1
|
Fang M, Liu W, Tuo J, Liu M, Li F, Zhang L, Yu C, Xu Z. Advances in understanding the pathogenesis of post-traumatic epilepsy: a literature review. Front Neurol 2023; 14:1141434. [PMID: 37638179 PMCID: PMC10449544 DOI: 10.3389/fneur.2023.1141434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Severe head trauma can lead to seizures. Persistent epileptic seizures and their progression are associated with the severity of trauma. Although case reports have revealed that early use of anti-seizure drugs after trauma can prevent epilepsy, clinical case-control studies have failed to confirm this phenomenon. To date, many brain trauma models have been used to study the correlation between post-traumatic seizures and related changes in neural circuit function. According to these studies, neuronal and glial responses are activated immediately after brain trauma, usually leading to significant cell loss in injured brain regions. Over time, long-term changes in neural circuit tissues, especially in the neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and an increased risk of spontaneous seizures. These changes include alterations in inhibitory interneurons and the formation of new, over-recurrent excitatory synaptic connections. In this study, we review the progress of research related to post-traumatic epilepsy to better understand the mechanisms underlying the initiation and development of post-traumatic seizures and to provide theoretical references for the clinical treatment of post-traumatic seizures.
Collapse
Affiliation(s)
- Mingzhu Fang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Sichuan Provincial People’s Hospital Medical Group Chuantou Xichang Hospital, Xichang, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Mayo S, Gómez-Manjón I, Marco-Hernández AV, Fernández-Martínez FJ, Camacho A, Martínez F. N-Type Ca Channel in Epileptic Syndromes and Epilepsy: A Systematic Review of Its Genetic Variants. Int J Mol Sci 2023; 24:6100. [PMID: 37047073 PMCID: PMC10094502 DOI: 10.3390/ijms24076100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
N-type voltage-gated calcium channel controls the release of neurotransmitters from neurons. The association of other voltage-gated calcium channels with epilepsy is well-known. The association of N-type voltage-gated calcium channels and pain has also been established. However, the relationship between this type of calcium channel and epilepsy has not been specifically reviewed. Therefore, the present review systematically summarizes existing publications regarding the genetic associations between N-type voltage-dependent calcium channel and epilepsy.
Collapse
Affiliation(s)
- Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Neuropediatric Unit, Hospital Universitario Doctor Peset, 46017 Valencia, Spain
- Translational Research in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Francisco Javier Fernández-Martínez
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Camacho
- Division of Pediatric Neurology, Department of Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Martínez
- Translational Research in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Genomic Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
3
|
Chancey JH, Howard MA. Synaptic Integration in CA1 Pyramidal Neurons Is Intact despite Deficits in GABAergic Transmission in the Scn1a Haploinsufficiency Mouse Model of Dravet Syndrome. eNeuro 2022; 9:ENEURO.0080-22.2022. [PMID: 35523580 PMCID: PMC9116933 DOI: 10.1523/eneuro.0080-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Mutations of SCN1A, which encodes the voltage-gated sodium channel Nav1.1, can cause epilepsy disorders such as Dravet syndrome (DS) that are comorbid with wide-ranging neurologic dysfunction. Many studies suggest that Nav1.1 haploinsufficiency causes forebrain GABAergic interneuron hypoexcitability, while pyramidal neuron physiology is mostly unaltered, and that this serves as a primary cell physiology phenotype linking mutation to disease. We hypothesized that deficits in inhibition would alter synaptic integration during activation of the hippocampal microcircuit, thus disrupting cellular information processing and leading to seizures and cognitive deficits. We tested this hypothesis using ex vivo whole-cell recordings from CA1 pyramidal neurons in a heterozygous Scn1a knock-out mouse model and wild-type (WT) littermates, measuring responses to single and patterned synaptic stimulation and spontaneous synaptic activity. Overall, our experiments reveal a surprising normalcy of excitatory and inhibitory synaptic temporal integration in the hippocampus of Scn1a haploinsufficient mice. While miniature IPSCs and feedforward inhibition and were decreased, we did not identify a pattern or frequency of input that caused a failure of synaptic inhibition. We further show that reduced GABA release probability and subsequent reduced short-term depression may act to overcome deficits in inhibition normalizing input/output functions in the Scn1a haploinsufficient hippocampus. These experiments show that CA1 pyramidal neuron synaptic processing is surprisingly robust, even during decreased interneuron function, and more complex circuit activity is likely required to reveal altered function in the hippocampal microcircuit.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| | - MacKenzie Allen Howard
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| |
Collapse
|
4
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial Activation of TrkB Receptors Corrects Interneuronal Calcium Channel Dysfunction and Reduces Epileptogenic Activity in Neocortex following Injury. Cereb Cortex 2020; 30:5180-5189. [PMID: 32488246 PMCID: PMC7391412 DOI: 10.1093/cercor/bhz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Decreased GABAergic inhibition due to dysfunction of inhibitory interneurons plays an important role in post-traumatic epileptogenesis. Reduced N-current Ca2+ channel function in GABAergic terminals contributes to interneuronal abnormalities and neural circuit hyperexcitability in the partial neocortical isolation (undercut, UC) model of post-traumatic epileptogenesis. Because brain-derived neurotrophic factor (BDNF) supports the development and maintenance of interneurons, we hypothesized that the activation of BDNF tropomyosin kinase B (TrkB) receptors by a small molecule, TrkB partial agonist, PTX BD4-3 (BD), would correct N channel abnormalities and enhance inhibitory synaptic transmission in UC cortex. Immunocytochemistry (ICC) and western blots were used to quantify N- and P/Q-type channels. We recorded evoked (e)IPSCs and responses to N and P/Q channel blockers to determine the effects of BD on channel function. Field potential recordings were used to determine the effects of BD on circuit hyperexcitability. Chronic BD treatment 1) upregulated N and P/Q channel immunoreactivity in GABAergic terminals; 2) increased the effects of N or P/Q channel blockade on evoked inhibitory postsynaptic currents (eIPSCs); 3) increased GABA release probability and the frequency of sIPSCs; and 4) reduced the incidence of epileptiform discharges in UC cortex. The results suggest that chronic TrkB activation is a promising approach for rescuing injury-induced calcium channel abnormalities in inhibitory terminals, thereby improving interneuronal function and suppressing circuit hyperexcitability.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Isabel Parada
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Tao Yang
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Frank M Longo
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - David A Prince
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| |
Collapse
|
5
|
TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull 2019; 155:48-60. [PMID: 31794795 DOI: 10.1016/j.brainresbull.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is one of the most common neurological conditions. Recent findings suggest that one of the mechanisms promoting its existence is calcium influx. The transient receptor potential melastatin type 2 channel (TRPM2) is a Ca2+-permeable cation channel that contributes to cell apoptosis; its possible signaling pathway is the PARP1/BNIP3/AIF/Endo G pathway that may be related to epilepsy. The aim of this study was to investigate the TRPM2 channel's involvement in epilepsy and how it works. We also explored the possible role of the TRPM2 channel on cognitive ability and emotion in epilepsy. To accomplish our goals, we used different animal epilepsy models to study the effect of the TRPM2 channel on epilepsy. The results showed that the knockout (KO) of the TRPM2 gene might play a protective role in epilepsy. Considering the advantages attributed to pentylenetetrazole (PTZ)-induced kindling mouse model, we used the model for the following assessments: 1. to observe changes in cognition and anxiety between wild type (WT) mice and TRPM2-KO mice with the recognition of new things trial and elevated plus-maze; 2. to determine the expression of apoptosis-associated proteins (PARP1, BNIP3, AIF, and Endo G) using Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot; 3. to observe neurons pathologic damages and astrocyte activation in each group. The main findings of our study were: (a) TRPM2-KO had a protective effect on epilepsy; (b) TRPM2-KO improved spatial memory deficits overtime during epilepsy, but it did not improve anxiety; (c) the protective effect probably occurred via the PARP1 downstream signaling pathway; (d) TRPM2-KO could ameliorate epilepsy-induced hippocampal pathological damages and weaken astrocyte activation. These findings may provide a new approach for the treatment of epilepsy and early intervention.
Collapse
|
6
|
Takahashi DK, Jin S, Prince DA. Gabapentin Prevents Progressive Increases in Excitatory Connectivity and Epileptogenesis Following Neocortical Trauma. Cereb Cortex 2018; 28:2725-2740. [PMID: 28981586 PMCID: PMC6041890 DOI: 10.1093/cercor/bhx152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 11/12/2022] Open
Abstract
Neocortical injury initiates a cascade of events, some of which result in maladaptive epileptogenic reorganization of surviving neural circuits. Research focused on molecular and organizational changes that occur following trauma may reveal processes that underlie human post-traumatic epilepsy (PTE), a common and unfortunate consequence of traumatic brain injury. The latency between injury and development of PTE provides an opportunity for prophylactic intervention, once the key underlying mechanisms are understood. In rodent neocortex, injury to pyramidal neurons promotes axonal sprouting, resulting in increased excitatory circuitry that is one important factor promoting epileptogenesis. We used laser-scanning photostimulation of caged glutamate and whole-cell recordings in in vitro slices from injured neocortex to assess formation of new excitatory synapses, a process known to rely on astrocyte-secreted thrombospondins (TSPs), and to map the distribution of maladaptive circuit reorganization. We show that this reorganization is centered principally in layer V and associated with development of epileptiform activity. Short-term blockade of the synaptogenic effects of astrocyte-secreted TSPs with gabapentin (GBP) after injury suppresses the new excitatory connectivity and epileptogenesis for at least 2 weeks. Results reveal that aberrant circuit rewiring is progressive in vivo and provide further rationale for prophylactic anti-epileptogenic use of gabapentinoids following cortical trauma.
Collapse
Affiliation(s)
- D K Takahashi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sha Jin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - D A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons. Neurobiol Dis 2018; 113:45-58. [PMID: 29408225 DOI: 10.1016/j.nbd.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic epilepsy is one of the most common and difficult to treat forms of acquired epilepsy worldwide. Currently, there is no effective way to prevent post-traumatic epileptogenesis. It is known that abnormalities of interneurons, particularly parvalbumin-containing interneurons, play a critical role in epileptogenesis following traumatic brain injury. Thus, enhancing the function of existing parvalbumin interneurons might provide a logical therapeutic approach to prevention of post-traumatic epilepsy. The known positive effects of brain-derived neurotrophic factor on interneuronal growth and function through activation of its receptor tropomyosin receptor kinase B, and its decrease after traumatic brain injury, led us to hypothesize that enhancing trophic support might improve parvalbumin interneuronal function and decrease epileptogenesis. To test this hypothesis, we used the partial neocortical isolation ('undercut', UC) model of posttraumatic epileptogenesis in mature rats that were treated for 2 weeks, beginning on the day of injury, with LM22A-4, a newly designed partial agonist at the tropomyosin receptor kinase B. Effects of treatment were assessed with Western blots to measure pAKT/AKT; immunocytochemistry and whole cell patch clamp recordings to examine functional and structural properties of GABAergic interneurons; field potential recordings of epileptiform discharges in vitro; and video-EEG recordings of PTZ-induced seizures in vivo. Results showed that LM22A-4 treatment 1) increased pyramidal cell perisomatic immunoreactivity for VGAT, GAD65 and parvalbumin; 2) increased the density of close appositions of VGAT/gephyrin immunoreactive puncta (putative inhibitory synapses) on pyramidal cell somata; 3) increased the frequency of mIPSCs in pyramidal cells; and 4) decreased the incidence of spontaneous and evoked epileptiform discharges in vitro. 5) Treatment of rats with PTX BD4-3, another partial TrkB receptor agonist, reduced the incidence of bicuculline-induced ictal episodes in vitro and PTZ induced electrographic and behavioral ictal episodes in vivo. 6) Inactivation of TrkB receptors in undercut TrkBF616A mice with 1NMPP1 abolished both LM22A-4-induced effects on mIPSCs and on increased perisomatic VGAT-IR. Results indicate that chronic activation of the tropomyosin receptor kinase B by a partial agonist after cortical injury can enhance structural and functional measures of GABAergic inhibition and suppress posttraumatic epileptogenesis. Although the full agonist effects of brain-derived neurotrophic factor and tropomyosin receptor kinase B activation in epilepsy models have been controversial, the present results indicate that such trophic activation by a partial agonist may potentially serve as an effective therapeutic option for prophylactic treatment of posttraumatic epileptogenesis, and treatment of other neurological and psychiatric disorders whose pathogenesis involves impaired parvalbumin interneuronal function.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States.
| |
Collapse
|
8
|
Gu F, Parada I, Shen F, Li J, Bacci A, Graber K, Taghavi RM, Scalise K, Schwartzkroin P, Wenzel J, Prince DA. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis. Neurobiol Dis 2017; 108:100-114. [PMID: 28823934 DOI: 10.1016/j.nbd.2017.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
Electrophysiological experiments in the partial cortical isolation ("undercut" or "UC") model of injury-induced neocortical epileptogenesis have shown alterations in GABAergic synaptic transmission attributable to abnormalities in presynaptic terminals. To determine whether the decreased inhibition was associated with structural abnormalities in GABAergic interneurons, we used immunocytochemical techniques, confocal microscopy and EM in UC and control sensorimotor rat cortex to analyze structural alterations in fast-spiking parvalbumin-containing interneurons and pyramidal (Pyr) cells of layer V. Principle findings were: 1) there were no decreases in counts of parvalbumin (PV)- or GABA-immunoreactive interneurons in UC cortex, however there were significant reductions in expression of VGAT and GAD-65 and -67 in halos of GABAergic terminals around Pyr somata in layer V. 2) Consistent with previous results, somatic size and density of Pyr cells was decreased in infragranular layers of UC cortex. 3) Dendrites of biocytin-filled FS interneurons were significantly decreased in volume. 4) There were decreases in the size and VGAT content of GABAergic boutons in axons of biocytin-filled FS cells in the UC, together with a decrease in colocalization with postsynaptic gephyrin, suggesting a reduction in GABAergic synapses. Quantitative EM of layer V Pyr somata confirmed the reduction in inhibitory synapses. 5) There were marked and lasting reductions in brain derived neurotrophic factor (BDNF)-IR and -mRNA in Pyr cells and decreased TrkB-IR on PV cells in UC cortex. 6) Results lead to the hypothesis that reduction in trophic support by BDNF derived from Pyr cells may contribute to the regressive changes in axonal terminals and dendrites of FS cells in the UC cortex and decreased GABAergic inhibition. SIGNIFICANCE Injury to cortical structures is a major cause of epilepsy, accounting for about 20% of cases in the general population, with an incidence as high as ~50% among brain-injured personnel in wartime. Loss of GABAergic inhibitory interneurons is a significant pathophysiological factor associated with epileptogenesis following brain trauma and other etiologies. Results of these experiments show that the largest population of cortical interneurons, the parvalbumin-containing fast-spiking (FS) interneurons, are preserved in the partial neocortical isolation model of partial epilepsy. However, axonal terminals of these cells are structurally abnormal, have decreased content of GABA synthetic enzymes and vesicular GABA transporter and make fewer synapses onto pyramidal neurons. These structural abnormalities underlie defects in GABAergic neurotransmission that are a key pathophysiological factor in epileptogenesis found in electrophysiological experiments. BDNF, and its TrkB receptor, key factors for maintenance of interneurons and pyramidal neurons, are decreased in the injured cortex. Results suggest that supplying BDNF to the injured epileptogenic brain may reverse the structural and functional abnormalities in the parvalbumin FS interneurons and provide an antiepileptogenic therapy.
Collapse
Affiliation(s)
- Feng Gu
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Isabel Parada
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Fran Shen
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Judith Li
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Alberto Bacci
- ICM - Hôpital Pitié Salpêtrière, 7, bd de l'hôpital, 75013 Paris, France
| | - Kevin Graber
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Reza Moein Taghavi
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Karina Scalise
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Philip Schwartzkroin
- Department of Neurological Surgery, University of California, Davis, United States
| | - Jurgen Wenzel
- Department of Neurological Surgery, University of California, Davis, United States
| | - David A Prince
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States.
| |
Collapse
|
9
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
11
|
Takahashi DK, Gu F, Parada I, Vyas S, Prince DA. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma. Neurobiol Dis 2016; 91:166-81. [PMID: 26956396 DOI: 10.1016/j.nbd.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments.
Collapse
Affiliation(s)
- D Koji Takahashi
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Feng Gu
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Isabel Parada
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Shri Vyas
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - David A Prince
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
12
|
Prince D, Gu F, Parada I. Antiepileptogenic repair of excitatory and inhibitory synaptic connectivity after neocortical trauma. PROGRESS IN BRAIN RESEARCH 2016; 226:209-27. [DOI: 10.1016/bs.pbr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Jin X, Jiang K, Prince DA. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria. J Neurophysiol 2014; 112:1703-13. [PMID: 24990567 DOI: 10.1152/jn.00854.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry.
Collapse
Affiliation(s)
- Xiaoming Jin
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kewen Jiang
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology, Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|