1
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Shokr MM, Badawi GA, Elshazly SM, Zaki HF, Mohamed AF. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. ACS Pharmacol Transl Sci 2025; 8:47-65. [PMID: 39816800 PMCID: PMC11729429 DOI: 10.1021/acsptsci.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions. Nonetheless, relatively little is known about the specific molecular mechanisms underlying S1R activity. Many studies on S1R protein have highlighted the importance of maintaining normal cellular homeostasis through its control of calcium and lipid exchange between the ER and mitochondria, ER-stress response, and many other mechanisms. In this review, we will discuss S1R different cellular localization and explain S1R-associated biological activity, such as its localization in the ER-plasma membrane and Mitochondrion-Associated ER Membrane interfaces. While outlining the cellular mechanisms and important binding partners involved in these processes, we also explained how the dysregulation of these pathways contributes to neurodegenerative disorders.
Collapse
Affiliation(s)
- Mustafa M. Shokr
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Ghada A. Badawi
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Shimaa M. Elshazly
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hala F. Zaki
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F. Mohamed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty
of Pharmacy, King Salman International University
(KSIU), South Sinai 46612, Egypt
| |
Collapse
|
3
|
Yang JJ, Liu YX, Wang YF, Ge BY, Wang Y, Wang QS, Li S, Zhang JJ, Jin LL, Hong JS, Yin SM, Zhao J. Anti-epileptic and Neuroprotective Effects of Ultra-low Dose NADPH Oxidase Inhibitor Dextromethorphan on Kainic Acid-induced Chronic Temporal Lobe Epilepsy in Rats. Neurosci Bull 2024; 40:577-593. [PMID: 37973720 PMCID: PMC11127903 DOI: 10.1007/s12264-023-01140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/24/2023] [Indexed: 11/19/2023] Open
Abstract
Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy (TLE). We postulated that kainic acid (KA)-Induced status epilepticus triggers microglia-dependent inflammation, leading to neuronal damage, a lowered seizure threshold, and the emergence of spontaneous recurrent seizures (SRS). Extensive evidence from our laboratory suggests that dextromethorphan (DM), even in ultra-low doses, has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease. Our results showed that administration of DM (10 ng/kg per day; subcutaneously via osmotic minipump for 4 weeks) significantly mitigated the residual effects of KA, including the frequency of SRS and seizure susceptibility. In addition, DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss. We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91phox and p47phox proteins in KA-induced chronic TLE rats. Notably, even after discontinuation of DM treatment, ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects, which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.
Collapse
Affiliation(s)
- Jing-Jing Yang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Ying-Xin Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Yan-Fang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Bi-Ying Ge
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qing-Shan Wang
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Sheng Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Jian-Jie Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ling-Ling Jin
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sheng-Ming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China.
| | - Jie Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China.
| |
Collapse
|
4
|
Xu C, Wang Y, Chen Z. Novel Mechanism, Drug Target and Therapy in Epilepsy. Neurosci Bull 2024; 40:561-563. [PMID: 38658515 PMCID: PMC11127855 DOI: 10.1007/s12264-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
6
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Dextromethorphan improves locomotor activity and decreases brain oxidative stress and inflammation in an animal model of acute liver failure. Clin Exp Hepatol 2022; 8:178-187. [PMID: 36685267 PMCID: PMC9850308 DOI: 10.5114/ceh.2022.118299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Hepatic encephalopathy (HE) is a serious clinical problem leading to severe neurological disorders and death. No specific treatment is available for the management of HE-associated neurological damage. This study aimed to evaluate the effect of dextromethorphan (DXM) on oxidative stress and disturbed locomotor activity in an animal model of HE. Material and methods In the current study, BALB/c mice received acetaminophen (APAP; 1000 mg/kg, intraperitoneally [IP]). Dextromethorphan (0.5, 1, 5, 10 mg/kg, subcutaneously [SC]) was injected in three doses (every 6 h), starting two hours after acetaminophen. Animals' locomotor activity, brain and plasma ammonia levels, as well as biomarkers of oxidative stress and inflammatory cytokines in the brain tissue, were assessed 24 hours after acetaminophen injection. Results It was found that APAP administration was significantly associated with liver damage and increased plasma biomarkers of liver injury. Ammonia levels in plasma and brain tissue of APAP-treated mice also increased significantly. There was also a significant difference in motor activity between the control and APAP-treated animals. The acute liver injury also increased the brain level of pro-inflammatory cytokines (tumor necrosis factor a [TNF-a], interleukin 6 [IL-6], and interleukin 1b [IL-1b]). It was found that DXM could significantly improve the motor activity of animals in all doses and decrease the biomarkers of inflammation and oxidative stress in the brain tissue of animals with hyperammonemia. Conclusions The effect of dextromethorphan on oxidative stress and inflammation seems to be a major mechanism for its neuroprotective properties in HE. Based on these data DXM could be applied as an effective pharmacological option against HE-associated brain injury.
Collapse
|
8
|
Mayrhofer F, Dariychuk Z, Zhen A, Daugherty DJ, Bannerman P, Hanson AM, Pleasure D, Soulika A, Deng W, Chechneva OV. Reduction in CD11c + microglia correlates with clinical progression in chronic experimental autoimmune demyelination. Neurobiol Dis 2021; 161:105556. [PMID: 34752925 DOI: 10.1016/j.nbd.2021.105556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease with high variability of clinical symptoms. In most cases MS appears as a relapsing-remitting disease course that at a later stage transitions into irreversible progressive decline of neurologic function. The mechanisms underlying MS progression remain poorly understood. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. Here we demonstrate that mice that develop mild EAE after immunization with myelin oligodendrocyte glycoprotein 35-55 are prone to undergo clinical progression around 30 days after EAE induction. EAE progression was associated with reduction in CD11c+ microglia and dispersed coalescent parenchymal infiltration. We found sex-dependent differences mediated by p38α signaling, a key regulator of inflammation. Selective reduction of CD11c+ microglia in female mice with CD11c-promoter driven p38α knockout correlated with increased rate of EAE progression. In protected animals, we found CD11c+ microglia forming contacts with astrocyte processes at the glia limitans and immune cells retained within perivascular spaces. Together, our study identified pathological hallmarks of chronic EAE progression and suggests that CD11c+ microglia may regulate immune cell parenchymal infiltration in autoimmune demyelination.
Collapse
Affiliation(s)
- Florian Mayrhofer
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Zhanna Dariychuk
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Anthony Zhen
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Daniel J Daugherty
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, United States of America; IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Peter Bannerman
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Angela M Hanson
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - David Pleasure
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Athena Soulika
- IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, United States of America; IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America
| | - Olga V Chechneva
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, United States of America; IPRM, Shriners Hospital for Children, Sacramento, CA 95817, United States of America.
| |
Collapse
|
9
|
Piechal A, Jakimiuk A, Mirowska-Guzel D. Sigma receptors and neurological disorders. Pharmacol Rep 2021; 73:1582-1594. [PMID: 34350561 PMCID: PMC8641430 DOI: 10.1007/s43440-021-00310-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Sigma receptors were identified relatively recently, and their presence has been confirmed in the central nervous system and peripheral organs. Changes in sigma receptor function or expression may be involved in neurological diseases, and thus sigma receptors represent a potential target for treating central nervous system disorders. Many substances that are ligands for sigma receptors are widely used in therapies for neurological disorders. In the present review, we discuss the roles of sigma receptors, especially in the central nervous system disorders, and related therapies.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
10
|
Dextromethorphan Dampens Neonatal Astrocyte Activation and Endoplasmic Reticulum Stress Induced by Prenatal Exposure to Buprenorphine. Behav Neurol 2021; 2021:6301458. [PMID: 34336001 PMCID: PMC8289573 DOI: 10.1155/2021/6301458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal exposure to buprenorphine renders offspring vulnerable to cerebral impairments. In this study, our data demonstrate, for the first time, that prenatal exposure to buprenorphine escalates astrocyte activation concurrent with indications of endoplasmic reticulum (ER) stress in the hippocampi of neonates, and this can be prevented by the coadministration of dextromethorphan with buprenorphine. Furthermore, dextromethorphan can inhibit the accumulation of GPR37 in the hippocampus of newborns caused by buprenorphine and is accompanied by the proapoptotic ER stress response that involves the procaspase-3/CHOP pathway. Primary astrocyte cultures derived from the neonates of the buprenorphine group also displayed aberrant ER calcium mobilization and elevated basal levels of cyclooxygenase-2 (COX-2) at 14 days in vitro while showing sensitivity to lipopolysaccharide-activated expression of COX-2. Similarly, these long-lasting defects in the hippocampus and astrocytes were abolished by dextromethorphan. Our findings suggest that prenatal exposure to buprenorphine might instigate long-lasting effects on hippocampal and astrocytic functions. The beneficial effects of prenatal coadministration of dextromethorphan might be, at least in part, attributed to its properties in attenuating astrocyte activation and hippocampal ER stress in neonates.
Collapse
|
11
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
12
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Mueller C, Ness TJ, Younger JW. Low-Dose Dextromethorphan for the Treatment of Fibromyalgia Pain: Results from a Longitudinal, Single-Blind, Placebo-Controlled Pilot Trial. J Pain Res 2021; 14:189-200. [PMID: 33542651 PMCID: PMC7851375 DOI: 10.2147/jpr.s285609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Fibromyalgia (FM) is a debilitating chronic pain condition with few treatment options. Central sensitization and neuroinflammation have been forwarded as models of FM pathophysiology, both of which indicate dextromethorphan (DXM) as a potential treatment. DXM is an NMDA-receptor antagonist and microglial modulator with anti-neuroinflammatory properties at low doses. It is available for clinical use but has not been tested as a treatment for FM at low dosages. This study evaluated the effectiveness of DXM in treating FM-associated symptoms. Methods In a single-blind, placebo-controlled trial, 14 women meeting the 2010 American College of Rheumatology criteria for FM received a placebo for five weeks, followed by 20 mg DXM for ten weeks, while providing daily symptom reports on a 0–100 scale. Pain and physical activity were the primary and secondary outcomes, respectively. Daily symptom ratings during the last four weeks of placebo were contrasted with ratings during the last four weeks of the active treatment using generalized estimating equations (GEE). Results DXM was well tolerated, and treatment adherence was high. Baseline pain was reduced by at least 20% in six participants. Self-reported daily pain and physical activity in the entire cohort were not significantly different between the placebo and DXM conditions, and the primary hypotheses were not supported. Exploratory analyses using the entire placebo and DXM data showed that pain was significantly lower in the DXM condition than in the placebo condition (b=−9.933, p=0.013). Discussion A strong clinical effect of DXM was not observed at the 20mg/day dosage.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred W Younger
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Lisak RP, Nedelkoska L, Benjamins JA. Sigma-1 receptor agonists as potential protective therapies in multiple sclerosis. J Neuroimmunol 2020; 342:577188. [PMID: 32179326 DOI: 10.1016/j.jneuroim.2020.577188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 01/25/2023]
Abstract
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum (ER) chaperone upregulated during ER stress, and regulates calcium homeostasis. Agonists of σ-1R are neuroprotective. ANAVEX2-73, a new σ-1R agonist, is undergoing several clinical trials. We show that ANAVEX2-73 protects oligodendroglia (OL) and oligodendroglial precursors (OPC) from apoptosis, excitotoxicity, reactive oxygen species (ROS) and quinolinic acid (QA), associated with inflammation. ANAVEX2-73 stimulates OPC proliferation, but does not alter early maturation to OL. We previously reported that dextromethorphan (DM), another σ-1R agonist with a different structure, had similar effects. We now show that both DM and ANAVEX2-73 protect neurons from the four cytotoxic agents.
Collapse
Affiliation(s)
- Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Liljana Nedelkoska
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
15
|
Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res 2020; 69:1-19. [PMID: 31852206 DOI: 10.33549/physiolres.934276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of pro-inflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
Collapse
Affiliation(s)
- D Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
16
|
Hollinger KR, Smith MD, Kirby LA, Prchalova E, Alt J, Rais R, Calabresi PA, Slusher BS. Glutamine antagonism attenuates physical and cognitive deficits in a model of MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e609. [PMID: 31467038 PMCID: PMC6745721 DOI: 10.1212/nxi.0000000000000609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/09/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To measure the impact of JHU-083, a novel prodrug of the glutamine antagonist 6-diazo-5-oxo-l-norleucine, on immune cell proliferation and activation, along with physical and cognitive impairments associated with the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. METHODS Splenic-derived T cells and bone marrow-derived dendritic cells (DCs) were cultured, activated, and treated daily with vehicle or JHU-083. Proliferation and activation were measured via flow cytometry and IncuCyte live cell analysis. C57BL/6 mice were immunized for EAE. Vehicle or JHU-083 was administered orally every other day either from the time of immunization in the prevention paradigm or from the time of disease onset in the treatment paradigm. Disease scores and body weight were monitored. In the treatment paradigm, cognition was evaluated using the Barnes maze test. RESULTS JHU-083 selectively inhibits T-cell proliferation and decreases T-cell activation, with no effect on DCs. In vivo, orally administered JHU-083 significantly decreases EAE severity in both prevention and treatment paradigms and reverses EAE-induced cognitive impairment. CONCLUSIONS JHU-083, a well-tolerated, brain penetrable glutamine antagonist, is a promising novel treatment for both the physical and cognitive deficits of MS.
Collapse
Affiliation(s)
- Kristen R Hollinger
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Matthew D Smith
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Leslie A Kirby
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Eva Prchalova
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Jesse Alt
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Rana Rais
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD.
| | - Barbara S Slusher
- From the Johns Hopkins Drug Discovery (K.R.H., E.P., J.A., R.R., B.S.S.), Johns Hopkins University; and Department of Psychiatry and Behavioral Sciences (K.R.H., B.S.S.), Department of Neurology (K.R.H., M.D.S., L.A.K., E.P., R.R., P.A.C., B.S.S.), Department of Neuroscience (B.S.S.), Department of Medicine (B.S.S.), Department of Oncology (B.S.S.), Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
17
|
Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov 2019; 18:905-922. [PMID: 31399729 DOI: 10.1038/s41573-019-0035-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that involves demyelination and axonal degeneration. Although substantial progress has been made in drug development for relapsing-remitting MS, treatment of the progressive forms of the disease, which are characterized clinically by the accumulation of disability in the absence of relapses, remains unsatisfactory. This unmet clinical need is related to the complexity of the pathophysiological mechanisms involved in MS progression. Chronic inflammation, which occurs behind a closed blood-brain barrier with activation of microglia and continued involvement of T cells and B cells, is a hallmark pathophysiological feature. Inflammation can enhance mitochondrial damage in neurons, which, consequently, develop an energy deficit, further reducing axonal health. The growth-inhibitory and inflammatory environment of lesions also impairs remyelination, a repair process that might protect axons from degeneration. Moreover, neurodegeneration is accelerated by the altered expression of ion channels on denuded axons. In this Review, we discuss the current understanding of these disease mechanisms and highlight emerging therapeutic strategies based on these insights, including those targeting the neuroinflammatory and degenerative aspects as well as remyelination-promoting approaches.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany. .,Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Jason R Plemel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Ravelli KG, Santos GD, Dos Santos NB, Munhoz CD, Azzi-Nogueira D, Campos AC, Pagano RL, Britto LR, Hernandes MS. Nox2-dependent Neuroinflammation in An EAE Model of Multiple Sclerosis. Transl Neurosci 2019; 10:1-9. [PMID: 30984416 PMCID: PMC6455010 DOI: 10.1515/tnsci-2019-0001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory disease of the CNS, characterized by demyelination, focal inflammatory infiltrates and axonal damage. Oxidative stress has been linked to MS pathology. Previous studies have suggested the involvement of NADPH oxidase 2 (Nox2), an enzyme that catalyzes the reduction of oxygen to produce reactive oxygen species, in the MS pathogenesis. The mechanisms of Nox2 activation on MS are unknown. The purpose of this study was to investigate the effect of Nox2 deletion on experimental autoimmune encephalomyelitis (EAE) onset and severity, on astrocyte activation as well as on pro-inflammatory and anti-inflammatory cytokine induction in striatum and motor cortex. Methodology Subcutaneous injection of MOG35-55 emulsified with complete Freund’s adjuvant was used to evaluate the effect of Nox2 depletion on EAE-induced encephalopathy. Striatum and motor cortices were isolated and evaluated by immunoblotting and RT-PCR. Results Nox2 deletion resulted in clinical improvement of the disease and prevented astrocyte activation following EAE induction. Nox2 deletion prevented EAE-induced induction of pro-inflammatory cytokines and stimulated the expression of the anti-inflammatory cytokines IL-4 and IL-10. Conclusions Our data suggest that Nox2 is involved on the EAE pathogenesis. IL-4 and IL-10 are likely to be involved on the protective mechanism observed following Nox2 deletion.
Collapse
Affiliation(s)
- Katherine G Ravelli
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Graziella D Santos
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | | - Carolina D Munhoz
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | | | | | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine Emory University, Atlanta, GA, United States
| |
Collapse
|
19
|
Valent DJ, Wong WT, Chew EY, Cukras CA. Oral Dextromethorphan for the Treatment of Diabetic Macular Edema: Results From a Phase I/II Clinical Study. Transl Vis Sci Technol 2018; 7:24. [PMID: 30584490 PMCID: PMC6300336 DOI: 10.1167/tvst.7.6.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose The activation of microglia, the primary innate immune cell resident in the retina, produces inflammatory mediators, which underlie changes in diabetic retinopathy including increased vascular permeability. This study evaluates the safety and efficacy of dextromethorphan, a drug capable of inhibiting microglial activation, in the treatment of diabetic macular edema (DME). Methods A single-center, prospective, open-label phase I/II clinical trial enrolled five participants with macular involving DME who received oral dextromethorphan 60 mg twice daily for 6 months as monotherapy. Main outcome variables included central retinal subfield thickness (CST), best-corrected visual acuity (BCVA), macula sensitivity, and late leakage on fluorescein angiogram (FA). Results The study drug was well tolerated. At the primary end point of 6 months, mean CST decreased by −6.3% ± 6.8% and BCVA increased by +0.6 ± 5.11 (mean ± SEM) letters. Late leakage on FA was scored as improved in four of five study eyes. These findings were not correlated with changes in hemoglobin A1c (HbA1c), creatinine, or blood pressure. Conclusions In this proof-of-concept study, dextromethorphan administration as the primary treatment for DME was associated with decreased vascular leakage, suggesting possible therapeutic effects. Additional studies investigating the modulation of microglial activation is warranted. Translational Relevance These findings highlight microglial modulation as a potentially useful therapeutic strategy in the treatment of diabetic macular edema.
Collapse
Affiliation(s)
- David J Valent
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Hayek S, Bekaddour N, Besson L, Alves de Sousa R, Pietrancosta N, Viel S, Smith N, Jacob Y, Nisole S, Mandal R, Wishart DS, Walzer T, Herbeuval JP, Vidalain PO. Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS DISCOVERY 2018; 24:25-37. [PMID: 30184441 DOI: 10.1177/2472555218797078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.
Collapse
Affiliation(s)
- Simon Hayek
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nassima Bekaddour
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Laurie Besson
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Rodolphe Alves de Sousa
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nicolas Pietrancosta
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Sébastien Viel
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Nikaia Smith
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Yves Jacob
- 4 CNRS, UMR3569, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Sébastien Nisole
- 5 Institut de Recherche en Infectiologie de Montpellier, CNRS, UMR9004, Université de Montpellier, Montpellier, France
| | - Rupasri Mandal
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Thierry Walzer
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Jean-Philippe Herbeuval
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| |
Collapse
|
21
|
Dextromethorphan Attenuates NADPH Oxidase-Regulated Glycogen Synthase Kinase 3β and NF-κB Activation and Reduces Nitric Oxide Production in Group A Streptococcal Infection. Antimicrob Agents Chemother 2018; 62:AAC.02045-17. [PMID: 29581121 DOI: 10.1128/aac.02045-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), an antitussive drug, has been demonstrated to efficiently reduce inflammatory responses, thereby contributing to an increased survival rate of GAS-infected mice. However, the anti-inflammatory mechanisms underlying DM treatment in GAS infection remain unclear. DM is known to exert neuroprotective effects through an NADPH oxidase-dependent regulated process. In the present study, membrane translocation of NADPH oxidase subunit p47phox and subsequent reactive oxygen species (ROS) generation induced by GAS infection were significantly inhibited via DM treatment in RAW264.7 murine macrophage cells. Further determination of proinflammatory mediators revealed that DM effectively suppressed inducible nitric oxide synthase (iNOS) expression and NO, tumor necrosis factor alpha, and interleukin-6 generation in GAS-infected RAW264.7 cells as well as in air-pouch-infiltrating cells from GAS/DM-treated mice. GAS infection caused AKT dephosphorylation, glycogen synthase kinase-3β (GSK-3β) activation, and subsequent NF-κB nuclear translocation, which were also markedly inhibited by treatment with DM and an NADPH oxidase inhibitor, diphenylene iodonium. These results suggest that DM attenuates GAS infection-induced overactive inflammation by inhibiting NADPH oxidase-mediated ROS production that leads to downregulation of the GSK-3β/NF-κB/NO signaling pathway.
Collapse
|
22
|
Chondroprotective Effects and Mechanisms of Dextromethorphan: Repurposing Antitussive Medication for Osteoarthritis Treatment. Int J Mol Sci 2018. [PMID: 29534535 PMCID: PMC5877686 DOI: 10.3390/ijms19030825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and primarily affects older people. The ideal anti-OA drug should have a modest anti-inflammatory effect and only limited or no toxicity for long-term use. Because the antitussive medication dextromethorphan (DXM) is protective in atherosclerosis and neurological diseases, two common disorders in aged people, we examined whether DXM can be protective in pro-inflammatory cytokine-stimulated chondrocytes and in a collagen-induced arthritis (CIA) animal model in this study. Chondrocytes were prepared from cartilage specimens taken from pigs or OA patients. Western blotting, quantitative PCR, and immunohistochemistry were adopted to measure the expression of collagen II (Col II) and matrix metalloproteinases (MMP). DXM significantly restored tumor necrosis factor-alpha (TNF-α)-mediated reduction of collagen II and decreased TNF-α-induced MMP-13 production. To inhibit the synthesis of MMP-13, DXM blocked TNF-α downstream signaling, including I kappa B kinase (IKK)α/β-IκBα-nuclear factor-kappaB (NF-κB) and c-Jun N-terminal kinase (JNK)-activator protein-1 (AP-1) activation. Besides this, DXM protected the CIA mice from severe inflammation and cartilage destruction. DXM seemed to protect cartilage from inflammation-mediated matrix degradation, which is an irreversible status in the disease progression of osteoarthritis. The results suggested that testing DXM as an osteoarthritis therapeutic should be a focus in further research.
Collapse
|
23
|
Pulido-Salgado M, Vidal-Taboada JM, Garcia Diaz-Barriga G, Serratosa J, Valente T, Castillo P, Matalonga J, Straccia M, Canals JM, Valledor A, Solà C, Saura J. Myeloid C/EBPβ deficiency reshapes microglial gene expression and is protective in experimental autoimmune encephalomyelitis. J Neuroinflammation 2017; 14:54. [PMID: 28302135 PMCID: PMC5356255 DOI: 10.1186/s12974-017-0834-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPβ show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPβ-expressing cell types is not solved. Since C/EBPβ-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPβ deficiency in microglia could be neuroprotective in vivo. In this study, we have tested this hypothesis by generating mice with myeloid C/EBPβ deficiency. Methods Mice with myeloid C/EBPβ deficiency were generated by crossing LysMCre and C/EBPβfl/fl mice. Primary microglial cultures from C/EBPβfl/fl and LysMCre-C/EBPβfl/fl mice were treated with lipopolysaccharide ± interferon γ (IFNγ) for 6 h, and gene expression was analyzed by RNA sequencing. Gene expression and C/EBPβ deletion were analyzed in vivo in microglia isolated from the brains of C/EBPβfl/fl and LysMCre-C/EBPβfl/fl mice treated systemically with lipolysaccharide or vehicle. Mice of LysMCre-C/EBPβfl/fl or control genotypes were subjected to experimental autoimmune encephalitis and analyzed for clinical signs for 52 days. One- or two-way ANOVA or Kruskal–Wallis with their appropriate post hoc tests were used. Results LysMCre-C/EBPβfl/fl mice showed an efficiency of C/EBPβ deletion in microglia of 100 and 90% in vitro and in vivo, respectively. These mice were devoid of female infertility, perinatal mortality and reduced lifespan that are associated to full C/EBPβ deficiency. Transcriptomic analysis of C/EBPβ-deficient primary microglia revealed C/EBPβ-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. In vivo, microglial expression of the pro-inflammatory genes Cybb, Ptges, Il23a, Tnf and Csf3 induced by systemic lipopolysaccharide injection was also blunted by C/EBPβ deletion. CNS expression of C/EBPβ was upregulated in experimental autoimmune encephalitis and in multiple sclerosis samples. Finally, LysMCre-C/EBPβfl/fl mice showed robust attenuation of clinical signs in experimental autoimmune encephalitis. Conclusion This study provides new data that support a central role for C/EBPβ in the biology of activated microglia, and it offers proof of concept for the therapeutic potential of microglial C/EBPβ inhibition in multiple sclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0834-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Jose M Vidal-Taboada
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Gerardo Garcia Diaz-Barriga
- Department of Biomedicine, Histology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain
| | - Tony Valente
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paola Castillo
- Department of Pathology, Hospital Clinic, ISGlobal, CRESIB, Barcelona, Spain
| | - Jonathan Matalonga
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Marco Straccia
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Department of Biomedicine, Histology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Josep M Canals
- Department of Biomedicine, Histology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Annabel Valledor
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain
| | - Josep Saura
- Department of Biomedicine, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Lauterbach EC. Repurposing psychiatric medicines to target activated microglia in anxious mild cognitive impairment and early Parkinson's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:29-51. [PMID: 27073741 PMCID: PMC4788730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Anxiety is common in the Mild Cognitive Impairment (MCI) stage of Alzheimer's disease (AD) and the pre-motor stages of Parkinson's disease (PD). A concomitant and possible cause of this anxiety is microglial activation, also considered a key promoter of neurodegeneration in MCI and early PD via inflammatory mechanisms and the generation of degenerative proinflammatory cytokines. Psychiatric disorders, prevalent in AD and PD, are often treated with psychiatric drugs (psychotropics), raising the question of whether psychotropics might therapeutically affect microglial activation, MCI, and PD. The literature of common psychotropics used in treating psychiatric disorders was reviewed for preclinical and clinical findings regarding microglial activation. Findings potentially compatible with reduced microglial activation or reduced microglial inflammogen release were evident for: antipsychotics including neuroleptics (chlorpromazine, thioridazine, loxapine) and atypicals (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone); mood stabilizers (carbamazepine, valproate, lithium); antidepressants including tricyclics (amitriptyline, clomipramine, imipramine, nortriptyline), SSRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline), venlafaxine, and bupropion; benzodiazepine anxiolytics (clonazepam, diazepam); cognitive enhancers (donepezil, galantamine, memantine); and other drugs (dextromethorphan, quinidine, amantadine). In contrast, pramipexole and methylphenidate might promote microglial activation. The most promising replicated findings of reduced microglial activation are for quetiapine, valproate, lithium, fluoxetine, donepezil, and memantine but further study is needed and translation of their microglial effects to human disease still requires investigation. In AD-relevant models, risperidone, valproate, lithium, fluoxetine, bupropion, donepezil, and memantine have therapeutic microglial effects in need of replication. Limited clinical data suggest some support for lithium and donepezil in reducing MCI progression, but other drugs have not been studied. In PD-relevant models, lamotrigine, valproate, fluoxetine, dextromethorphan, and amantadine have therapeutic microglial effects whereas methylphenidate induced microglial activation and pramipexole promoted NO release. Clinical data limited to pramipexole do not as of yet indicate faster progression of early PD while the other drugs remain to be investigated. These tantalizing psychotropic neuroprotective findings now invite replication and evidence in AD-and PD-specific models under chronic administration, followed by consideration for clinical trials in MCI and early stage PD. Psychiatric features in early disease may provide opportunities for clinical studies that also employ microglial PET biomarkers.
Collapse
Affiliation(s)
- Edward C Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine 655 First Street, Macon, Georgia, 31201, USA
| |
Collapse
|
25
|
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2016; 174:1733-1749. [PMID: 26750203 DOI: 10.1111/bph.13425] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Microglia are the resident immune cells of the CNS and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of the members of the NOX family is to generate reactive oxygen species (ROS) that are believed to be important in CNS host defence and in the redox signalling circuits that shape the different activation phenotypes of microglia. NOX are also important in pathological conditions, where over-generation of ROS contributes to neuronal loss via direct oxidative tissue damage or disruption of redox signalling circuits. In this review, we assess the evidence for involvement of NOX in CNS physiopathology, with particular emphasis on the most important surface receptors that lead to generation of NOX-derived ROS. We evaluate the potential significance of the subcellular distribution of NOX isoforms for redox signalling or release of ROS to the extracellular medium. Inhibitory mechanisms that have been reported to restrain NOX activity in microglia and macrophages in vivo are also discussed. We provide a critical appraisal of frequently used and recently developed NOX inhibitors. Finally, we review the recent literature on NOX and other sources of ROS that are involved in activation of the inflammasome and discuss the potential influence of microglia-derived oxidants on neurogenesis, neural differentiation and culling of surplus progenitor cells. The degree to which excessive, badly timed or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- J Haslund-Vinding
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.,Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - V Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - F Vilhardt
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
26
|
Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan. Mol Neurobiol 2016; 53:3494-3502. [DOI: 10.1007/s12035-016-9786-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/31/2016] [Indexed: 11/25/2022]
|
27
|
Seredenina T, Demaurex N, Krause KH. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal 2015; 23:490-513. [PMID: 24483328 PMCID: PMC4543398 DOI: 10.1089/ars.2013.5806] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.
Collapse
Affiliation(s)
- Tamara Seredenina
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Nicolas Demaurex
- 2 Department of Cellular Physiology and Metabolism, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Karl-Heinz Krause
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland .,3 Department of Genetic and Laboratory Medicine, Geneva University Hospitals , Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
28
|
Madeira JM, Schindler SM, Klegeris A. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases. Neural Regen Res 2015; 10:391-3. [PMID: 25878586 PMCID: PMC4396100 DOI: 10.4103/1673-5374.153686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative disorders including Alzheimer's disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.
Collapse
Affiliation(s)
- Jocelyn M Madeira
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Stephanie M Schindler
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
29
|
A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury. Cell Death Dis 2014; 5:e1481. [PMID: 25341035 PMCID: PMC4649529 DOI: 10.1038/cddis.2014.446] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
Ischemic stroke occurs as a result of blood supply interruption to the brain causing tissue degeneration, patient disabilities or death. Currently, treatment of ischemic stroke is limited to thrombolytic therapy with a narrow time window of administration. The sonic hedgehog (Shh) signaling pathway has a fundamental role in the central nervous system development, but its impact on neural cell survival and tissue regeneration/repair after ischemic stroke has not been well investigated. Here we report the neuroprotective properties of a small-molecule agonist of the Shh co-receptor Smoothened, purmorphamine (PUR), in the middle cerebral artery occlusion model of ischemic stroke. We found that intravenous administration of PUR at 6 h after injury was neuroprotective and restored neurological deficit after stroke. PUR promoted a transient upregulation of tissue-type plasminogen activator in injured neurons, which was associated with a reduction of apoptotic cell death in the ischemic cortex. We also observed a decrease in blood–brain barrier permeability after PUR treatment. At 14 d postinjury, attenuation of inflammation and reactive astrogliosis was found in PUR-treated animals. PUR increased the number of newly generated neurons in the peri-infarct and infarct area and promoted neovascularization in the ischemic zone. Notably, PUR treatment did not significantly alter the ischemia-induced level of Gli1, a Shh target gene of tumorigenic potential. Thus our study reports a novel pharmacological approach for postischemic treatment using a small-molecule Shh agonist, providing new insights into hedgehog signaling-mediated mechanisms of neuroprotection and regeneration after stroke.
Collapse
|
30
|
Lisak RP, Nedelkoska L, Benjamins JA. Effects of dextromethorphan on glial cell function: Proliferation, maturation, and protection from cytotoxic molecules. Glia 2014; 62:751-62. [DOI: 10.1002/glia.22639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Robert P. Lisak
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
- Department of Immunology/Microbiology; Wayne State University School of Medicine; Detroit Missouri
| | - Liljana Nedelkoska
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
| | - Joyce A. Benjamins
- Department of Neurology; Wayne State University School of Medicine; Detroit Missouri
- Department of Immunology/Microbiology; Wayne State University School of Medicine; Detroit Missouri
| |
Collapse
|
31
|
Zhao WC, Zhang B, Liao MJ, Zhang WX, He WY, Wang HB, Yang CX. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett 2013; 560:81-5. [PMID: 24370596 DOI: 10.1016/j.neulet.2013.12.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (P<0.05) in the spinal cord. Both curcumin and apocynin ameliorated diabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord.
Collapse
Affiliation(s)
- Wei-Cheng Zhao
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Bin Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Mei-Juan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Wen-Xuan Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Wan-You He
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Han-Bing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China
| | - Cheng-Xiang Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81# North of Rinlan Road, Foshan 528000, China.
| |
Collapse
|
32
|
Wu K, Lin TH, Liou HC, Lu DH, Chen YR, Fu WM, Yang RS. Dextromethorphan inhibits osteoclast differentiation by suppressing RANKL-induced nuclear factor-κB activation. Osteoporos Int 2013; 24:2201-14. [PMID: 23400250 DOI: 10.1007/s00198-013-2279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Dextromethorphan (DXM), a commonly used antitussive, is a dextrorotatory morphinan. Here, we report that DXM inhibits the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption by abrogating the activation of NF-κB signalling in vitro. Oral administration of DXM ameliorates ovariectomy (OVX)-induced osteoporosis in vivo. INTRODUCTION DXM was reported to possess anti-inflammatory properties through inhibition of the release of pro-inflammatory factors. However, the potential role and action mechanism of DXM on osteoclasts and osteoblasts remain unclear. In this study, in vitro and in vivo studies were performed to investigate the potential effects of DXM on osteoclastogenesis and OVX-induced bone loss. METHODS Osteoclastogenesis was examined by the TRAP staining, pit resorption, TNF-α release, and CCR2 and CALCR gene expression. Osteoblast differentiation was analyzed by calcium deposition. Osteogenic and adipogenic genes were measured by real-time PCR. Signaling pathways were explored using Western blot. ICR mice were used in an OVX-induced osteoporosis model. Tibiae were measured by µCT and serum markers were examined with ELISA kits. RESULTS DXM inhibited RANKL-induced osteoclastogenesis. DXM mainly inhibited osteoclastogenesis via abrogation of IKK-IκBα-NF-κB pathways. However, a higher dosage of DXM antagonized the differentiation of osteoblasts via the inhibition of osteogenic signals and increase of adipogenic signals. Oral administration of DXM (20 mg/kg/day) partially reduced trabecular bone loss in ovariectomized mice. CONCLUSION DXM inhibits osteoclast differentiation and activity by affecting NF-κB signaling. Therefore, DXM at suitable doses may have new therapeutic applications for the treatment of diseases associated with excessive osteoclastic activity.
Collapse
Affiliation(s)
- Karl Wu
- Department of Orthopedics, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., New Taipei City 220, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Dextromethorphan inhibits activations and functions in dendritic cells. Clin Dev Immunol 2013; 2013:125643. [PMID: 23781253 PMCID: PMC3679715 DOI: 10.1155/2013/125643] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/25/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.
Collapse
|
34
|
Younger J, Noor N, McCue R, Mackey S. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. ACTA ACUST UNITED AC 2013; 65:529-38. [PMID: 23359310 DOI: 10.1002/art.37734] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 09/27/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine whether low dosages (4.5 mg/day) of naltrexone reduce fibromyalgia severity as compared with the nonspecific effects of placebo. In this replication and extension study of a previous clinical trial, we tested the impact of low-dose naltrexone on daily self-reported pain. Secondary outcomes included general satisfaction with life, positive mood, sleep quality, and fatigue. METHODS Thirty-one women with fibromyalgia participated in the randomized, double-blind, placebo-controlled, counterbalanced, crossover study. During the active drug phase, participants received 4.5 mg of oral naltrexone daily. An intensive longitudinal design was used to measure daily levels of pain. RESULTS When contrasting the condition end points, we observed a significantly greater reduction of baseline pain in those taking low-dose naltrexone than in those taking placebo (28.8% reduction versus 18.0% reduction; P = 0.016). Low-dose naltrexone was also associated with improved general satisfaction with life (P = 0.045) and with improved mood (P = 0.039), but not improved fatigue or sleep. Thirty-two percent of participants met the criteria for response (defined as a significant reduction in pain plus a significant reduction in either fatigue or sleep problems) during low-dose naltrexone therapy, as contrasted with an 11% response rate during placebo therapy (P = 0.05). Low-dose naltrexone was rated equally tolerable as placebo, and no serious side effects were reported. CONCLUSION The preliminary evidence continues to show that low-dose naltrexone has a specific and clinically beneficial impact on fibromyalgia pain. The medication is widely available, inexpensive, safe, and well-tolerated. Parallel-group randomized controlled trials are needed to fully determine the efficacy of the medication.
Collapse
Affiliation(s)
- Jarred Younger
- Stanford University School of Medicine, Palo Alto, California 94304-1573, USA.
| | | | | | | |
Collapse
|
35
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
36
|
Gao HM, Zhou H, Hong JS. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci 2012; 33:295-303. [PMID: 22503440 DOI: 10.1016/j.tips.2012.03.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 01/08/2023]
Abstract
Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui-Ming Gao
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
37
|
Song JH, Yeh JZ. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells. Neurosci Lett 2012; 516:94-8. [PMID: 22487729 DOI: 10.1016/j.neulet.2012.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation.
Collapse
Affiliation(s)
- Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea.
| | | |
Collapse
|