1
|
Noristani H, Perrin F. Use of longitudinal magnetic resonance imaging in preclinical models of spinal cord injury. Neural Regen Res 2019; 14:771-772. [PMID: 30688261 PMCID: PMC6375030 DOI: 10.4103/1673-5374.249222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
2
|
Noristani HN, Saint-Martin GP, Cardoso M, Sidiboulenouar R, Catteau M, Coillot C, Goze-Bac C, Perrin FE. Longitudinal Magnetic Resonance Imaging Analysis and Histological Characterization after Spinal Cord Injury in Two Mouse Strains with Different Functional Recovery: Gliosis as a Key Factor. J Neurotrauma 2018; 35:2924-2940. [PMID: 29877129 DOI: 10.1089/neu.2017.5613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI. CX3CR1+/eGFP and Aldh1l1-EGFP mice that express green fluorescent protein in microglia/monocytes and astrocytes, respectively, are particularly useful to study glial reactivity. Whereas CX3CR1+/eGFP mice have C57BL/6 background, Aldh1l1-EGFP are in Swiss Webster background. We first assessed spontaneous functional recovery in CX3CR1+/eGFP and Aldh1l1-EGFP mice over 6 weeks after lateral spinal cord hemisection. Second, we carried out a longitudinal follow-up of lesion evolution using in vivo T2-weighted magnetic resonance imaging (MRI). Finally, we performed in-depth analysis of the spinal cord tissue using ex vivo T2-weighted MRI as well as detailed histology. We demonstrate that CX3CR1+/eGFP mice have improved functional recovery and reduced anxiety after SCI compared with Aldh1l1-EGFP mice. We also found a strong correlation between in vivo MRI, ex vivo MRI, and histological analyses of the injured spinal cord in both strain of mice. All three modalities revealed no difference in lesion extension and volume between the two strains of mice. Importantly, histopathological analysis identified decreased gliosis and increased serotonergic axons in CX3CR1+/eGFP compared with Aldh1l1-EGFP mice following SCI. These results thus suggest that the strain-dependent improved functional recovery after SCI may be linked with reduced gliosis and increased serotonergic innervation.
Collapse
Affiliation(s)
- Harun N Noristani
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,2 INSERM U1051, University of Montpellier, Montpellier, France
| | - Guillaume P Saint-Martin
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| | - Maïda Cardoso
- 2 INSERM U1051, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| | | | | | | | | | - Florence E Perrin
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,2 INSERM U1051, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Noristani HN, Boukhaddaoui H, Saint-Martin G, Auzer P, Sidiboulenouar R, Lonjon N, Alibert E, Tricaud N, Goze-Bac C, Coillot C, Perrin FE. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury. Front Aging Neurosci 2017; 9:230. [PMID: 28769787 PMCID: PMC5515855 DOI: 10.3389/fnagi.2017.00230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site.
Collapse
Affiliation(s)
- Harun N Noristani
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France.,University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France
| | - Hassan Boukhaddaoui
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Guillaume Saint-Martin
- University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France.,Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Pauline Auzer
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Rahima Sidiboulenouar
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Nicolas Lonjon
- University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France.,Centre Hospitalier Universitaire de Montpellier (CHRU), Gui de Chauliac HospitalMontpellier, France
| | - Eric Alibert
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Nicolas Tricaud
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Christophe Coillot
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Florence E Perrin
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France.,University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France
| |
Collapse
|
4
|
Hu J, Li P, Yin X, Wu T, Cao Y, Yang Z, Jiang L, Hu S, Lu H. Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:482-489. [PMID: 28244444 DOI: 10.1107/s1600577517000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200135, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shiping Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
5
|
Figini M, Scotti A, Marcuzzo S, Bonanno S, Padelli F, Moreno-Manzano V, García-Verdugo JM, Bernasconi P, Mantegazza R, Bruzzone MG, Zucca I. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model. PLoS One 2016; 11:e0161646. [PMID: 27560686 PMCID: PMC4999133 DOI: 10.1371/journal.pone.0161646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord.
Collapse
Affiliation(s)
- Matteo Figini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
- * E-mail:
| | - Alessandro Scotti
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Silvia Bonanno
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesco Padelli
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Pia Bernasconi
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Renato Mantegazza
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | | | - Ileana Zucca
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| |
Collapse
|
6
|
Noristani HN, Lonjon N, Cardoso M, Le Corre M, Chan-Seng E, Captier G, Privat A, Coillot C, Goze-Bac C, Perrin FE. Correlation of in vivo and ex vivo (1)H-MRI with histology in two severities of mouse spinal cord injury. Front Neuroanat 2015; 9:24. [PMID: 25798092 PMCID: PMC4350395 DOI: 10.3389/fnana.2015.00024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating neuropathology with no effective treatment. Magnetic resonance imaging (MRI) technology is the only method used to assess the impact of an injury on the structure and function of the human spinal cord. Moreover, in pre-clinical SCI research, MRI is a non-invasive method with great translational potential since it provides relevant longitudinal assessment of anatomical and structural alterations induced by an injury. It is only recently that MRI techniques have been effectively used for the follow-up of SCI in rodents. However, the vast majority of these studies have been carried out on rats and when conducted in mice, the contusion injury model was predominantly chosen. Due to the remarkable potential of transgenic mice for studying the pathophysiology of SCI, we examined the use of both in and ex vivo1H-MRI (9.4 T) in two severities of the mouse SCI (hemisection and over-hemisection) and documented their correlation with histological assessments. We demonstrated that a clear distinction between the two injury severities is possible using in and ex vivo1H-MRI and that ex vivo MR images closely correlate with histology. Moreover, tissue modifications at a remote location from the lesion epicenter were identified by conventional ex vivo MRI analysis. Therefore, in vivo MRI has the potential to accurately identify in mice the progression of tissue alterations induced by SCI and is successfully implemented by ex vivo MRI examination. This combination of in and ex vivo MRI follow-up associated with histopathological assessment provides a valuable approach for further studies intended to evaluate therapeutic strategies on SCI.
Collapse
Affiliation(s)
- Harun N Noristani
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Nicolas Lonjon
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Maïda Cardoso
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Marine Le Corre
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Emilie Chan-Seng
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Guillaume Captier
- Centre Hospitalier Régional Universitaire Montpellier, Lapeyronie Hospital, Chirurgie Orthopédique et Plastique Pédiatrique Montpellier, France
| | - Alain Privat
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Christophe Coillot
- Charles Coulomb Laboratory (L2C-BioNanoNMRI team), UMR 5221 Centre National de la Recherche Scientifique -University Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory (L2C-BioNanoNMRI team), UMR 5221 Centre National de la Recherche Scientifique -University Montpellier, France
| | - Florence E Perrin
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Department "Biologie-Mécanismes du Vivant," Faculty of Science, University of Montpellier Montpellier, France
| |
Collapse
|
7
|
Mondragon-Lozano R, Diaz-Ruiz A, Ríos C, Olayo Gonzalez R, Favila R, Salgado-Ceballos H, Roldan-Valadez E. Feasibility of in vivo quantitative magnetic resonance imaging with diffusion weighted imaging, T2-weighted relaxometry, and diffusion tensor imaging in a clinical 3 tesla magnetic resonance scanner for the acute traumatic spinal cord injury of rats: technical note. Spine (Phila Pa 1976) 2013; 38:E1242-E1249. [PMID: 23759823 DOI: 10.1097/brs.0b013e31829ef69c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STUDY DESIGN Prospective longitudinal study. OBJECTIVE To verify the feasibility of performing in vivo quantitative magnetic resonance imaging evaluation of moderate traumatic spinal cord injury (SCI) in rats using a clinical 3T scanner. SUMMARY OF BACKGROUND DATA Animal models of human diseases are essential for translational medicine. Potential treatments of SCI are evaluated in 2 ways: anatomical and functional. Advanced magnetic resonance sequences allow a noninvasive assessment of the spinal cord depicting both. This study describes and validates a very reproducible, feasible, affordable, and reliable method, designed to be applied in commercial 3T equipment, using a novel stereotactic device for spinal cord, leading to a readily available assessment of the progression of damage generated after traumatic SCI in rats. METHODS Four Long-Evans female rats were injured with a New York University weight-drop device to produce the SCI by contusion at thoracic level 10. All animals were placed in a fixation system, using a commercial wrist antenna to obtain magnetic resonance imaging data of the relaxometry time, apparent diffusion coefficient, and fractional anisotropy. Three sets of data obtained before SCI and 1 and 4 weeks after injury were compared. RESULTS The data showed a progressive decline in fractional anisotropy measurements after SCI comparing baseline versus the 1-week period (P < 0.001) and baseline versus the 4-week period (P < 0.019), with a significant progressive increase in apparent diffusion coefficient values and T2 after SCI only in the baseline versus the 4-week period (P < 0.045 and P < 0.024, respectively). CONCLUSION Our results helped us to validate a novel method to acquire highly reproducible and reliable quantitative biomarkers of traumatic SCI in vivo by using a 3T clinical MR scanner coupled with a novel stereotactic device for rats. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Rodrigo Mondragon-Lozano
- *Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, México; †Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, México; ‡Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, México; §Departamento de Física, Universidad Autónoma Metropolitana, México; ¶GE Healthcare, Mexico; ‖Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México; and **Magnetic Resonance Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim JH, Song SK. Diffusion tensor imaging of the mouse brainstem and cervical spinal cord. Nat Protoc 2013; 8:409-17. [PMID: 23424749 DOI: 10.1038/nprot.2013.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Concurrent and/or progressive degeneration of upper and lower motor neurons (LMNs) causes neurological symptoms and dysfunctions in motor neuron diseases (MNDs) such as amyotrophic lateral sclerosis (ALS). Although brain lesions are readily detected, magnetic resonance imaging of the brainstem and cervical spinal cord lesions resulting from damage to LMNs has proven to be difficult. With the development of mouse models of MNDs, a noninvasive neuroimaging modality capable of detecting lesions resulting from axonal and neuronal injury in mouse brainstem and cervical spinal cord could improve our understanding of the underlying mechanism of MNDs and aid in the development of effective treatments. Here we present a protocol that allows the concomitant acquisition of high-quality in vivo full-diffusion tensor magnetic resonance images from the mouse brainstem and cervical spinal cord using the actively decoupled, anatomically shaped pair of coils--the surface-receive coil and the minimized volume-transmit coil. To improve the data quality, we used a custom-made nose cone to monitor respiratory motion for synchronizing data acquisition and assuring physiological stability of mice under examination. The protocol allows the acquisition of in vivo diffusion tensor imaging of the mouse brainstem and cervical spinal cord at 117 μm × 117 μm in-plane resolution with a 500-μm slice thickness in 1 h on a 4.7-T horizontal small animal imaging scanner equipped with an actively shielded gradient coil capable of pulsed gradient strengths up to 18 G cm(−1) with a gradient rise time of ≤295 μs.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
9
|
Takano M, Hikishima K, Fujiyoshi K, Shibata S, Yasuda A, Konomi T, Hayashi A, Baba H, Honke K, Toyama Y, Okano H, Nakamura M. MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One 2012; 7:e52904. [PMID: 23300814 PMCID: PMC3531327 DOI: 10.1371/journal.pone.0052904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/23/2012] [Indexed: 02/06/2023] Open
Abstract
The paranodal junction is a specialized axon-glia contact zone that is important for normal neuronal activity and behavioral locomotor function in the central nervous system (CNS). Histological examination has been the only method for detecting pathological paranodal junction conditions. Recently, diffusion tensor MRI (DTI) has been used to detect microstructural changes in various CNS diseases. This study was conducted to determine whether MRI and DTI could detect structural changes in the paranodal junctions of the spinal cord in cerebroside sulfotransferase knock-out (CST-KO) mice. Here, we showed that high-resolution MRI and DTI characteristics can reflect paranodal junction failure in CST-KO mice. We found significantly lower T1 times and significantly higher T2 times in the spinal cord MRIs of CST-KO mice as compared to wild-type (WT) mice. Spinal cord DTI showed significantly lower axial diffusivity and significantly higher radial diffusivity in CST-KO mice as compared to WT mice. In contrast, the histological differences in the paranodal junctions of WT and CST-KO mice were so subtle that electron microscopy or immunohistological analyses were necessary to detect them. We also measured gait disturbance in the CST-KO mice, and determined the conduction latency by electrophysiology. These findings demonstrate the potential of using MRI and DTI to evaluate white matter disorders that involve paranodal junction failure.
Collapse
Affiliation(s)
- Morito Takano
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saito S, Mori Y, Yoshioka Y, Murase K. High-resolution ex vivo imaging in mouse spinal cord using micro-CT with 11.7T-MRI and myelin staining validation. Neurosci Res 2012; 73:337-40. [PMID: 22609867 DOI: 10.1016/j.neures.2012.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 11/17/2022]
Abstract
We investigated the use of micro-CT with contrast agent for the characterization of fixed mouse spinal cord as a means to differentiate between gray and white matter. The spinal cords were soaked in a concentration of nonionic iodinated contrast agent for 14 days. Micro-CT was performed and then compared using 11.7T-MRI images and myelin staining. Soaking the spinal cords in contrast agent resulted in clear differences in signal between the gray and white matter at 3 planes. Micro-CT provides more relevant information on mouse spinal cord GM and WM anatomical structures.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
11
|
Underwood CK, Kurniawan ND, Butler TJ, Cowin GJ, Wallace RH. Non-invasive diffusion tensor imaging detects white matter degeneration in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Neuroimage 2011; 55:455-61. [DOI: 10.1016/j.neuroimage.2010.12.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 12/13/2022] Open
|
12
|
Abstract
Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 6612, CNRS, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
13
|
Kim JH, Tu TW, Bayly PV, Song SK. Impact speed does not determine severity of spinal cord injury in mice with fixed impact displacement. J Neurotrauma 2010; 26:1395-404. [PMID: 19257804 DOI: 10.1089/neu.2008-0728] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The speed of three leading rodent SCI impacting devices-0.1 m/s (Infinite Horizon), 0.2 m/s (Ohio State University), and 0.4 m/s (New York University)-were investigated using a custom-fabricated impactor to determine its effect on mouse spinal cord injury severity. The spared white matter was examined at 7 and 21 days post-injury with in vivo diffusion tensor imaging (DTI) and post-mortem histology, respectively. The neurological outcome of the injured mice was longitudinally evaluated using the Basso mouse scale. In vivo DTI derived diffusion anisotropy maps provided excellent gray-white matter contrast enabling objective and noninvasive quantification of normal appearing white matter. In vivo DTI estimated spared white matter content correlated well with those determined using post-mortem histology. No significant difference in BMS was observed among injury groups of various impact speeds. The present results suggest that injury severity can be reproduced using speeds from 0.1 to 0.4 m/s at the fixed impact displacement.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
14
|
Callot V, Duhamel G, Le Fur Y, Decherchi P, Marqueste T, Kober F, Cozzone PJ. Echo planar diffusion tensor imaging of the mouse spinal cord at thoracic and lumbar levels: A feasibility study. Magn Reson Med 2010; 63:1125-34. [PMID: 20373416 DOI: 10.1002/mrm.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging is increasingly used for probing spinal cord (SC) pathologies, especially in mouse models of human diseases. However, diffusion tensor imaging series requires a long acquisition time and mouse experiments rarely use rapid imaging techniques such as echo planar imaging. A recent preliminary study demonstrated the feasibility and robustness of the echo planar imaging sequence for mouse cervical SC diffusion tensor imaging investigations. The feasibility of echo planar imaging at thoracic and lumbar levels, however, remained unknown due to bulk motion, field inhomogeneities, and off-centering of the SC in the axial plane. In the present study, the feasibility and the robustness of an echo planar imaging-based diffusion tensor imaging sequence for mouse thoracic and lumbar SC investigations is demonstrated. Quantitative and accurate diffusion tensor imaging metrics, as well as high spatially resolved images, have been obtained. This successful demonstration may open new perspectives in the field of mouse SC imaging. Echo planar imaging is used in several imaging modalities, such as relaxometry or perfusion, and may prove to be very attractive for multimodal MR investigations to acquire a more detailed characterization of the SC tissue.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine de Marseille, Université de la Méditerranée (Aix-Marseille II), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kouyoumdjian P, Lonjon N, Prieto M, Haton H, Privat A, Asencio G, Perrin FE, Gaviria M. A remotely controlled model of spinal cord compression injury in mice: toward real-time analysis. J Neurosurg Spine 2009; 11:461-70. [PMID: 19929343 DOI: 10.3171/2009.4.spine0979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT To date, there has been no efficient therapeutic approach to spinal cord injuries (SCIs). This may be attributable, at least in part, to difficulties in forming predictive and accurate experimental animal models. The authors' previous studies have identified 2 relevant conditions of such a model. The first condition is the ability to compare data derived from rat models of SCI by developing mouse models of SCI that permit access to a large range of transgenic models. The second condition is that the exploration of the consequences of each mechanism of spinal trauma requires modeling the different etiologic aspects of the injury. METHODS To fulfill these 2 conditions a new model of mouse spinal cord compression injury was devised using a thread-driven olive-shaped compressive device. The authors characterized early motor, sensory, and histological outcomes using 3 olive diameters and different compression durations. RESULTS A gradual and reproducible functional severity that correlated with lesion extension was demonstrated in 76 mice. To further substantiate the characterization of this model, a noncompetitive N-methyl-d-aspartate antagonist was administered in 30 mice, which demonstrated the involvement of excitotoxicity in this model. CONCLUSIONS The study demonstrated that spinal olive-compression injury in the mouse is a reproducible, well-characterized, and predictable model for analyzing early events after SCI. The nonmagnetic and remotely controlled design of this model will allow completion of the lesion while the animal is in the MR imaging apparatus, thus permitting further real-time MR imaging studies that will provide insights into the characterization of early events in the spatial and temporal evolution of SCI. Moreover, this model lays the foundation for future in vivo studies of functional and histological outcomes following SCI in genetically engineered animals.
Collapse
Affiliation(s)
- Pascal Kouyoumdjian
- Pathophysiology and Therapy of Sensory and Motor Deficits, Institute for Neurosciences of Montpellier, INSERM U583, Saint Eloi Hospital, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Duhamel G, Callot V, Decherchi P, Le Fur Y, Marqueste T, Cozzone PJ, Kober F. Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: Sensitivity optimization and first application. Magn Reson Med 2009; 62:430-9. [DOI: 10.1002/mrm.22015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Kim JH, Tu TW, Bayly PV, Song SK. Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri
| | - Tsang-Wei Tu
- Department of Mechanical and Aerospace Engineering, Washington University, St. Louis, Missouri
| | - Philip V. Bayly
- Department of Mechanical and Aerospace Engineering, Washington University, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Sheng-Kwei Song
- Department of Radiology, Washington University, St. Louis, Missouri
| |
Collapse
|
18
|
Tatar I, Chou PCT, Desouki MM, El Sayed H, Bilgen M. Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI. BMC Med Imaging 2009; 9:10. [PMID: 19519898 PMCID: PMC2714086 DOI: 10.1186/1471-2342-9-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 06/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo preclinical imaging of spinal cord injury (SCI) in rodent models provides clinically relevant information in translational research. This paper uses multimodal magnetic resonance imaging (MRI) to investigate neurovascular pathology and changes in blood spinal cord barrier (BSCB) permeability following SCI in a mouse model of SCI. METHODS C57BL/6 female mice (n = 5) were subjected to contusive injury at the thoracic T11 level and scanned on post injury days 1 and 3 using anatomical, dynamic contrast-enhanced (DCE-MRI) and diffusion tensor imaging (DTI). The injured cords were evaluated postmortem with histopathological stains specific to neurovascular changes. A computational model was implemented to map local changes in barrier function from the contrast enhancement. The area and volume of spinal cord tissue with dysfunctional barrier were determined using semi-automatic segmentation. RESULTS Quantitative maps derived from the acquired DCE-MRI data depicted the degree of BSCB permeability variations in injured spinal cords. At the injury sites, the damaged barriers occupied about 70% of the total cross section and 48% of the total volume on day 1, but the corresponding measurements were reduced to 55% and 25%, respectively on day 3. These changes implied spatio-temporal remodeling of microvasculature and its architecture in injured SC. Diffusion computations included longitudinal and transverse diffusivities and fractional anisotropy index. Comparison of permeability and diffusion measurements indicated regions of injured cords with dysfunctional barriers had structural changes in the form of greater axonal loss and demyelination, as supported by histopathologic assessments. CONCLUSION The results from this study collectively demonstrated the feasibility of quantitatively mapping regional BSCB dysfunction in injured cord in mouse and obtaining complementary information about its structural integrity using in vivo DCE-MRI and DTI protocols. This capability is expected to play an important role in characterizing the neurovascular changes and reorganization following SCI in longitudinal preclinical experiments, but with potential clinical implications.
Collapse
Affiliation(s)
- Ilkan Tatar
- Preclinical Imaging in Translational Research Laboratory, Radiology and Radiological Science, Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
19
|
Callot V, Duhamel G, Cozzone PJ, Kober F. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging. NMR IN BIOMEDICINE 2008; 21:868-877. [PMID: 18574855 DOI: 10.1002/nbm.1274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS No. 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
20
|
Diffusion tensor imaging of mouse brain stem and cervical spinal cord. J Neurosci Methods 2008; 176:186-91. [PMID: 18834905 DOI: 10.1016/j.jneumeth.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/16/2008] [Accepted: 09/01/2008] [Indexed: 12/29/2022]
Abstract
In vivo diffusion tensor imaging measurements of the mouse brain stem and cervical spinal cord are presented. Utilizing actively decoupled transmit/receive coils, high resolution diffusion images (117 microm x 59 microm x 500 microm) were acquired at 4.7 T within an hour. Both brain stem and cervical spine displayed clear gray-white matter contrast. The cervical spinal cord white matter showed similar tissue characteristics as seen in the thoracic cord. The coherent fiber orientation in the white matter was observed in both the brain stem and the cervical spinal cord. The results may serve as a reference for future inter-lab comparison in mouse brain stem and cervical spine diffusion measurements.
Collapse
|
21
|
Scholtes F, Phan-Ba R, Theunissen E, Adriaensens P, Brook G, Franzen R, Bouhy D, Gelan J, Martin D, Schoenen J. Rapid, postmortem 9.4 T MRI of spinal cord injury: correlation with histology and survival times. J Neurosci Methods 2008; 174:157-67. [PMID: 18708093 DOI: 10.1016/j.jneumeth.2008.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
High field magnetic resonance imaging (MRI) has been increasingly used to assess experimental spinal cord injury (SCI). In the present investigation, after partial spinal cord injury and excision of the whole spine, pathological changes of the spinal cord were studied in spinal cord-spine blocks, from the acute to the chronic state (24 h to 5 months). Using proton density (PD) weighted imaging parameters at a magnetic field strength of 9.4 tesla (T), acquisition times ranging from <1 to 10 h per specimen were used. High in-plane pixel resolution (68 and 38 microm, respectively) was obtained, as well as high signal-to-noise ratio (SNR), which is important for optimal contrast settings. The quality of the resulting MR images was demonstrated by comparison with histology. The cord and the lesion were shown in their anatomical surroundings, detecting cord swelling in the acute phase (24 h to 1 week) and cord atrophy at the chronic stage. Haemorrhage was detected as hypo-intense signal. Oedema, necrosis and scarring were hyper-intense but could not be distinguished. Histology confirmed that the anatomical delimitation of the lesion extent by MRI was precise, both with high and moderate resolution. The present investigation thus demonstrates the precision of spinal cord MRI at different survival delays after compressive partial SCI and establishes efficient imaging parameters for postmortem PD MRI.
Collapse
Affiliation(s)
- Felix Scholtes
- Centre for Cellular and Molecular Neurobiology (CNCM), Department of Neuroanatomy, University of Liège, Sart Tilman B36, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Duhamel G, Callot V, Cozzone PJ, Kober F. Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med 2008; 59:846-54. [PMID: 18383283 DOI: 10.1002/mrm.21567] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The assessment of spinal cord (SC) hemodynamics, and especially SC blood flow (SCBF), plays a key role in the pathophysiological description and understanding of many SC diseases such as ischemia, or spinal cord injury. SCBF has been previously measured in animals with invasive techniques such as autoradiography or labeled microspheres; no MR technique, however, has been proposed so far. The possibility of quantitatively measuring SCBF in mice using MRI was investigated using a presaturated FAIR (flow-sensitive alternating inversion recovery) arterial spin labeling (ASL) technique. SCBF measurements were performed at the cervical level of the mouse as well as on the brain so as to use cerebral blood flow (CBF) values as internal references. With a spatial resolution of 133 x 133 microm(2) for the SCBF maps, absolute regional perfusion values could be measured within the different structures of the SC (gray matter, white matter, and cerebrospinal fluid area). Similar perfusion values were found in SC gray matter (330+/-90 mL/100g/min) and in brain (295+/-22 mL/100g/min for thalamus). This result, in agreement with SCBF/CBF measurements performed with non-MR techniques, opens new perspectives for noninvasive longitudinal and in vivo animal studies. Application to human experiments may also be possible.
Collapse
Affiliation(s)
- Guillaume Duhamel
- Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
23
|
Balla DZ, Faber C. In vivo intermolecular zero-quantum coherence MR spectroscopy in the rat spinal cord at 17.6 T: a feasibility study. ACTA ACUST UNITED AC 2007; 20:183-91. [PMID: 17876622 DOI: 10.1007/s10334-007-0081-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 08/14/2007] [Accepted: 08/17/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The feasibility of in vivo magnetic resonance spectroscopy of the healthy rat spinal cord at 17.6 T using conventional methods and intermolecular zero-quantum coherence (iZQC) spectroscopy is explored and the performance of both approaches is compared. METHODS Localised spectra were acquired at 17.6 T from three healthy Fisher rats and phantoms with injected iron-oxide particles using the PRESS and a modified HOMOGENIZED sequence. RESULTS Well-resolved in vivo spectra showing the four singlet resonances of creatine, choline, and N-acetyl aspartate were obtained with both approaches. iZQC spectra were acquired from larger voxels, but did not provide higher sensitivity or resolution in the healthy spinal cord. In the presence of paramagnetic iron-oxide particles, the quality of in vitro spectra acquired with PRESS declined and was strongly dependent on the quality of the local shim. iZQC spectra were not affected by the presence of iron-oxide particles and provided narrow lines (9 Hz) independent of the shim. CONCLUSION In vivo iZQC spectroscopy of the rat spinal cord is possible. The robustness in presence of local field distortions makes iZQC methods a promising alternative for the investigation of tissue containing labelled cells, implants, or clotted blood. New application of MRS to tissue inaccessible using conventional methods may thus become possible.
Collapse
Affiliation(s)
- David Z Balla
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | |
Collapse
|
24
|
Callot V, Duhamel G, Cozzone PJ. In vivo mouse spinal cord imaging using echo-planar imaging at 11.75 T. ACTA ACUST UNITED AC 2007; 20:169-73. [PMID: 17661098 PMCID: PMC4271416 DOI: 10.1007/s10334-007-0079-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/31/2007] [Accepted: 06/29/2007] [Indexed: 12/27/2022]
Abstract
Object To evaluate the feasibility of mouse spinal cord MR imaging using echo-planar imaging (EPI). Materials and methods Optimized multi-shot spin-echo-EPI sequences were compared to conventional spin-echo (c-SE) at 11.75 T and used for high-spatially resolved acquisitions and relaxation-time measurements. Results Good quality images were obtained, with clear delineation of gray and white matter. Acquisition-time gain factor was up to 6 (vs. c-SE) and resolution up to 74 × 94 μm2 was achieved. T1 and T2 relaxation times were reliably measured. Conclusion High-temporally and spatially resolved mouse spinal cord EPI imaging is feasible. This technique should greatly benefit to long acquisition-time experiments (diffusion imaging) and imaging of rapidly-evolving pathologies.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Bd Jean Moulin, 13385, Marseille Cedex 5, France.
| | | | | |
Collapse
|
25
|
Loy DN, Kim JH, Xie M, Schmidt RE, Trinkaus K, Song SK. Diffusion Tensor Imaging Predicts Hyperacute Spinal Cord Injury Severity. J Neurotrauma 2007; 24:979-90. [PMID: 17600514 DOI: 10.1089/neu.2006.0253] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental strategies that focus on ventral white matter (VWM) preservation during the hyperacute phase hold great potential for our improved understanding of functional recovery following traumatic spinal cord injury (SCI). Critical comparisons of human SCI to rapidly accumulating data derived from rodent models are limited by a basic lack of in vivo measures of subclinical pathophysiologic changes and white matter damage in the spinal cord. Spinal cord edema and intraparenchymal hemorrhage demonstrated with routine MR sequences have limited value for predicting functional outcomes in SCI animal models and in human patients. We recently demonstrated that in vivo derived diffusion tensor imaging (DTI) parameters are sensitive and specific biomarkers for spinal cord white matter damage. In this study, non-invasive in vivo DTI was utilized to evaluate the white matter of C57BL/6 mice 3 h after mild (0.3 mm), moderate (0.6 mm), or severe (0.9 mm) contusive SCI. In the hyperacute phase, relative anisotropy maps provided excellent gray-white matter contrast in all degrees of injury. In vivo DTI-derived measurements of axial diffusion differentiated between mild, moderate, and severe contusive SCI with good histological correlation. Cross-sectional regional measurements of white matter injury severity between dorsal columns and VWM varied with increasing cord displacement in a pattern consistent with spinal cord viscoelastic properties.
Collapse
Affiliation(s)
- David N Loy
- Department of Radiology, Washington University, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bilgen M, Al-Hafez B, Alrefae T, He YY, Smirnova IV, Aldur MM, Festoff BW. Longitudinal magnetic resonance imaging of spinal cord injury in mouse: changes in signal patterns associated with the inflammatory response. Magn Reson Imaging 2007; 25:657-64. [PMID: 17540277 DOI: 10.1016/j.mri.2006.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/05/2006] [Indexed: 01/12/2023]
Abstract
Contusion-type spinal cord injury (SCI) in mice was followed longitudinally using in vivo magnetic resonance (MR) imaging along with neurobehavioral tests performed on postinjury Days 1, 7, 14 and 28. Magnetic resonance images were acquired from seven injured wild-type mice using a 9.4-T scanner and presented in sagittal and axial views to reflect the current state of the injured cord neuropathology on each day. The data were analyzed individually to gain more insights on the neuroinflammatory response unique to the mouse, to characterize the spatiotemporal evolution of the lesion and to quantify the changes in lesion volume and length with time. The MR intensity patterns on Day 1 showed acute injuries as focal in one group of three mice and as diffuse in the remaining group of four mice. The focal injuries appeared as a region of hypointensity with well-defined boundaries. These injuries first enlarged on Day 7, but then shrunk slightly by Days 14 and 28. In contrast, the diffuse injuries were initially obscure on Day 1, mainly because of loss of contrast between gray and white matters. On Day 7, lesions expanded asymptotically in both rostral and caudal directions with respect to the epicenter, and maintained its size on Days 14 and 28. Previous studies based on postmortem histological analysis have reported lesions behaving more like in the focal group. However, this new injury with diffuse characteristics may have important implications for SCI research carried out with mice. Unique experiments on genetically engineered mice with altered neuroinflammatory response should help clarify the origin of these differences in the lesion formation.
Collapse
Affiliation(s)
- Mehmet Bilgen
- Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wright AC, Bataille H, Ong HH, Wehrli SL, Song HK, Wehrli FW. Construction and calibration of a 50 T/m z-gradient coil for quantitative diffusion microimaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 186:17-25. [PMID: 17280847 PMCID: PMC3069633 DOI: 10.1016/j.jmr.2007.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 01/13/2007] [Indexed: 05/13/2023]
Abstract
q-Space imaging is capable of providing quantitative geometrical information of structures at cellular resolution. However, the size of restrictions that can be probed hinges on available gradient amplitude and places very high demands on gradient performance. In this work we describe the design and construction of a small, high-amplitude (50 T/m) z-gradient coil, interfaced with a commercial 9.4 T microimaging system. We also describe a method to calibrate the coil for quantitative measurements of molecular diffusion at very high-gradient amplitudes. Calibration showed linear current response up to 50 T/m, with a gain=1.255 T/m/A. The z-gradient coil was combined with the commercial x- and y-gradients for tri-axial imaging, and its performance was demonstrated by ADC maps of free water and by q-space experiments on water sequestered around polystyrene microspheres (4.5 microm diameter), which showed the expected diffraction peak. In addition, diffusion-weighted images of a fixed mouse spinal cord illustrated the capability of this coil for quantitative imaging of tissue microstructure.
Collapse
Affiliation(s)
- A C Wright
- Laboratory for Structural NMR Imaging, Department of Radiology, 1 Silverstein, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kim JH, Trinkaus K, Ozcan A, Budde MD, Song SK. Postmortem delay does not change regional diffusion anisotropy characteristics in mouse spinal cord white matter. NMR IN BIOMEDICINE 2007; 20:352-9. [PMID: 17451177 DOI: 10.1002/nbm.1138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
It has been demonstrated previously that water diffusion anisotropy in vivo is equivalent to that observed ex vivo after perfusion fixation in the mouse brain. This finding supports the practice of ex vivo diffusion tensor imaging (DTI) measurement on perfusion-fixed tissues. However, the validity of extrapolating ex vivo DTI measurements from immersion-fixed autopsy specimens to the in vivo state is questionable because of variable postmortem delays often encountered before fixation. In this study, we investigated the effect of postmortem delay on the water diffusion anisotropy of ventrolateral spinal cord white matter from mice. Mouse spinal cords, each from the same animal, were examined using DTI in vivo, in situ after death before fixation, and ex vivo immersion fixed 10 h after death. Our results suggest that diffusion anisotropy in mouse spinal cord is preserved up to 10 h after death. Regional characteristics of diffusion anisotropy in mouse spinal cord white matter are equivalent in vivo, in situ after death (up to 10 h before fixation), and ex vivo 15 weeks after immersion fixation.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Chemistry, Washington University, 4525 Scott Avenue, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
MRI has contributed to significant advances in the understanding of neurological diseases in humans. It has also been used to evaluate the spectrum of mouse models spanning from developmental abnormalities during embryogenesis, evaluation of transgenic and knockout models, through various neurological diseases such as stroke, tumors, degenerative and inflammatory diseases. The MRI techniques used clinically are technically more challenging in the mouse because of the size of the brain; however, mouse imaging provides researchers with the ability to explore cellular and molecular imaging that one day may translate into clinical practice. This article presents an overview of the use of MRI in mouse models of a variety of neurological disorders and a brief review of cellular imaging using magnetically tagged cells in the mouse central nervous system.
Collapse
Affiliation(s)
- Stasia A Anderson
- Animal MRI/Imaging Core, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
30
|
Bilgen M. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil. J Neurosci Methods 2007; 159:93-7. [PMID: 16890294 DOI: 10.1016/j.jneumeth.2006.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/26/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
A magnetic resonance neuroimaging method is described for high-resolution imaging of spinal cord injury in live mouse. The method is based on a specially designed radio frequency coil system formed by a combination of an implantable coil and an external volume coil. The implantable coil is a 5 mm x 10 mm rectangular design with a 9.1 pF capacitor and 22 gauge copper wire and optimal for surgical implantation over the cervical or thoracic spine. The external volume coil is a standard birdcage resonator. The coils are inductively overcoupled for imaging the spinal cord at 9.4 T magnetic field strength. The inductive overcoupling provides flexibility in tuning the resonant frequency and matching the impedance of the implanted coil remotely using the tuning and matching capabilities of the volume coil. After describing the implementation of the imaging setup, in vivo data are gathered to demonstrate the imaging performance of the coil system and the feasibility of performing MR microscopy on injured mouse spinal cord.
Collapse
Affiliation(s)
- Mehmet Bilgen
- Hoglund Brain Imaging Center and Department of Molecular and Integrative Physiology, The University of Kansas Medical School, Mail Stop 3043, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Kim JH, Loy DN, Liang HF, Trinkaus K, Schmidt RE, Song SK. Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med 2007; 58:253-60. [PMID: 17654597 DOI: 10.1002/mrm.21316] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined in vivo measurements of directional diffusivity derived from diffusion tensor imaging (DTI) to study the evolution of ventrolateral white matter (VWM) changes following contusive spinal cord injury (SCI) in C57BL/6 mice at 1, 3, 7, and 14 days postinjury. Relative anisotropy maps provided excellent gray matter (GM)/white matter (WM) contrast for characterization of evolving WM injury at all time points. Longitudinal DTI measurements clearly demonstrated rostral-caudal injury asymmetry. Axial diffusivity provided a sensitive, noninvasive measure of axonal integrity within the injury epicenter and at remote levels. Quantitative measurements of axial and radial diffusivities in VWM showed a trend of acute primary axonal injury followed by delayed, subacute myelin damage at the impact site, with good histological correlation.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
32
|
Scholtes F, Adriaensens P, Storme L, Buss A, Kakulas BA, Gelan J, Beuls E, Schoenen J, Brook GA, Martin D. Correlation of Postmortem 9.4 Tesla Magnetic Resonance Imaging and Immunohistopathology of the Human Thoracic Spinal Cord 7 Months after Traumatic Cervical Spine Injury. Neurosurgery 2006; 59:671-8; discussion 671-8. [PMID: 16955049 DOI: 10.1227/01.neu.0000228929.15492.a9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
To correlate high-resolution magnetic resonance imaging (MRI) with immunohistopathology in the injured human spinal cord.
METHODS:
Postmortem MRI scans at a field strength of 9.4 T, as well as standard histology and immunohistochemistry, were performed on an excised specimen of human high thoracic spinal cord, obtained 7 months after the initial trauma, several segments below a severe spinal cord lesion (C5).
RESULTS:
A precise correlation is described between MRI and immunohistochemistry of the long white matter tracts undergoing Wallerian degeneration and of an extension of the cervical lesion into the high thoracic cord.
CONCLUSION:
MRI, the only imaging technique that currently provides useful information on the spinal cord parenchyma after trauma, is rapidly evolving. High-field scanners of up to 9.4 T are being clinically tested. The present postmortem investigation of an isolated spinal cord specimen demonstrates the precise correlation that can be achieved between imaging and pathology. In future investigations, this type of technique can lead to a more precise description of spinal cord injuries and their consequences in remote tissue. Translation into the clinical setting will improve diagnosis and follow-up of spinal cord injured patients.
Collapse
Affiliation(s)
- Felix Scholtes
- Department of Neurosurgery, University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gaviria M, Bonny JM, Haton H, Jean B, Teigell M, Renou JP, Privat A. Time course of acute phase in mouse spinal cord injury monitored by ex vivo quantitative MRI. Neurobiol Dis 2006; 22:694-701. [PMID: 16545959 DOI: 10.1016/j.nbd.2006.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/23/2005] [Accepted: 01/19/2006] [Indexed: 10/24/2022] Open
Abstract
During the acute phase of spinal cord injury (SCI), major alterations of white and grey matter are a key issue, which determine the neurological outcome. The present study with ex vivo quantitative high-field magnetic resonance microimaging (MRI) was intended in order to identify sensitive parameters of tissue disruption in a well-controlled mouse model of ischemic SCI. MR imaging evidenced changes as early as the second hour after the lesion in the dorsal horns, which appear swollen. After 4 h, alterations of the white matter of dorsal and lateral funiculi were reflected by a progressive loss of white/grey matter contrast with further ventral extension by the 24th hour. Diffusion tensor imaging and multi-exponential T2 measurements permitted to quantify these physicochemical, time-related, alterations during the 24-h period. This characterization of spatial and temporal evolution of SCI will contribute to better define both the most appropriate targets for future therapies and more accurate therapeutic windows. Upcoming directions include the use of these parameters on in vivo animal models and their application to clinics. Indeed, magnetic resonance techniques appear now as a major non-invasive translation tool in CNS pathologies based on the development of more appropriate pre-clinical models.
Collapse
Affiliation(s)
- Manuel Gaviria
- Neuréva Inc.-INM, CHU St Eloi, 80 rue Augustin Fliche, 34295 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 2005; 21:626-32. [PMID: 16298135 DOI: 10.1016/j.nbd.2005.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 11/24/2022] Open
Abstract
In the current study, the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the spinal cord in normal mice are illustrated followed by its application to mice with experimental allergic encephalomyelitis (EAE) to detect and differentiate axon and myelin damage. Axial diffusivity, describing water movement along the axonal fiber tract, in all regions of spinal cord white matter from EAE-affected C57BL/6 mice was significantly decreased compared to normal mice, whereas there was no statistically significant change in radial diffusivity, describing water movement across the fiber tract. Furthermore, a direct comparison between DTI and histology from a single mouse demonstrated a decrease in axial diffusivity that was supported by widespread staining of antibody against beta-amyloid precursor protein. Regionally elevated radial diffusivity corresponded with locally diminished Luxol fast blue staining in the same tissue from the EAE mouse cord. Our findings suggest that axonal damage is more widespread than myelin damage in the spinal cord white matter of mice with EAE and that in vivo DTI may provide a sensitive and specific measure of white matter injury.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Nieman BJ, Bock NA, Bishop J, Chen XJ, Sled JG, Rossant J, Henkelman RM. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR IN BIOMEDICINE 2005; 18:447-68. [PMID: 16206127 DOI: 10.1002/nbm.981] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the enormous and growing number of experimental and genetic mouse models of human disease, there is a need for efficient means of characterizing abnormalities in mouse anatomy and physiology. Adaptation of magnetic resonance imaging (MRI) to the scale of the mouse promises to address this challenge and make major contributions to biomedical research by non-invasive assessment in the mouse. MRI is already emerging as an enabling technology providing informative and meaningful measures in a range of mouse models. In this review, recent progress in both in vivo and post mortem imaging is reported. Challenges unique to mouse MRI are also identified. In particular, the needs for high-throughput imaging and comparative anatomical analyses in large biological studies are described and current efforts at handling these issues are presented.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Bilgen M, Al-Hafez B, Malone TM, Smirnova IV. Ex vivo magnetic resonance imaging of rat spinal cord at 9.4 T. Magn Reson Imaging 2005; 23:601-5. [PMID: 15919607 DOI: 10.1016/j.mri.2005.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 02/03/2005] [Indexed: 11/23/2022]
Abstract
The magnetic resonance (MR) properties of the rat spinal cord were characterized at the T9 level with ex vivo experiments performed at 9.4 T. The inherent endogenous contrast parameters, proton density (PD), longitudinal and transverse relaxation times T1 and T2, and magnetization transfer ratio (MTR) were measured separately for the grey matter (GM) and white matter (WM). Analysis of the measurements indicated that these tissues have statistically different proton densities with means PD(GM)=54.8+/-2.5% versus PD(WM)=45.2+/-2.4%, and different T1 values with means T1GM=2.28+/-0.23 s versus T1WM=1.97+/-0.21 s. The corresponding values for T2 were T2GM=31.8+/-4.9 ms versus T2WM=29.5+/-4.9 ms, and the difference was insignificant. The difference between MTR(GM)=31.2+/-6.1% and MTR(WM)=33.1+/-5.9% was also insignificant. These results collectively suggest that PD and T1 are the two most important parameters that determine the observed contrast on spinal cord images acquired at 9.4 T. Therefore, in MR imaging studies of spinal cord at this field strength, these parameters need to be considered not only in optimizing the protocols but also in signal enhancement strategies involving exogenous contrast agents.
Collapse
Affiliation(s)
- Mehmet Bilgen
- Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
37
|
Bilgen M, Al-Hafez B, Berman NEJ, Festoff BW. Magnetic resonance imaging of mouse spinal cord. Magn Reson Med 2005; 54:1226-31. [PMID: 16206177 DOI: 10.1002/mrm.20672] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The feasibility of performing high-resolution in vivo MRI on mouse spinal cord (SC) at 9.4 T magnetic field strength is demonstrated. The MR properties of the cord tissue were measured and the characteristics of water diffusion in the SC were quantified. The data indicate that the differences in the proton density (PD) and transverse relaxation time between gray matter (GM) and white matter (WM) dominate the contrast seen on the mouse SC images at 9.4 T. However, on heavily T(2)-weighted images these differences result in a reversal of contrast. The diffusion of water in the cord is anisotropic, but the WM exhibits greater anisotropy and principal diffusivity than the GM. The quantitative data presented here should establish a standard for comparing similar measurements obtained from the SCs of genetically engineered mouse or mouse models of SC injury (SCI).
Collapse
Affiliation(s)
- Mehmet Bilgen
- Hoglund Brain Imaging Center, Kansas City, Kansas 66160, USA.
| | | | | | | |
Collapse
|
38
|
Behr VC, Weber T, Neuberger T, Vroemen M, Weidner N, Bogdahn U, Haase A, Jakob PM, Faber C. High-resolution MR imaging of the rat spinal cord in vivo in a wide-bore magnet at 17.6 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:353-8. [PMID: 15517470 DOI: 10.1007/s10334-004-0057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/19/2004] [Accepted: 07/29/2004] [Indexed: 11/25/2022]
Abstract
The objective was to demonstrate the feasibility and to evaluate the performance of high-resolution in vivo magnetic resonance (MR) imaging of the rat spinal cord in a 17.6-T vertical wide-bore magnet. A probehead consisting of a surface coil that offers enlarged sample volume suitable for rats up to a weight of 220 g was designed. ECG triggered and respiratory-gated gradient echo experiments were performed on a Bruker Avance 750 wide-bore spectrometer for high-resolution imaging. With T*2 values between 5 and 20 ms, good image contrast could be obtained using short echo times, which also minimizes motion artifacts. Anatomy of healthy spinal cords and pathomorphological changes in traumatically injured rat spinal cord in vivo could be visualized with microscopic detail. It was demonstrated that imaging of the rat spinal cord in vivo using a vertical wide-bore high-magnetic-field system is feasible. The potential to obtain high-resolution images in short scan times renders high-field imaging a powerful diagnostic tool.
Collapse
Affiliation(s)
- V C Behr
- Department of Physics, EP5 (Biophysics), University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|