1
|
Durna YM, Yigit O, Edizer DT, Durna Daştan S, Gul M, Ovali E. Hypoxia and Normoxia Preconditioned Olfactory Stem Cells Against Noise-Induced Hearing Loss. J Craniofac Surg 2024:00001665-990000000-01998. [PMID: 39356227 DOI: 10.1097/scs.0000000000010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE Noise-induced hearing loss is one of the leading causes of permanent hearing loss in the adult population. In this experimental study, the authors aimed to investigate the effectiveness of hypoxia and normoxia preconditioned olfactory stem cells against noise trauma. METHODS Twenty-seven female guinea pigs were enrolled. Two guinea pigs were sacrificed for harvesting olfactory tissue and 1 for examining the architecture of the normal cochlea. The remaining 24 guinea pigs were exposed to noise trauma for 1 day and then randomly divided into 3 groups: intracochlear injection of (i) normoxic olfactory stem cells, (ii) hypoxic olfactory stem cells, and (iii) physiological serum. Auditory brainstem response (ABR) measurement was performed before and 2 weeks after noise trauma and weekly for 3 weeks following intracochlear injection. Both click and 16 kHz tone-burst stimuli were used for detection of ABR. RESULTS No significant difference was noted between the groups before and 2 weeks after noise trauma. ABR thresholds detected after intracochlear injections were significantly higher in the control group compared with stem cell groups. However, no significant difference was detected between the stem cell groups. Fluourescence microscopy revealed better engraftment for hypoxic stem cells. Light and electron microscopy examinations were consistent with predominant degenerative findings in the control group, whereas normoxic group had more similar findings with normal cochlea compared with hypoxic group. CONCLUSION Olfactory stem cells were demonstrated to have the potential to have beneficial effects on noise trauma.
Collapse
Affiliation(s)
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital
| | - Deniz T Edizer
- Department of Otorhinolaryngology, School of Medicine, Acibadem University, Istanbul
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya
| | - Ercument Ovali
- Acibadem Labcell Stem Cell Laboratory and Cord Blood Bank, Istanbul, Türkiye
| |
Collapse
|
2
|
Mungan Durankaya S, Olgun Y, Aktaş S, Eskicioğlu HE, Gürkan S, Altun Z, Mutlu B, Kolatan E, Doğan E, Yılmaz O, Kırkım G. Effect of Korean Red Ginseng on Noise-Induced Hearing Loss. Turk Arch Otorhinolaryngol 2021; 59:111-117. [PMID: 34386797 PMCID: PMC8329393 DOI: 10.4274/tao.2021.2021-1-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Objective: Noise-induced hearing loss (NIHL) is one of the most important problems affecting both social and professional life of patients. There is no treatment method considered to be successful on the hearing loss that has become a permanent nature. Aim of this study is to evaluate protective effect of Korean Red Ginseng (KRG) against NIHL in an animal model. Methods: Twenty-eight rats were separated into four groups [control saline (group I), control KRG (group II), saline + noise (group III), KRG + noise (group IV)]. Rats in the saline and KRG groups were fed via oral gavage with a dose of 200 mg/kg/day throughout for 10 days. Fourteen rats (group III and IV) were exposed to 4 kHz octave band noise at 120 dB SPL for 5 hours. Hearing levels of rats were evaluated by distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) at 4, 8, 12, 16 and 32 kHz frequencies prior to and on days 1, 7 and 10 after the noise exposure. Rats were sacrificed on 10th day, after the last audiological test. Cochlea and spiral ganglion tissues were evaluated by light microscopy. Results: Audiological and histological results demonstrated that after noise the group IV showed better results than group III. In the noise exposed groups, the most prominent damage was seen at the 8 kHz frequency region than other regions. After the noise exposure, DPOAE responses were lost in 1st, 7th and 10th measurements in both group III and IV. Thus, we were not able to perform any statistical analyses for DPOAE results. Conclusion: Our findings suggest that KRG seems to be an efficient agent against NIHL. There is need for additional research to find out about the mechanisms of KRG’s protective effect.
Collapse
Affiliation(s)
- Serpil Mungan Durankaya
- Department of Otorhinolaryngology, Audiology Programme, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey.,Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey
| | - Yüksel Olgun
- Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Hande Evin Eskicioğlu
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Selhan Gürkan
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Başak Mutlu
- Department of Audiology, School of Health Sciences, Medeniyet University, İstanbul, Turkey
| | - Efsun Kolatan
- Department of Laboratory Animal Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Ersoy Doğan
- Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Osman Yılmaz
- Department of Laboratory Animal Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Günay Kırkım
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| |
Collapse
|
3
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
4
|
Engraftment of Human Stem Cell-Derived Otic Progenitors in the Damaged Cochlea. Mol Ther 2019; 27:1101-1113. [PMID: 31005598 DOI: 10.1016/j.ymthe.2019.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Most cases of sensorineural deafness are caused by degeneration of hair cells. Although stem/progenitor cell therapy is becoming a promising treatment strategy in a variety of organ systems, cell engraftment in the adult mammalian cochlea has not yet been demonstrated. In this study, we generated human otic progenitor cells (hOPCs) from induced pluripotent stem cells (iPSCs) in vitro and identified these cells by the expression of known otic markers. We showed successful cell transplantation of iPSC-derived-hOPCs in an in vivo adult guinea pig model of ototoxicity. The delivered hOPCs migrated throughout the cochlea, engrafted in non-sensory regions, and survived up to 4 weeks post-transplantation. Some of the engrafted hOPCs responded to environmental cues within the cochlear sensory epithelium and displayed molecular features of early sensory differentiation. We confirmed these results with hair cell progenitors derived from Atoh1-GFP mice as donor cells. These mouse otic progenitors transplanted using the same in vivo delivery system migrated into damaged cochlear sensory epithelium and adopted a partial sensory cell fate. This is the first report of the survival and differentiation of hOPCs in ototoxic-injured mature cochlear epithelium, and it should stimulate further research into cell-based therapies for treatment of deafness.
Collapse
|
5
|
Takeda H, Dondzillo A, Randall JA, Gubbels SP. Challenges in Cell-Based Therapies for the Treatment of Hearing Loss. Trends Neurosci 2018; 41:823-837. [PMID: 30033182 DOI: 10.1016/j.tins.2018.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
Hearing loss in mammals is an irreversible process caused by degeneration of the hair cells of the inner ear. Current therapies for hearing loss include hearing aids and cochlear implants that provide substantial benefits to most patients, but also have several shortcomings. There is great interest in the development of regenerative therapies to treat deafness in the future. Cell-based therapies, based either on adult, multipotent stem, or other types of pluripotent cells, offer promise for generating differentiated cell types to replace lost or damaged hair cells of the inner ear. In this review, we focus on the methods proposed and avenues for research that seem the most promising for stem cell-based auditory sensory cell regeneration, from work collected over the past 15 years.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine, Kumamoto City, Japan; These authors contributed equally to this work
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; These authors contributed equally to this work
| | - Jessica A Randall
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Schulze J, Sasse S, Prenzler N, Staecker H, Mellott AJ, Roemer A, Durisin M, Lenarz T, Warnecke A. Microenvironmental support for cell delivery to the inner ear. Hear Res 2018; 368:109-122. [PMID: 29945803 DOI: 10.1016/j.heares.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/10/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Transplantation of mesenchymal stromal cells (MSC) presents a promising approach not only for the replacement of lost or degenerated cells in diseased organs but also for local drug delivery. It can potentially be used to enhance the safety and efficacy of inner ear surgeries such as cochlear implantation. Options for enhancing the effects of MSC therapy include modulating cell behaviour with customized bio-matrixes or modulating their behaviour by ex vivo transfection of the cells with a variety of genes. In this study, we demonstrate that MSC delivered to the inner ear of guinea pigs or to decellularized cochleae preferentially bind to areas of high heparin concentration. This presents an opportunity for modulating cell behaviour ex vivo. We evaluated the effect of carboxymethylglucose sulfate (Cacicol®), a heparan sulfate analogue on spiral ganglion cells and MSC and demonstrated support of neuronal survival and support of stem cell proliferation.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Susanne Sasse
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ariane Roemer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
7
|
Yu J, Wang S, Zhao W, Duan J, Wang Z, Chen H, Tian Y, Wang D, Zhao J, An T, Bai H, Wu M, Wang J. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin Cancer Res 2018; 24:2148-2158. [PMID: 29437792 DOI: 10.1158/1078-0432.ccr-17-1932] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/24/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance.Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined.Results: Different proportions of α2δ1+ cells were identified in SCLC cell lines and PDX models. α2δ1+ cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1+ cells instead of CD133+ cells in PDXs, and an increased proportion of α2δ1+ cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models.Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR.
Collapse
Affiliation(s)
- Jiangyong Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanxiao Chen
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanhua Tian
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Di Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meina Wu
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
8
|
Regenerative medicine in hearing recovery. Cytotherapy 2017; 19:909-915. [DOI: 10.1016/j.jcyt.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
9
|
Warnecke A, Mellott AJ, Römer A, Lenarz T, Staecker H. Advances in translational inner ear stem cell research. Hear Res 2017; 353:76-86. [PMID: 28571616 DOI: 10.1016/j.heares.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022]
Abstract
Stem cell research is expanding our understanding of developmental biology as well as promising the development of new therapies for a range of different diseases. Within hearing research, the use of stem cells has focused mainly on cell replacement. Stem cells however have a broad range of other potential applications that are just beginning to be explored in the ear. Mesenchymal stem cells are an adult derived stem cell population that have been shown to produce growth factors, modulate the immune system and can differentiate into a wide variety of tissue types. Potential advantages of mesenchymal/adult stem cells are that they have no ethical constraints on their use. However, appropriate regulatory oversight seems necessary in order to protect patients from side effects. Disadvantages may be the lack of efficacy in many preclinical studies. But if proven safe and efficacious, they are easily translatable to clinical trials. The current review will focus on the potential application on mesenchymal stem cells for the treatment of inner ear disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ariane Römer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
10
|
Butler BE, Lomber SG. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front Syst Neurosci 2013; 7:92. [PMID: 24324409 PMCID: PMC3840613 DOI: 10.3389/fnsys.2013.00092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants.
Collapse
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology and Department of Psychology, National Centre for Audiology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
11
|
Novozhilova E, Olivius P, Siratirakun P, Lundberg C, Englund-Johansson U. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices. PLoS One 2013; 8:e57301. [PMID: 23505423 PMCID: PMC3591396 DOI: 10.1371/journal.pone.0057301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.
Collapse
Affiliation(s)
- Ekaterina Novozhilova
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of ENT—Head and Neck Surgery, UHL, County Council of Östergötland, Linköping, Sweden
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Piyaporn Siratirakun
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrica Englund-Johansson
- Department of Ophthalmology, Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther 2013; 13:85-101. [PMID: 23094991 PMCID: PMC3543850 DOI: 10.1517/14712598.2013.728583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In the auditory system, a specialized subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. AREAS COVERED In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. EXPERT OPINION Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Karina Needham
- University of Melbourne, Department of Otolaryngology, East Melbourne, Australia.
| | | | | | | |
Collapse
|
13
|
|