1
|
Borgonio-Cuadra VM, Meza-Dorantes A, Pérez-Hernández N, Rodríguez-Pérez JM, Magaña JJ. In Silico Analysis of miRNA-Regulated Pathways in Spinocerebellar Ataxia Type 7. Curr Issues Mol Biol 2025; 47:170. [PMID: 40136424 PMCID: PMC11941346 DOI: 10.3390/cimb47030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms and biological processes through bioinformatics predictions in various neurodegenerative diseases. Therefore, the aim of this study was to identify candidate human gene targets of four miRNAs (hsa-miR-29a-3p, hsa-miR-132-3p, hsa-miR-25-3p, and hsa-miR-92a-3p) involved in pathways that could play an important role in SCA7 pathogenesis through comprehensive in silico analysis including the prediction of miRNA target genes, Gen Ontology enrichment, identification of core genes in KEGG pathways, transcription factors and validated miRNA target genes with the mouse SCA7 transcriptome data. Our results showed the participation of the following pathways: adherens junction, focal adhesion, neurotrophin signaling, endoplasmic reticulum processing, actin cytoskeleton regulation, RNA transport, and apoptosis and dopaminergic synapse. In conclusion, unlike previous studies, we highlight using a bioinformatics approach the core genes and transcription factors involved in the different biological pathways and which ones are targets for the four miRNAs, which, in addition to being associated with neurodegenerative diseases, are also de-regulated in the plasma of patients with SCA7.
Collapse
Affiliation(s)
- Verónica Marusa Borgonio-Cuadra
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Center for Research in Health Sciences, Faculty of Health Sciences, Universidad Anáhuac Mexico Norte, Mexico City 52786, Mexico
| | - Aranza Meza-Dorantes
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico;
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.)
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico;
| |
Collapse
|
2
|
Borbolla-Jiménez FV, García-Aguirre IA, Del Prado-Audelo ML, Hernández-Hernández O, Cisneros B, Leyva-Gómez G, Magaña JJ. Development of a Polymeric Pharmacological Nanocarrier System as a Potential Therapy for Spinocerebellar Ataxia Type 7. Cells 2023; 12:2735. [PMID: 38067163 PMCID: PMC10706302 DOI: 10.3390/cells12232735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Ian A. García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| |
Collapse
|
3
|
Ciancimino C, Di Pippo M, Manco GA, Romano S, Ristori G, Scuderi G, Abdolrahimzadeh S. Multimodal Ophthalmic Imaging in Spinocerebellar Ataxia Type 7. Life (Basel) 2023; 13:2169. [PMID: 38004309 PMCID: PMC10672172 DOI: 10.3390/life13112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this case series and narrative literature review is to highlight the importance of multimodal imaging in the ophthalmological examination of patients with spinocerebellar ataxia type 7 and provide a summary of the most relevant imaging techniques. Three patients with SCA7 were included in this case series. A literature review revealed twenty-one publications regarding ocular manifestations of SCA7, and the most relevant aspects are summarized. The role of different imaging techniques in the follow-up of SCA7 patients is analyzed, including color vision testing, corneal endothelial topography, color fundus photography (CFP) and autofluorescence, near infrared reflectance imaging, spectral domain optical coherence tomography (SDOCT), visual field examination, and electrophysiological tests. SDOCT provides a rapid and non-invasive imaging evaluation of disease progression over time. Additional examination including NIR imaging can provide further information on photoreceptor alteration and subtle disruption of the RPE, which are not evident with CFP at an early stage. Electrophysiological tests provide essential results on the state of cone and rod dystrophy, which could be paramount in guiding future genetic therapies. Multimodal imaging is a valuable addition to comprehensive ophthalmological examination in the diagnosis and management of patients with SCA7.
Collapse
Affiliation(s)
- Chiara Ciancimino
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Gregorio Antonio Manco
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Silvia Romano
- Center for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (S.R.); (G.R.)
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (S.R.); (G.R.)
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Gianluca Scuderi
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| |
Collapse
|
4
|
Niewiadomska-Cimicka A, Hache A, Le Gras S, Keime C, Ye T, Eisenmann A, Harichane I, Roux MJ, Messaddeq N, Clérin E, Léveillard T, Trottier Y. Polyglutamine-expanded ATXN7 alters a specific epigenetic signature underlying photoreceptor identity gene expression in SCA7 mouse retinopathy. J Biomed Sci 2022; 29:107. [PMID: 36539812 PMCID: PMC9768914 DOI: 10.1186/s12929-022-00892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Antoine Hache
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Stéphanie Le Gras
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Aurelie Eisenmann
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Imen Harichane
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Michel J. Roux
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Emmanuelle Clérin
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Thierry Léveillard
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Yvon Trottier
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| |
Collapse
|
5
|
Yefimova MG, Béré E, Cantereau-Becq A, Meunier-Balandre AC, Merceron B, Burel A, Merienne K, Ravel C, Becq F, Bourmeyster N. Myelinosome Organelles in the Retina of R6/1 Huntington Disease (HD) Mice: Ubiquitous Distribution and Possible Role in Disease Spreading. Int J Mol Sci 2021; 22:ijms222312771. [PMID: 34884576 PMCID: PMC8657466 DOI: 10.3390/ijms222312771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Visual deficit is one of the complications of Huntington disease (HD), a fatal neurological disorder caused by CAG trinucleotide expansions in the Huntingtin gene, leading to the production of mutant Huntingtin (mHTT) protein. Transgenic HD R6/1 mice expressing human HTT exon1 with 115 CAG repeats recapitulate major features of the human pathology and exhibit a degeneration of the retina. Our aim was to gain insight into the ultrastructure of the pathological HD R6/1 retina by electron microscopy (EM). We show that the HD R6/1 retina is enriched with unusual organelles myelinosomes, produced by retinal neurons and glia. Myelinosomes are present in all nuclear and plexiform layers, in the synaptic terminals of photoreceptors, in the processes of retinal neurons and glial cells, and in the subretinal space. In vitro study shows that myelinosomes secreted by human retinal glial Müller MIO-M1 cells transfected with EGFP-mHTT-exon1 carry EGFP-mHTT-exon1 protein, as revealed by immuno-EM and Western-blotting. Myelinosomes loaded with mHTT-exon1 are incorporated by naive neuronal/neuroblastoma SH-SY5Y cells. This results in the emergence of mHTT-exon1 in recipient cells. This process is blocked by membrane fusion inhibitor MDL 28170. Conclusion: Incorporation of myelinosomes carrying mHTT-exon1 in recipient cells may contribute to HD spreading in the retina. Exploring ocular fluids for myelinosome presence could bring an additional biomarker for HD diagnostics.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Pr. Thorez, 194233 St. Petersburg, Russia
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
- Correspondence:
| | - Emile Béré
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Anne Cantereau-Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Annie-Claire Meunier-Balandre
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Bruno Merceron
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Agnès Burel
- Plateforme Mric TEM, BIOSIT UMS 34 80, Université de Rennes 1, 2 Av. Pr. Léon Bernard, CEDEX, 35043 Rennes, France;
| | - Karine Merienne
- Laboratory of Cognitive and Adaptive Neurosciences (LNCA), University of Strasbourg, 67000 Strasbourg, France;
- CNRS UMR 7364, 67000 Strasbourg, France
| | - Célia Ravel
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Nicolas Bourmeyster
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Service de Biochimie, CHU de Poitiers, 1, Rue de la Milétrie, 86021 Poitiers, France
| |
Collapse
|
6
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
7
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Carrillo-Rosas S, Weber C, Fievet L, Messaddeq N, Karam A, Trottier Y. Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. Hum Mol Genet 2020; 28:912-927. [PMID: 30445451 DOI: 10.1093/hmg/ddy401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine (polyQ) expansion in Ataxin-7 (ATXN7) results in spinocerebellar ataxia type 7 (SCA7) and causes visual impairment. SCA7 photoreceptors progressively lose their outer segments (OSs), a structure essential for their visual function. ATXN7 is a subunit of the transcriptional coactivator Spt-Ada-Gcn5 Acetyltransferase complex, implicated in the development of the visual system in flies. To determine the function of ATXN7 in the vertebrate eye, we have inactivated ATXN7 in zebrafish. While ATXN7 depletion in flies led to gross retinal degeneration, in zebrafish, it primarily results in ocular coloboma, a structural malformation responsible for pediatric visual impairment in humans. ATXN7 inactivation leads to elevated Hedgehog signaling in the forebrain, causing an alteration of proximo-distal patterning of the optic vesicle during early eye development and coloboma. At later developmental stages, malformations of photoreceptors due to incomplete formation of their OSs are observed and correlate with altered expression of crx, a key transcription factor involved in the formation of photoreceptor OS. Therefore, we propose that a primary toxic effect of polyQ expansion is the alteration of ATXN7 function in the daily renewal of OS in SCA7. Together, our data indicate that ATXN7 plays an essential role in vertebrate eye morphogenesis and photoreceptor differentiation, and its loss of function may contribute to the development of human coloboma.
Collapse
Affiliation(s)
- Samantha Carrillo-Rosas
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| | - Chantal Weber
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| | - Lorraine Fievet
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| | - Nadia Messaddeq
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| | - Alice Karam
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology (IGBMC).,Centre National de la Recherche Scientifique, UMR7104.,Institut National de la Santé et de la Recherche Médicale, U1254.,University of Strasbourg, Illkirch, 67000, France
| |
Collapse
|
10
|
Niewiadomska-Cimicka A, Trottier Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics 2019; 16:1074-1096. [PMID: 31432449 PMCID: PMC6985300 DOI: 10.1007/s13311-019-00778-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Lebon C, Behar-Cohen F, Torriglia A. Cell Death Mechanisms in a Mouse Model of Retinal Degeneration in Spinocerebellar Ataxia 7. Neuroscience 2019; 400:72-84. [PMID: 30625334 DOI: 10.1016/j.neuroscience.2018.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
Spino-cerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by neurodegeneration of the brain, cerebellum, and retina caused by a polyglutamine expansion in ataxin7. The presence of an expanded polyQ tract in a mutant protein is known to induce protein aggregation, cellular stress, toxicity, and finally cell death. However, the consequences of the presence of mutant ataxin7 in the retina and the mechanisms underlying photoreceptor degeneration remain poorly understood. In this study, we show that in a retinal SCA7 mouse model, polyQ ataxin7 induces stress within the retina and activates Muller cells. Moreover, unfolded protein response and autophagy are activated in SCA7 photoreceptors. We have also shown that the photoreceptor death does not involve a caspase-dependent apoptosis but instead involves apoptosis inducing factor (AIF) and Leukocyte Elastase Inhibitor (LEI/L-DNase II). When these two cell death effectors are downregulated by their siRNA, a significant reduction in photoreceptor death is observed. These results highlight the consequences of polyQ protein expression in the retina and the role of caspase-independent pathways involved in photoreceptor cell death.
Collapse
Affiliation(s)
- Cecile Lebon
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France
| | - Francine Behar-Cohen
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France
| | - Alicia Torriglia
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France.
| |
Collapse
|
12
|
Karam A, Trottier Y. Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:197-218. [DOI: 10.1007/978-3-319-71779-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Arsenijevic Y. Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:371-7. [DOI: 10.1007/978-3-319-17121-0_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Karam A, Tebbe L, Weber C, Messaddeq N, Morlé L, Kessler P, Wolfrum U, Trottier Y. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice. Neurobiol Dis 2015; 80:15-28. [PMID: 25989602 DOI: 10.1016/j.nbd.2015.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia--including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells--which exert various functions during tissue development and homeostasis. In the photoreceptor cilium, HTT is present in all subciliary compartments from the base of the cilium and adjacent centriole to the tip of the axoneme. In HD mice, photoreceptor cilia are abnormally elongated, have hyperacetylated alpha-tubulin and show mislocalization of the intraflagellar transport proteins IFT57 and IFT88. As a consequence, intraflagellar transport function is perturbed and leads to aberrant accumulation of outer segment proteins in the photoreceptor cell bodies and disruption of outer segment integrity, all of which precede overt cell death. Strikingly, endogenous mouse HTT is strongly reduced in cilia and accumulates in photoreceptor cell bodies, suggesting that HTT loss function contributes to structural and functional defects of photoreceptor cilia in HD mouse. Our results indicate that cilia pathology participates in HD physiopathology and may represent a therapeutic target.
Collapse
Affiliation(s)
- Alice Karam
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Lars Tebbe
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Chantal Weber
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nadia Messaddeq
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, 69622, France
| | - Pascal Kessler
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany; Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
15
|
Lebon C, Rodriguez GV, Zaoui IE, Jaadane I, Behar-Cohen F, Torriglia A. On the use of an appropriate TdT-mediated dUTP-biotin nick end labeling assay to identify apoptotic cells. Anal Biochem 2015; 480:37-41. [PMID: 25862087 DOI: 10.1016/j.ab.2015.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is an essential cellular mechanism involved in many processes such as embryogenesis, metamorphosis, and tissue homeostasis. DNA fragmentation is one of the key markers of this form of cell death. DNA fragmentation is executed by endogenous endonucleases such as caspase-activated DNase (CAD) in caspase-dependent apoptosis. The TUNEL (TdT-mediated dUTP-biotin nick end labeling) technique is the most widely used method to identify apoptotic cells in a tissue or culture and to assess drug toxicity. It is based on the detection of 3'-OH termini that are labeled with dUTP by the terminal deoxynucleotidyl transferase. Although the test is very reliable and sensitive in caspase-dependent apoptosis, it is completely useless when cell death is mediated by pathways involving DNA degradation that generates 3'-P ends as in the LEI/L-DNase II pathway. Here, we propose a modification in the TUNEL protocol consisting of a dephosphorylation step prior to the TUNEL labeling. This allows the detection of both types of DNA breaks induced during apoptosis caspase-dependent and independent pathways, avoiding underestimating the cell death induced by the treatment of interest.
Collapse
Affiliation(s)
- Cecile Lebon
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Gloria Villalpando Rodriguez
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Ikram El Zaoui
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Imene Jaadane
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Francine Behar-Cohen
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Alicia Torriglia
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
16
|
Figiel M, Krzyzosiak WJ, Switonski PM, Szlachcic WJ. Mouse Models of SCA3 and Other Polyglutamine Repeat Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 2014; 16:11-21. [DOI: 10.1007/s10048-014-0424-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/08/2014] [Indexed: 01/26/2023]
|
18
|
Li M, Yasumura D, Ma AAK, Matthes MT, Yang H, Nielson G, Huang Y, Szoka FC, Lavail MM, Diamond MI. Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease. PLoS One 2013; 8:e56026. [PMID: 23409115 PMCID: PMC3569418 DOI: 10.1371/journal.pone.0056026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/04/2013] [Indexed: 12/04/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease that affects multiple brain regions. It is caused by an expanded polyglutamine tract in huntingtin (Htt). The development of therapies for HD and other neurodegenerative diseases has been hampered by multiple factors, including the lack of clear therapeutic targets, and the cost and complexity of testing lead compounds in vivo. The R6/2 HD mouse model is widely used for pre-clinical trials because of its progressive and robust neural dysfunction, which includes retinal degeneration. Profilin-1 is a Htt binding protein that inhibits Htt aggregation. Its binding to Htt is regulated by the rho-associated kinase (ROCK), which phosphorylates profilin at Ser-137. ROCK is thus a therapeutic target in HD. The ROCK inhibitor Y-27632 reduces Htt toxicity in fly and mouse models. Here we characterized the progressive retinopathy of R6/2 mice between 6–19 weeks of age to determine an optimal treatment window. We then tested a clinically approved ROCK inhibitor, HA-1077, administered intravitreally via liposome-mediated drug delivery. HA-1077 increased photopic and flicker ERG response amplitudes in R6/2 mice, but not in wild-type littermate controls. By targeting ROCK with a new inhibitor, and testing its effects in a novel in vivo model, these results validate the in vivo efficacy of a therapeutic candidate, and establish the feasibility of using the retina as a readout for CNS function in models of neurodegenerative disease.
Collapse
Affiliation(s)
- Mei Li
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012; 46:393-429. [PMID: 22956270 PMCID: PMC3461215 DOI: 10.1007/s12035-012-8315-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/23/2022]
Abstract
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Collapse
Affiliation(s)
- Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and optogenetic approaches that target appropriate classes of neurons in the remnant neural retina.
Collapse
|
21
|
Ravache M, Weber C, Mérienne K, Trottier Y. Transcriptional activation of REST by Sp1 in Huntington's disease models. PLoS One 2010; 5:e14311. [PMID: 21179468 PMCID: PMC3001865 DOI: 10.1371/journal.pone.0014311] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/08/2010] [Indexed: 11/27/2022] Open
Abstract
In Huntington's disease (HD), mutant huntingtin (mHtt) disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor), a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes.
Collapse
Affiliation(s)
- Myriam Ravache
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch, France
| | - Chantal Weber
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch, France
| | - Karine Mérienne
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|