1
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
2
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
4
|
Zheng F, Aschner M, Li H. Evaluations of Environmental Pollutant-Induced Mitochondrial Toxicity Using Caenorhabditis elegans as a Model System. Methods Mol Biol 2021; 2326:33-46. [PMID: 34097259 DOI: 10.1007/978-1-0716-1514-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Environmental pollutants inevitably exert adverse effects on humans and other species. Quick identification and in-depth characterization of the pollutants are requisite objectives for clinicians and environmental health scientists. The nematode Caenorhabditis elegans has been utilized as a model organism for toxicity evaluation of environmental pollutants, due to its transparency, short lifespan, entire genome sequencing, and economical characteristics. However, few researchers have systematically addressed mitochondrial toxicity in response to toxicants, despite the critical role mitochondria play in energy production and respiration, as well as the generation of reactive oxygen species. Mitochondria are vulnerable to environmental pollutants, and their dysfunction contributes to cellular damage and toxicity in plethora of diseases. Here, we describe methods in step-by-step for mitochondrial toxicity evaluation in response to pollutants, including exposure of C. elegans to toxicants, mitochondrial ROS detection, mitochondrial morphology analysis, mitochondrial function analysis, such as ATP production and oxygen consumption, and gene expression studies, with the application of corresponding genetically modified strains.
Collapse
Affiliation(s)
- Fuli Zheng
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
6
|
Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab 2021; 48:101217. [PMID: 33766731 PMCID: PMC8081993 DOI: 10.1016/j.molmet.2021.101217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Metabolic deregulation is a key hallmark of cancer cells and has been shown to drive cancer growth and metastasis. However, not all metabolic drivers of melanoma are known. Based on our finding that N-acylsphingosine amidohydrolase 1 (ASAH1) is overexpressed in melanoma, the objective of these studies was to establish its role in melanoma tumor growth and metastasis, understand its mechanism of action, and evaluate ASAH1 targeting for melanoma therapy. METHODS We used publicly available melanoma datasets and patient-derived samples of melanoma and normal skin tissue and analyzed them for ASAH1 mRNA expression and ASAH1 protein expression using immunohistochemistry. ASAH1 was knocked down using short-hairpin RNAs in multiple melanoma cell lines that were tested in a series of cell culture-based assays and mouse-based melanoma xenograft assays to monitor the effect of ASAH1 knockdown on melanoma tumor growth and metastasis. An unbiased metabolomics analysis was performed to identify the mechanism of ASAH1 action. Based on the metabolomics findings, the role of peroxisome-mediated reactive oxygen species (ROS) production was explored in regard to mediating the effect of ASAH1. The ASAH1 inhibitor was used alone or in combination with a BRAFV600E inhibitor to evaluate the therapeutic value of ASAH1 targeting for melanoma therapy. RESULTS We determined that ASAH1 was overexpressed in a large percentage of melanoma cells and regulated by transcription factor E2F1 in a mitogen-activated protein (MAP) kinase pathway-dependent manner. ASAH1 expression was necessary to maintain melanoma tumor growth and metastatic attributes in cell cultures and mouse models of melanoma tumor growth and metastasis. To identify the mechanism by which ASAH1 facilitates melanoma tumor growth and metastasis, we performed a large-scale and unbiased metabolomics analysis of melanoma cells expressing ASAH1 short-hairpin RNAs (shRNAs). We found that ASAH1 inhibition increased peroxisome biogenesis through ceramide-mediated PPARγ activation. ASAH1 loss increased ceramide and peroxisome-derived ROS, which in turn inhibited melanoma growth. Pharmacological inhibition of ASAH1 also attenuated melanoma growth and enhanced the effectiveness of BRAF kinase inhibitor in the cell cultures and mice. CONCLUSIONS Collectively, these results demonstrate that ASAH1 is a druggable driver of melanoma tumor growth and metastasis that functions by suppressing peroxisome biogenesis, thereby inhibiting peroxisome-derived ROS production. These studies also highlight the therapeutic utility of ASAH1 inhibitors for melanoma therapy.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama, 35233, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama, 35233, USA.
| |
Collapse
|
7
|
Filadi R, Greotti E. The yin and yang of mitochondrial Ca 2+ signaling in cell physiology and pathology. Cell Calcium 2020; 93:102321. [PMID: 33310302 DOI: 10.1016/j.ceca.2020.102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Riccardo Filadi
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| | - Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| |
Collapse
|
8
|
Esquivel AR, Douglas JC, Loughran RM, Rezendes TE, Reed KR, Cains THL, Emsley SA, Paddock WA, Videau P, Koyack MJ, Paddock BE. Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. J Exp Biol 2020; 223:jeb223867. [PMID: 33037110 DOI: 10.1242/jeb.223867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Thomas E Rezendes
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Tobias H L Cains
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - William A Paddock
- Department of Institutional Research, Arcadia University, Glenside, PA 19038 USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Brie E Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
9
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
10
|
Radhakrishnan S, Norley J, Wendt S, LeRoy N, Hall H, Norcross S, Doan S, Snaider J, MacVicar BA, Weake VM, Huang L, Tantama M. Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor. ACS Chem Neurosci 2020; 11:2666-2678. [PMID: 32786310 PMCID: PMC7526680 DOI: 10.1021/acschemneuro.0c00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially distinct changes in reactive oxygen species levels, but multicolor probes are needed to accurately analyze compartment-specific redox dynamics in single cells that can be masked by population averaging. We previously engineered genetically encoded red-shifted redox-sensitive fluorescent protein sensors using a Förster resonance energy transfer relay strategy. Here, we developed a second-generation excitation ratiometric sensor called rogRFP2 with improved red emission for quantitative live-cell imaging. Using this sensor to measure activity-dependent redox changes in individual cultured neurons, we observed an anticorrelation in which mitochondrial oxidation was accompanied by a concurrent reduction in the cytosol. This behavior was dependent on the activity of Complex I of the mitochondrial electron transport chain and could be modulated by the presence of cocultured astrocytes. We also demonstrated that the red fluorescent rogRFP2 facilitates ratiometric one- and two-photon redox imaging in rat brain slices and Drosophila retinas. Overall, the proof-of-concept studies reported here demonstrate that this new rogRFP2 redox sensor can be a powerful tool for understanding redox biology both in vitro and in vivo across model organisms.
Collapse
Affiliation(s)
- Saranya Radhakrishnan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jacob Norley
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Stefan Wendt
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan LeRoy
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Hana Hall
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
| | - Stevie Norcross
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Sara Doan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jordan Snaider
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Brian A. MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vikki M. Weake
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
- Purdue Center for Cancer Research, 175 South University Street, West Lafayette, IN 47907, United States
| | - Libai Huang
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Mathew Tantama
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
- Biochemistry Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
| |
Collapse
|
11
|
Sun L, Zhang J, Chen W, Chen Y, Zhang X, Yang M, Xiao M, Ma F, Yao Y, Ye M, Zhang Z, Chen K, Chen F, Ren Y, Ni S, Zhang X, Yan Z, Sun Z, Zhou H, Yang H, Xie S, Haque ME, Huang K, Yang Y. Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. Aging Cell 2020; 19:e13210. [PMID: 32749068 PMCID: PMC7511865 DOI: 10.1111/acel.13210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 07/12/2020] [Indexed: 11/27/2022] Open
Abstract
How complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co‐expression analysis on human patient substantia nigra‐specific microarray datasets to identify potential novel disease‐related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin‐remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging‐dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down‐regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α‐synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK‐ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down‐regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD‐associated gene)‐deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age‐related disorders including PD.
Collapse
Affiliation(s)
- Ling Sun
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Jie Zhang
- Department of Medical and Molecular Genetics School of Medicine Indiana University Indianapolis IN USA
| | - Wenfeng Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yun Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Xiaohui Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Mingjuan Yang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Min Xiao
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Fujun Ma
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yizhou Yao
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Meina Ye
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Zhenkun Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Kai Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Fei Chen
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Yujun Ren
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Shiwei Ni
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Xi Zhang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
| | - Zhangming Yan
- MOE Key Lab of Bioinformatics School of Life Sciences Tsinghua University Beijing China
| | - Zhi‐Rong Sun
- MOE Key Lab of Bioinformatics School of Life Sciences Tsinghua University Beijing China
| | - Hai‐Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology Yangtze Delta Region Institute of Tsinghua University Jiaxing China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| | - Shusen Xie
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| | - M. Emdadul Haque
- Department of Biochemistry College of Medicine and Health Sciences United Arab Emirates University Al‐Ain United Arab Emirates
| | - Kun Huang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
- Department of Hematology and Oncology School of Medicine Indiana University Indianapolis IN USA
| | - Yufeng Yang
- Institute of Life Sciences Fuzhou University Fuzhou Fujian China
- Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education Fujian Normal University Fuzhou China
| |
Collapse
|
12
|
Antioxidant Therapy in Parkinson's Disease: Insights from Drosophila melanogaster. Antioxidants (Basel) 2020; 9:antiox9010052. [PMID: 31936094 PMCID: PMC7023233 DOI: 10.3390/antiox9010052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role as endogenous mediators in several cellular signalling pathways. However, at high concentrations they can also exert deleterious effects by reacting with many macromolecules including DNA, proteins and lipids. The precise balance between ROS production and their removal via numerous enzymatic and nonenzymatic molecules is of fundamental importance for cell survival. Accordingly, many neurodegenerative disorders, including Parkinson’s disease (PD), are associated with excessive levels of ROS, which induce oxidative damage. With the aim of coping with the progression of PD, antioxidant compounds are currently receiving increasing attention as potential co-adjuvant molecules in the treatment of these diseases, and many studies have been performed to evaluate the purported protective effects of several antioxidant molecules. In the present review, we present and discuss the relevance of the use of Drosophila melanogaster as an animal model with which to evaluate the therapeutic potential of natural and synthetic antioxidants. The conservation of most of the PD-related genes between humans and D. melanogaster, along with the animal’s rapid life cycle and the versatility of genetic tools, makes fruit flies an ideal experimental system for rapid screening of antioxidant-based treatments.
Collapse
|
13
|
García-Quirós E, Alché JDD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:730-741. [PMID: 31557297 PMCID: PMC6946011 DOI: 10.1093/jxb/erz376] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.
Collapse
Affiliation(s)
- Estefanía García-Quirós
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Christine H Foyer
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Correspondence:
| |
Collapse
|
14
|
Stern M. Evidence that a mitochondrial death spiral underlies antagonistic pleiotropy. Aging Cell 2017; 16:435-443. [PMID: 28185435 PMCID: PMC5418193 DOI: 10.1111/acel.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The antagonistic pleiotropy (AP) theory posits that aging occurs because alleles that are detrimental in older organisms are beneficial to growth early in life and thus are maintained in populations. Although genes of the insulin signaling pathway likely participate in AP, the insulin‐regulated cellular correlates of AP have not been identified. The mitochondrial quality control process called mitochondrial autophagy (mitophagy), which is inhibited by insulin signaling, might represent a cellular correlate of AP. In this view, rapidly growing cells are limited by ATP production; these cells thus actively inhibit mitophagy to maximize mitochondrial ATP production and compete successfully for scarce nutrients. This process maximizes early growth and reproduction, but by permitting the persistence of damaged mitochondria with mitochondrial DNA mutations, becomes detrimental in the longer term. I suggest that as mitochondrial ATP output drops, cells respond by further inhibiting mitophagy, leading to a further decrease in ATP output in a classic death spiral. I suggest that this increasing ATP deficit is communicated by progressive increases in mitochondrial ROS generation, which signals inhibition of mitophagy via ROS‐dependent activation of insulin signaling. This hypothesis clarifies a role for ROS in aging, explains why insulin signaling inhibits autophagy, and why cells become progressively more oxidized during aging with increased levels of insulin signaling and decreased levels of autophagy. I suggest that the mitochondrial death spiral is not an error in cell physiology but rather a rational approach to the problem of enabling successful growth and reproduction in a competitive world of scarce nutrients.
Collapse
Affiliation(s)
- Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology; Rice University; Houston TX USA
| |
Collapse
|
15
|
Singh P, Pelus LM. IFN-1 Bid crosstalk: foe or friend to stem cells. Stem Cell Investig 2017; 4:18. [PMID: 28275648 DOI: 10.21037/sci.2017.02.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Pratibha Singh
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, R2-302, Indianapolis, IN 46202, USA
| | - Louis M Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, R2-302, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
17
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
18
|
Burke C, Trinh K, Nadar V, Sanyal S. AxGxE: Using Flies to Interrogate the Complex Etiology of Neurodegenerative Disease. Curr Top Dev Biol 2016; 121:225-251. [PMID: 28057301 DOI: 10.1016/bs.ctdb.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progressive and late-onset neurological disorders such as Parkinson's disease and Alzheimer's disease affect up to 50 million people globally-a number postulated to double every 20 years in a continually aging population. While predisposing allelic variants in several genes clearly confer risk, individual age and specific environmental influences are equally important discriminators of disease onset age and progression. However, none of these factors can independently predict disease with significant precision. Therefore, we must actively develop models that accommodate contributions from all factors, potentially resulting in an A × G × E (age-gene-environment) metric that reflects individual cumulative risk and reliably forecasts disease outcomes. This effort can only be enabled by a deep quantitative understanding of the contribution of these factors to neurodegenerative disease, both individually and in combination. This is also an important consideration because neuronal loss typically precedes clinical presentation and disease-modifying therapies are contingent on early diagnosis that is likely to be informed by an accurate estimation of individual risk. Although epidemiological studies continue to make strong advances in these areas with the advent of powerful "omics"-based approaches, systematic phenotypic modeling of AxGxE interactions is currently more feasible in model organisms such as Drosophila melanogaster where all three parameters can be manipulated with manageable experimental burden. Here, we outline the advantages of using fruit flies for investigating these complex interactions and highlight potential approaches that might help synthesize existing information from diverse fields into a cogent description of age-dependent, environmental, and genetic risk factors in the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- C Burke
- Neurology Research, Biogen, Cambridge, MA United States
| | - K Trinh
- Neurology Research, Biogen, Cambridge, MA United States
| | - V Nadar
- Neurology Research, Biogen, Cambridge, MA United States
| | - S Sanyal
- Neurology Research, Biogen, Cambridge, MA United States.
| |
Collapse
|
19
|
Shawn, the Drosophila Homolog of SLC25A39/40, Is a Mitochondrial Carrier That Promotes Neuronal Survival. J Neurosci 2016; 36:1914-29. [PMID: 26865615 DOI: 10.1523/jneurosci.3432-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.
Collapse
|
20
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
21
|
Wang B, Liu Q, Shan H, Xia C, Liu Z. Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to α-synuclein in Drosophila. Biochem Cell Biol 2015; 93:351-8. [PMID: 26008822 DOI: 10.1139/bcb-2015-0015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The study of the genes that are related to the pathogenesis of Parkinson's disease (PD) will improve our understanding of the mechanisms that underlie the development of PD. α-Synuclein is a major protein component of Lewy bodies, which are characteristic structures of PD pathology. Mutations in α-synuclein are closely related to the early onset of autosomal dominant PD. Transgenic flies with mutant α-synuclein (A53T) display neurodegenerative changes that include movement dysfunctions and a loss of dopaminergic neurons in the brain. In the present study, we measured reactive oxygen species (ROS) levels in α-synuclein transgenic flies by monitoring the fluorescence levels of redox-sensitive indicators based on GFP (roGFP) in flies co-expressing roGFP and mutant α-synuclein. We found that the ROS levels were significantly increased in the mutant α-synuclein flies. The elevations in ROS levels were also proportionate to the behavioral disorders and the losses of dopaminergic neurons. We also found that CDDO-Me inhibited the increases in ROS levels in the A53T flies and improved the neurodegenerative changes by activating the Nrf2/antioxidant response element signaling pathway. Selective expression of the Nrf2 homologous gene cncC in the dopaminergic neurons effectively protected against the neurodegenerative phenotype of the A53T α-synuclein flies, compared to the flies that expressed cncC in all neurons. These results indicate that the reductions in oxidative stress that are mediated by the activation of the antioxidant signaling pathway can effectively attenuate the neurotoxicity caused by mutations in α-synuclein.
Collapse
Affiliation(s)
- Bing Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China.,Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China
| | - Qingqing Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China.,Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China
| | - Hongyun Shan
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China.,Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China
| | - Chunlin Xia
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China.,Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China.,Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, P. R. China
| |
Collapse
|
22
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
23
|
Lee JS, Kim YR, Song IG, Ha SJ, Kim YE, Baek NI, Hong EK. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. Int J Mol Med 2014; 35:405-12. [PMID: 25435295 DOI: 10.3892/ijmm.2014.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/21/2014] [Indexed: 12/31/2022] Open
Abstract
The extract obtained from berries contains high amounts of anthocyanins, and this extract is used as a phytotherapeutic agent for different types of diseases. In this study, we examined the cytoprotective effects of cyanidin-3-glucoside (C3G) isolated from mulberry fruit against pancreatic β-cell apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress. The MIN6 pancreatic β-cells were used to investigate the cytoprotective effects of C3G on the oxidative stress-induced apoptosis of cells. Cell viability was examined by MTT assay and lipid peroxidation was assayed by thiobarbituric acid (TBA) reaction. Immunofluorescence staining, flow cytometry and western blot analysis were also used to determine apoptosis and the expression of proteins associated with apoptosis. Our results revealed that H2O2 increased the rate of apoptosis by stimulating various pro-apoptotic processes, such as the generation of intracellular reactive oxygen species (ROS), lipid peroxidation, DNA fragmentation and caspase-3 activation. However, C3G reduced the H2O2-induced cell death in the MIN6N pancreatic β-cells. In addition, we confirmed that H2O2 activated mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. C3G inhibited the phosphorylation of ERK and p38 without inducing the phosphorylation of JNK. Furthermore, C3G regulated the intrinsic apoptotic pathway-associated proteins, such as proteins belonging to the Bcl-2 family, cytochrome c and caspase-3. Taken together, our results suggest that C3G isolated from mulberry fruit has potential for use as a phytotherapeutic agent for the prevention of diabetes by preventing oxidative stress-induced β-cell apoptosis.
Collapse
Affiliation(s)
- Jong Seok Lee
- National Institute of Biological Resources, Incheon 404-708, Republic of Korea
| | - Young Rae Kim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - In Gyu Song
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Young Eon Kim
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do 463-746, Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Republic of Korea
| | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| |
Collapse
|
24
|
Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, Adler PN, Wessells RJ, Saucerman JJ, Yan Z. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 2014; 289:12005-12015. [PMID: 24644293 DOI: 10.1074/jbc.m113.530527] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo.
Collapse
Affiliation(s)
- Rhianna C Laker
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Peng Xu
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Karen A Ryall
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Alyson Sujkowski
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brandon M Kenwood
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Kristopher H Chain
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Mei Zhang
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Mary A Royal
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Kyle L Hoehn
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Paul N Adler
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Robert J Wessells
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeffrey J Saucerman
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908; Departments of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
25
|
De Michele R, Carimi F, Frommer WB. Mitochondrial biosensors. Int J Biochem Cell Biol 2014; 48:39-44. [PMID: 24397954 DOI: 10.1016/j.biocel.2013.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology.
Collapse
Affiliation(s)
- Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy.
| | - Francesco Carimi
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Abstract
The extreme geometry of neurons spreads the need for mitochondrial functions out irregularly across vast cellular distances. This makes the long-distance transport of mitochondria a critical feature of their function in neurons. Axonal transport of mitochondria has been studied profitably in a variety of in vitro systems, particularly embryonic neurons grown in culture. This has allowed not only detailed motility analysis via light microscopy but also the ability to challenge the system with pharmacological agents and transfection. It does, however, carry caveats about its relevance to events in cells of the intact nervous system. In recent years, it has become possible to observe, quantify, and analyze the behavior of mitochondria within axons of the nervous system of live organisms. Here, we describe how to prepare the Drosophila larva for direct observation of mitochondrial axonal transport and how to gather and analyze motility data from this preparation, using confocal microscopy. This system takes advantage of our ability in Drosophila to express mitochondrially targeted fluorescent proteins in specific neuronal cell types, which allows us to visualize their traffic with ease, and to distinguish anterograde from retrograde traffic. Drosophila genetics also allows the analysis of mutations, gene overexpression, and knockdowns that affect mitochondrial function, including models of neurodegenerative disease. In addition, this preparation allows the visualization of the distribution and morphology of mitochondria in cell bodies within the central nervous system and in synapses. It is also possible to analyze mitochondrial functions other than transport, such as inner membrane potential, using this preparation.
Collapse
|
27
|
|
28
|
Frantz MC, Skoda EM, Sacher JR, Epperly MW, Goff JP, Greenberger JS, Wipf P. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria. Org Biomol Chem 2013; 11:4147-53. [PMID: 23715589 DOI: 10.1039/c3ob40489g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
JP4-039 is a lead structure in a series of nitroxide conjugates that are capable of accumulating in mitochondria and scavenging reactive oxygen species (ROS). To explore structure-activity relationships (SAR), new analogs with variable nitroxide moieties were prepared. Furthermore, fluorophore-tagged analogs were synthesized and provided the opportunity for visualization in mitochondria. All analogs were tested for radioprotective and radiomitigative effects in 32Dcl3 cells.
Collapse
Affiliation(s)
- Marie-Céline Frantz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Fang H, Huang Z, Shang W, Hou T, Cheng A, Cheng H. Imaging ROS signaling in cells and animals. J Mol Med (Berl) 2013; 91:917-27. [PMID: 23873151 PMCID: PMC3730091 DOI: 10.1007/s00109-013-1067-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) act as essential cellular messengers, redox regulators, and, when in excess, oxidative stressors that are widely implicated in pathologies of cancer and cardiovascular and neurodegenerative diseases. Understanding such complexity of the ROS signaling is critically hinged on the ability to visualize and quantify local, compartmental, and global ROS dynamics at high selectivity, sensitivity, and spatiotemporal resolution. The past decade has witnessed significant progress in ROS imaging at levels of intact cells, whole organs or tissues, and even live organisms. In particular, major advances include the development of novel synthetic or genetically encoded fluorescent protein-based ROS indicators, the use of protein indicator-expressing animal models, and the advent of in vivo imaging technology. Innovative ROS imaging has led to important discoveries in ROS signaling—for example, mitochondrial superoxide flashes as elemental ROS signaling events and hydrogen peroxide transients for wound healing. This review aims at providing an update of the current status in ROS imaging, while identifying areas of insufficient knowledge and highlighting emerging research directions.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Huryn DM, Resnick LO, Wipf P. Contributions of academic laboratories to the discovery and development of chemical biology tools. J Med Chem 2013; 56:7161-76. [PMID: 23672690 DOI: 10.1021/jm400132d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The academic setting provides an environment that may foster success in the discovery of certain types of small molecule tools while proving less suitable in others. For example, small molecule probes for poorly understood systems, those that exploit a specific resident expertise, and those whose commercial return is not apparent are ideally suited to be pursued in a university setting. In this review, we highlight five projects that emanated from academic research groups and generated valuable tool compounds that have been used to interrogate biological phenomena: reactive oxygen species (ROS) sensors, GPR30 agonists and antagonists, selective CB2 agonists, Hsp70 modulators, and β-amyloid PET imaging agents. By taking advantage of the unique expertise resident in university settings and the ability to pursue novel projects that may have great scientific value but with limited or no immediate commercial value, probes from academic research groups continue to provide useful tools and generate a long-term resource for biomedical researchers.
Collapse
Affiliation(s)
- Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh Chemical Diversity Center (UP-CDC) , 3501 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
31
|
Egger B, van Giesen L, Moraru M, Sprecher SG. In vitro imaging of primary neural cell culture from Drosophila. Nat Protoc 2013; 8:958-65. [DOI: 10.1038/nprot.2013.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Hrizo SL, Fisher IJ, Long DR, Hutton JA, Liu Z, Palladino MJ. Early mitochondrial dysfunction leads to altered redox chemistry underlying pathogenesis of TPI deficiency. Neurobiol Dis 2013; 54:289-96. [PMID: 23318931 DOI: 10.1016/j.nbd.2012.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/28/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Triose phosphate isomerase (TPI) is responsible for the interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate in glycolysis. Point mutations in this gene are associated with a glycolytic enzymopathy called TPI deficiency. This study utilizes a Drosophila melanogaster model of TPI deficiency; TPI(sugarkill) is a mutant allele with a missense mutation (M80T) that causes phenotypes similar to human TPI deficiency. In this study, the redox status of TPI(sugarkill) flies was examined and manipulated to provide insight into the pathogenesis of this disease. Our data show that TPI(sugarkill) animals exhibit higher levels of the oxidized forms of NAD(+), NADP(+) and glutathione in an age-dependent manner. Additionally, we demonstrate that mitochondrial redox state is significantly more oxidized in TPI(sugarkill) animals. We hypothesized that TPI(sugarkill) animals may be more sensitive to oxidative stress and that this may underlie the progressive nature of disease pathogenesis. The effect of oxidizing and reducing stressors on behavioral phenotypes of the TPI(sugarkill) animals was tested. As predicted, oxidative stress worsened these phenotypes. Importantly, we discovered that reducing stress improved the behavioral and longevity phenotypes of the mutant organism without having an effect on TPI(sugarkill) protein levels. Overall, these data suggest that reduced activity of TPI leads to an oxidized redox state in these mutants and that the alleviation of this stress using reducing compounds can improve the mutant phenotypes.
Collapse
Affiliation(s)
- Stacy L Hrizo
- Deparment of Pharmacology & Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Liu Z, Li T, Yang D, W. Smith W. Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/apd.2013.21004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Abstract
Necrosis is a form of cell death characterized by cytoplasmic and organelle swelling, compromised -membrane integrity, intracellular acidification, and increased levels of reactive oxygen species (ROS) and cytosolic Ca(2+). In the Drosophila ovary, two distinct forms of cell death occur naturally. In response to starvation, caspase-dependent cell death occurs during mid-oogenesis. Additionally, the nurse cells, which support the developing oocyte, undergo developmental programmed cell death during late oogenesis after they dump their contents into the oocyte. Evidence suggests that necrosis may be playing an important role during developmental programmed cell death of the nurse cells during late oogenesis. Here, we describe several methods to detect events associated with necrosis in the Drosophila ovary. Propidium iodide is used to detect cells with compromised membrane integrity, and H2DCFDA is used as an indicator of ROS levels in a cell. In addition, LysoTracker detects intracellular acidification and X-rhod-1 detects cytosolic Ca(2+). We also describe transgenic methods to detect Ca(2+) levels and expression patterns. These methods performed in the Drosophila ovary, as well as other tissues, may lead to a further understanding of the mechanisms of necrosis as a form of programmed cell death.
Collapse
|
35
|
Celotto AM, Liu Z, VanDemark AP, Palladino MJ. A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain Behav 2012; 2:424-34. [PMID: 22950046 PMCID: PMC3432965 DOI: 10.1002/brb3.73] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play essential roles in cell signaling, survival, and homeostasis. Aberrant ROS lead to disease and contribute to the aging process. Numerous enzymes and vigilant antioxidant pathways are required to regulate ROS for normal cellular health. Mitochondria are a major source of ROS, and mechanisms to prevent elevated ROS during oxidative phosphorylation require super oxide dismutase (SOD) activity. SOD2, also known as MnSOD, is targeted to mitochondria and is instrumental in regulating ROS by conversion of superoxides to hydrogen peroxide, which is further broken down into H(2)O and oxygen. Here, we describe the identification of a novel mutation within the mitochondrial SOD2 enzyme in Drosophila that results in adults with an extremely shortened life span, sensitivity to hyperoxia, and neuropathology. Additional studies demonstrate that this novel mutant, SOD2(bewildered), exhibits abnormal brain morphology, suggesting a critical role for this protein in neurodevelopment. We investigated the basis of this neurodevelopmental defect and discovered an increase in aberrant axonal that could underlie the aberrant neurodevelopment and brain morphology defects. This novel allele, SOD2(bewildered), provides a unique opportunity to study the effects of increased mitochondrial ROS on neural development, axonal targeting, and neural cell degeneration in vivo.
Collapse
Affiliation(s)
- Alicia M. Celotto
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| | - Zhaohui Liu
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| | - Andrew P. VanDemark
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania 15260
| | - Michael J. Palladino
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
- Pittsburgh Institute for Neurodegenerative Diseases University of Pittsburgh School of Medicine Pittsburgh Pennsylvania 15261
| |
Collapse
|