic PD. Accordingly, in human PD, a specific dysfunction of complex I activity was found in vulnerable dopaminergic neurons of the substantia nigra. Conversely, in HD a selective impairment of mitochondrial succinate dehydrogenase, key enzyme in complex II activity was found in medium spiny neurons of the caudate-putamen. The relevance of such finding is further demonstrated by the evidence that toxins able to primarily target mitochondrial complex II, such as malonic acid and 3-nitropropionic acid (3-NP), strikingly reproduce the main phenotypic and pathological features of HD.Despite the advances obtained from these experimental models, a deeper understanding of the molecular and cellular mechanisms underlying such neuronal vulnerability is lacking.The present review provides a brief survey of currently utilized animal models of mitochondrial intoxication, in attempt to address the cellular mechanisms triggered by energy metabolism failure and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- P Bonsi
- Fondazione Santa Lucia, I.R.C.C.S. – C.E.R.C., European Brain Research Institute, Roma, Italy
| | - D Cuomo
- Fondazione Santa Lucia, I.R.C.C.S. – C.E.R.C., European Brain Research Institute, Roma, Italy
| | - G Martella
- Clinica Neurologica, Dipartimento di Neuroscienze, Universitá “Tor Vergata”, Roma, Italy
| | - G Sciamanna
- Fondazione Santa Lucia, I.R.C.C.S. – C.E.R.C., European Brain Research Institute, Roma, Italy
| | - M Tolu
- Clinica Neurologica, Dipartimento di Neuroscienze, Universitá “Tor Vergata”, Roma, Italy
| | - P Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Universitá di Perugia, Perugia, Italy
| | - G Bernardi
- Fondazione Santa Lucia, I.R.C.C.S. – C.E.R.C., European Brain Research Institute, Roma, Italy
| | - A Pisani
- Fondazione Santa Lucia, I.R.C.C.S. – C.E.R.C., European Brain Research Institute, Roma, Italy
| |
Collapse
|
19
|
Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK. Animal models of multiple system atrophy. Trends Neurosci 2005; 28:501-6. [PMID: 16043239 DOI: 10.1016/j.tins.2005.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/27/2005] [Accepted: 07/12/2005] [Indexed: 11/29/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder presenting with autonomic failure and motor impairment, primarily comprising L-dopa-resistant parkinsonism but occasionally involving cerebellar ataxia. These features result from progressive multisystem neuronal loss that is associated with oligodendroglial alpha-synuclein inclusions. The growing number of animal models for MSA reflects the search for a preclinical test-bed for elucidating MSA pathogenesis and for developing novel therapeutic interventions. Here, the currently available MSA animal models will be reviewed and leads for future research will be identified.
Collapse
Affiliation(s)
- Nadia Stefanova
- Clinical Department of Neurology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
20
|
Stefanova N, Reindl M, Neumann M, Haass C, Poewe W, Kahle PJ, Wenning GK. Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:869-76. [PMID: 15743798 PMCID: PMC1602361 DOI: 10.1016/s0002-9440(10)62307-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2004] [Indexed: 10/18/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by parkinsonism unresponsive to dopaminergic therapy, cerebellar ataxia, and dysautonomia. Neuropathology shows a characteristic neuronal multisystem degeneration that is associated with widespread oligodendroglial alpha-synuclein (alpha-SYN) inclusions. Presently no animal model completely replicates the specific neuropathology of MSA. Here we investigated the behavioral and pathological features resulting from oligodendroglial alpha-SYN overexpression in transgenic mice exposed to mitochondrial inhibition by 3-nitropropionic acid. In transgenic mice 3-nitropropionic acid induced or augmented motor deficits that were associated with MSA-like pathology including striatonigral degeneration and olivopontocerebellar atrophy. Widespread astrogliosis and microglial activation were also observed in the presence of alpha-SYN in oligodendrocytes. Our results indicate that combined mitochondrial inhibition and overexpression of oligodendroglial alpha-SYN generates a novel model of MSA that may be useful for evaluating both pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Nadia Stefanova
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35 A-6020, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Stefanova N, Mitschnigg M, Ghorayeb I, Diguet E, Geser F, Tison F, Poewe W, Wenning GK. Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 2004; 78:87-91. [PMID: 15372496 DOI: 10.1002/jnr.20233] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies in rodent models of neurodegenerative disorders have demonstrated that minocycline exerts neuroprotective effects unrelated to its antimicrobial action. The purpose of the present study was to analyze whether minocycline exhibits neuroprotective activity in a rat model of striatonigral degeneration (SND), the core pathology underlying levodopa-unresponsive parkinsonism associated with multiple system atrophy (MSA). We observed no significant effect of minocycline on locomotor impairment in double-lesioned SND rats. Minocycline significantly suppressed astroglial and microglial activation (P < 0.01); however, 3'5'-monophosphate-regulated phosphoprotein (DARPP 32) immunohistochemistry revealed no significant differences in striatal lesion volume of minocycline-treated versus untreated control SND rats. Furthermore, there was no protection of nigral dopaminergic neurons in the double-lesion model. We conclude that despite its astrocytic and microglial suppression, minocycline failed to attenuate lesion-induced neuronal damage in the SND rat model.
Collapse
Affiliation(s)
- Nadia Stefanova
- Neurodegeneration Research Laboratory, Innsbruck MSA Study Group, Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|