1
|
Maclean MA, Rogers PS, Muradov JH, Pickett GE, Friedman A, Weeks A, Greene R, Volders D. Contrast-Induced Encephalopathy and the Blood-Brain Barrier. Can J Neurol Sci 2025; 52:85-94. [PMID: 38453685 DOI: 10.1017/cjn.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Contrast-induced encephalopathy (CIE) is an adverse event associated with diagnostic and therapeutic endovascular procedures. Decades of animal and human research support a mechanistic role for pathological blood-brain barrier dysfunction (BBBd). Here, we describe an institutional case series and review the literature supporting a mechanistic role for BBBd in CIE. METHODS A literature review was conducted by searching MEDLINE, Web of Science, Embase, CINAHL and Cochrane databases from inception to January 31, 2022. We searched our institutional neurovascular database for cases of CIE following endovascular treatment of cerebrovascular disease during a 6-month period. Informed consent was obtained in all cases. RESULTS Review of the literature revealed risk factors for BBBd and CIE, including microvascular disease, pathological neuroinflammation, severe procedural hypertension, iodinated contrast load and altered cerebral blood flow dynamics. In our institutional series, 6 of 52 (11.5%) of patients undergoing therapeutic neuroendovascular procedures developed CIE during the study period. Four patients were treated for ischemic stroke and two patients for recurrent cerebral aneurysms. Mechanical stenting or thrombectomy were utilized in all cases. CONCLUSION In this institutional case series and literature review of animal and human data, we identified numerous shared risk factors for CIE and BBBd, including microvascular disease, increased procedure length, large contrast volumes, severe intraoperative hypertension and use of mechanical devices that may induce iatrogenic endothelial injury.
Collapse
Affiliation(s)
- Mark A Maclean
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Patrick S Rogers
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamil H Muradov
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gwynedd E Pickett
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Adrienne Weeks
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Ryan Greene
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - David Volders
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Filipi T, Tureckova J, Vanatko O, Chmelova M, Kubiskova M, Sirotova N, Matejkova S, Vargova L, Anderova M. ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model. Front Cell Neurosci 2024; 18:1472374. [PMID: 39449756 PMCID: PMC11499153 DOI: 10.3389/fncel.2024.1472374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are crucial for the functioning of the nervous system as they maintain the ion homeostasis via volume regulation. Pathological states, such as amyotrophic lateral sclerosis (ALS), affect astrocytes and might even cause a loss of such functions. In this study, we examined astrocytic swelling/volume recovery in both the brain and spinal cord of the SOD1 animal model to determine the level of their impairment caused by the ALS-like pathology. Astrocyte volume changes were measured in acute brain or spinal cord slices during and after exposure to hyperkalemia. We then compared the results with alterations of extracellular space (ECS) diffusion parameters, morphological changes, expression of the Kir4.1 channel and the potassium concentration measured in the cerebrospinal fluid, to further disclose the link between potassium and astrocytes in the ALS-like pathology. Morphological analysis revealed astrogliosis in both the motor cortex and the ventral horns of the SOD1 spinal cord. The activated morphology of SOD1 spinal astrocytes was associated with the results from volume measurements, which showed decreased swelling of these cells during hyperkalemia. Furthermore, we observed lower shrinkage of ECS in the SOD1 spinal ventral horns. Immunohistochemical analysis then confirmed decreased expression of the Kir4.1 channel in the SOD1 spinal cord, which corresponded with the diminished volume regulation. Despite astrogliosis, cortical astrocytes in SOD1 mice did not show alterations in swelling nor changes in Kir4.1 expression, and we did not identify significant changes in ECS parameters. Moreover, the potassium level in the cerebrospinal fluid did not deviate from the physiological concentration. The results we obtained thus suggest that ALS-like pathology causes impaired potassium uptake associated with Kir4.1 downregulation in the spinal astrocytes, but based on our data from the cortex, the functional impairment seems to be independent of the morphological state.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Natalia Sirotova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Stanislava Matejkova
- Analytical Laboratory, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
7
|
Lippmann K. A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:6862. [PMID: 38999971 PMCID: PMC11241665 DOI: 10.3390/ijms25136862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Major burdens for patients suffering from stroke are cognitive co-morbidities and epileptogenesis. Neural network disinhibition and deficient inhibitive pulses for fast network activities may result from impaired presynaptic release of the inhibitory neurotransmitter GABA. To test this hypothesis, a cortical photothrombotic stroke was induced in Sprague Dawley rats, and inhibitory currents were recorded seven days later in the peri-infarct blood-brain barrier disrupted (BBBd) hippocampus via patch-clamp electrophysiology in CA1 pyramidal cells (PC). Miniature inhibitory postsynaptic current (mIPSC) frequency was reduced to about half, and mIPSCs decayed faster in the BBBd hippocampus. Furthermore, the paired-pulse ratio of evoked GABA release was increased at 100 Hz, and train stimulations with 100 Hz revealed that the readily releasable pool (RRP), usually assumed to correspond to the number of tightly docked presynaptic vesicles, is reduced by about half in the BBBd hippocampus. These pathophysiologic changes are likely to contribute significantly to disturbed fast oscillatory activity, like cognition-associated gamma oscillations or sharp wave ripples and epileptogenesis in the BBBd hippocampus.
Collapse
Affiliation(s)
- Kristina Lippmann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, D-04103 Leipzig, Germany
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
8
|
Aboghazleh R, Boyajian SD, Atiyat A, Udwan M, Al-Helalat M, Al-Rashaideh R. Rodent brain extraction and dissection: A comprehensive approach. MethodsX 2024; 12:102516. [PMID: 38162147 PMCID: PMC10755769 DOI: 10.1016/j.mex.2023.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroscience is continuously expanding field, and conducting experiments serves as one of the most effective approaches to enhance and broad our understanding of this fascinating field. Most of the lab work in neuroscience involves the use of animal models such as rats and mice for experiments dedicated to monitoring cerebral changes. The study:•Introduces a practical method for brain extraction without perfusion with paraformaldehyde prioritizing brain integrity and avoiding damage.•Offers a detailed, step-by-step dissection guide for different brain regions, including the hippocampus, cerebral cortex, corpus striatum, thalamus, cerebellum, and medial prefrontal cortex, from rodent brains, accompanied by high-resolution images that provide anatomical clarity.•Presents enhanced reliability, precision, and detailed anatomical descriptions.Conclusion: This study has introduced a reliable technique for brain extraction that eliminates the need for paraformaldehyde perfusion. Furthermore, a comprehensive methodology has been presented for extracting different brain regions from rodent brains.
Collapse
Affiliation(s)
- Refat Aboghazleh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Silvia D. Boyajian
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
| | - Afnan Atiyat
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
| | - Manal Udwan
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
| | - Mimas Al-Helalat
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
| | - Renad Al-Rashaideh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, The College of Medicine Building, Al-Salt 19117, Jordan
| |
Collapse
|
9
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
10
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
MacLean MA, Muradov JH, Greene R, Van Hameren G, Clarke DB, Dreier JP, Okonkwo DO, Friedman A. Memantine inhibits cortical spreading depolarization and improves neurovascular function following repetitive traumatic brain injury. SCIENCE ADVANCES 2023; 9:eadj2417. [PMID: 38091390 PMCID: PMC10848720 DOI: 10.1126/sciadv.adj2417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Cortical spreading depolarization (CSD) is a promising target for neuroprotective therapy in traumatic brain injury (TBI). We explored the effect of NMDA receptor antagonism on electrically triggered CSDs in healthy and brain-injured animals. Rats received either one moderate or four daily repetitive mild closed head impacts (rmTBI). Ninety-three animals underwent craniectomy with electrocorticographic (ECoG) and local blood flow monitoring. In brain-injured animals, ketamine or memantine inhibited CSDs in 44 to 88% and 50 to 67% of cases, respectively. Near-DC/AC-ECoG amplitude was reduced by 44 to 75% and 52 to 67%, and duration by 39 to 87% and 61 to 78%, respectively. Daily memantine significantly reduced spreading depression and oligemia following CSD. Animals (N = 31) were randomized to either memantine (10 mg/kg) or saline with daily neurobehavioral testing. Memantine-treated animals had higher neurological scores. We demonstrate that memantine improved neurovascular function following CSD in sham and brain-injured animals. Memantine also prevented neurological decline in a blinded, preclinical randomized rmTBI trial.
Collapse
Affiliation(s)
- Mark A. MacLean
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jamil H. Muradov
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Ryan Greene
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Gerben Van Hameren
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - David B. Clarke
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charite University, Berlin, Germany
| | - David O. Okonkwo
- Division of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alon Friedman
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
12
|
Robbins EM, Jaquins-Gerstl AS, Okonkwo DO, Boutelle MG, Michael AC. Dexamethasone-Enhanced Continuous Online Microdialysis for Neuromonitoring of O 2 after Brain Injury. ACS Chem Neurosci 2023. [PMID: 37369003 PMCID: PMC10360069 DOI: 10.1021/acschemneuro.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health crisis in many regions of the world. Severe TBI may cause a primary brain lesion with a surrounding penumbra of tissue that is vulnerable to secondary injury. Secondary injury presents as progressive expansion of the lesion, possibly leading to severe disability, a persistent vegetive state, or death. Real time neuromonitoring to detect and monitor secondary injury is urgently needed. Dexamethasone-enhanced continuous online microdialysis (Dex-enhanced coMD) is an emerging paradigm for chronic neuromonitoring after brain injury. The present study employed Dex-enhanced coMD to monitor brain K+ and O2 during manually induced spreading depolarization in the cortex of anesthetized rats and after controlled cortical impact, a widely used rodent model of TBI, in behaving rats. Consistent with prior reports on glucose, O2 exhibited a variety of responses to spreading depolarization and a prolonged, essentially permanent decline in the days after controlled cortical impact. These findings confirm that Dex-enhanced coMD delivers valuable information regarding the impact of spreading depolarization and controlled cortical impact on O2 levels in the rat cortex.
Collapse
Affiliation(s)
- Elaine M Robbins
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea S Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Adrian C Michael
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Carlson AP, Davis HT, Jones T, Brennan KC, Torbey M, Ahmadian R, Qeadan F, Shuttleworth CW. Is the Human Touch Always Therapeutic? Patient Stimulation and Spreading Depolarization after Acute Neurological Injuries. Transl Stroke Res 2023; 14:160-173. [PMID: 35364802 PMCID: PMC9526760 DOI: 10.1007/s12975-022-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Touch and other types of patient stimulation are necessary in critical care and generally presumed to be beneficial. Recent pre-clinical studies as well as randomized trials assessing early mobilization have challenged the safety of such routine practices in patients with acute neurological injury such as stroke. We sought to determine whether patient stimulation could result in spreading depolarization (SD), a dramatic pathophysiological event that likely contributes to metabolic stress and ischemic expansion in such patients. Patients undergoing surgical intervention for severe acute neurological injuries (stroke, aneurysm rupture, or trauma) were prospectively consented and enrolled in an observational study monitoring SD with implanted subdural electrodes. Subjects also underwent simultaneous video recordings (from continuous EEG monitoring) to assess for physical touch and other forms of patient stimulation (such as suctioning and positioning). The association of patient stimulation with subsequent SD was assessed. Increased frequency of patient stimulation was associated with increased risk of SD (OR = 4.39 [95%CI = 1.71-11.24]). The overall risk of SD was also increased in the 60 min following patient stimulation compared to times with no stimulation (OR = 1.19 [95%CI = 1.13-1.26]), though not all subjects demonstrated this effect individually. Positioning of the subject was the subtype of stimulation with the strongest overall effect on SD (OR = 4.92 [95%CI = 3.74-6.47]). We conclude that in patients with some acute neurological injuries, touch and other patient stimulation can induce SD (PS-SD), potentially increasing the risk of metabolic and ischemic stress. PS-SD may represent an underlying mechanism for observed increased risk of early mobilization in such patients.
Collapse
Affiliation(s)
- Andrew P Carlson
- Department of Neurosurgery, Neurosciences, and Neurology, University of New Mexico, NM, Albuquerque, USA.
| | - Herbert T Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - K C Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Rosstin Ahmadian
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Fares Qeadan
- Department of Public Health Sciences, Loyola University Chicago, Chicago, IL, USA
| | | |
Collapse
|
14
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Aboghazleh R, Alkahmous B, Swissa E, Mansoor S, Friedman A, Prager O. Craniotomy for acute monitoring of pial vessels in the rodent brain. MethodsX 2022; 9:101694. [PMID: 35478597 PMCID: PMC9036111 DOI: 10.1016/j.mex.2022.101694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
A growing awareness for vascular contribution to pathogenesis of brain diseases increases the need for techniques that allow high-resolution imaging and quantification of changes in function and structure of cerebral microvessels. Cerebral vessels are very sensitive structures, making them vulnerable for injury. In addition, they are uniquely characterized with the blood-brain barrier, and an extra caution is required during procedures that involve engagement of cerebral vessels (i.e., craniotomy). Using state of the art facilities, including 3D intravital microscope, we describe here in details:The steps and equipment required for drilling a craniotomy and removing of the dura, while keeping brain parenchyma and vessels intact. This enables long duration of live and direct monitoring of pial vessels and imaging of BBB permeability. We present the craniotomy procedure that relevant and compatible with imaging pial vessels and monitoring the blood-brain barrier in small rodents.
Collapse
Affiliation(s)
- Refat Aboghazleh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Canada
- Corresponding author at: Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Baraah Alkahmous
- Department of Internal Medicine, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Evyatar Swissa
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Saara Mansoor
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
16
|
Hanael E, Chai O, Konstanitin L, Gibeon L, Rapaport K, Ruggeri M, Friedman A, Shamir MH. Telmisartan as an add-on treatment for dogs with refractory idiopathic epilepsy: a nonrandomized, uncontrolled, open-label clinical trial. J Am Vet Med Assoc 2022; 260:735-740. [PMID: 35201995 DOI: 10.2460/javma.20.12.0683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effect on seizure frequency of add-on telmisartan treatment in dogs with refractory idiopathic epilepsy. ANIMALS 11 client-owned dogs with idiopathic epilepsy and ≥ 2 generalized seizures/mon that were currently being treated with ≥ 2 antiepileptic drugs. PROCEDURES Telmisartan was administered at a dosage of 0.25 to 1 mg/kg, PO, every 12 hours for 4 to 16 months. Seizure frequencies before and during telmisartan treatment were recorded. RESULTS 10 dogs completed the 4-month treatment protocol. One dog was excluded owing to a transient increase in serum creatinine concentration; no adverse effects of telmisartan were observed in the remaining 10 dogs. A reduction in seizure frequency greater than an estimated expected placebo effect of 30% was evident in 7 of the 10 dogs. Long-term (12 to 16 months) follow-up information was available for 6 dogs, of which 4 had a further reduction in seizure frequency. Differences in seizure frequency were not statistically significant. No significant difference was found in serum phenobarbital concentration throughout the treatment period in the 7 dogs that were tested. CLINICAL RELEVANCE Telmisartan has the potential to reduce seizure frequency when administered as an add-on antiepileptic drug in dogs with refractory idiopathic epilepsy. A randomized, double-blind, placebo-controlled trial is needed to determine the true efficacy of telmisartan. On the basis of our results, a sample size of 54 dogs with refractory idiopathic epilepsy would be needed.
Collapse
Affiliation(s)
- Erez Hanael
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Orit Chai
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Lilach Konstanitin
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Kira Rapaport
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Marco Ruggeri
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Friedman
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Merav H Shamir
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Ghosh C, Myers R, O'Connor C, Williams S, Liu X, Hossain M, Nemeth M, Najm IM. Cortical Dysplasia in Rats Provokes Neurovascular Alterations, GLUT1 Dysfunction, and Metabolic Disturbances That Are Sustained Post-Seizure Induction. Mol Neurobiol 2022; 59:2389-2406. [PMID: 35084654 PMCID: PMC9018620 DOI: 10.1007/s12035-021-02624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Focal cortical dysplasia (FCD) is associated with blood-brain barrier (BBB) dysfunction in patients with difficult-to-treat epilepsy. However, the underlying cellular and molecular factors in cortical dysplasia (CD) associated with progressive neurovascular challenges during the pro-epileptic phase, post-seizure, and during epileptogenesis remain unclear. We studied the BBB function in a rat model of congenital (in utero radiation-induced, first hit) CD and longitudinally examined the cortical brain tissues at baseline and the progressive neurovascular alterations, glucose transporter-1 (GLUT1) expression, and glucose metabolic activity at 2, 15, and 30 days following a second hit using pentylenetetrazole-induced seizure. Our study revealed through immunoblotting, immunohistochemistry, and biochemical analysis that (1) altered vascular density and prolongation of BBB albumin leakages in CD rats continued through 30 days post-seizure; (2) CD brain tissues showed elevated matrix metalloproteinase-9 levels at 2 days post-seizure and microglial overactivation through 30 days post-seizure; (3) BBB tight junction protein and GLUT1 levels were decreased and neuronal monocarboxylate transporter-2 (MCT2) and mammalian target of rapamycin (mTOR) levels were increased in the CD rat brain: (4) ATPase activity is elevated and a low glucose/high lactate imbalance exists in CD rats; and (5) the mTOR pathway is activated and MCT2 levels are elevated in the presence of high lactate during glucose starvation in vitro. Together, this study suggests that BBB dysfunction, including decreased GLUT1 expression and metabolic disturbance, may contribute to epileptogenesis in this CD rat model through multiple mechanisms that could be translated to FCD therapy in medically refractory epilepsy.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Christina O'Connor
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sherice Williams
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xuefeng Liu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mohammed Hossain
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Michael Nemeth
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Imad M Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Schick MA, Pippir J, Struck MF, Brugger J, Neuhaus W, Wunder C. Comparison of hydroxyethylstarch (HES 130/0.4) and 5% human albumin for volume substitution in pediatric neurosurgery: A retrospective, single center study. BMC Res Notes 2021; 14:434. [PMID: 34838152 PMCID: PMC8627096 DOI: 10.1186/s13104-021-05836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Colloid solutions are commonly used to maintain perioperative fluid homeostasis. In regard to perioperative infant-centered care, data about the impact of colloids are rare. New data suggest a possible positive effect of hydroxyethyl starch (HES) concerning blood brain barrier. Therefore we conduct a retrospective single center study of children scheduled for neurosurgery, age < five with a blood loss > 10% of body blood volume, receiving either 6% HES 130/0.4 or 5% human albumin (HA). Results Out of 913 patients, 86 were included (HES = 30; HA = 56). Compared to HES [16.4 ± 9.2 ml/kg body weight (mean ± SD)] HA group received more colloid volume (25.7 ± 11.3), which had more blood loss [HA 54.8 ± 45.0; HES 30.5 ± 30.0 (%) estimated blood volume] and higher fluid balances. Fibrinogen was decreased and activated partial thromboplastin time was elevated in HA group. Urinary output, creatinine and urea levels did not differ between the two groups. Serum calcium, total protein levels were lower in HES group. HA treated infants tended to have shorter ICU and hospital stays. We conclude that none of the investigated colloid solutions were without leverage to infants. Consequently randomized controlled trials about perioperative goal-directed fluid replacement of children undergoing (neuro)-surgery with major blood loss are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05836-w.
Collapse
Affiliation(s)
- Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jonas Pippir
- Department for Anesthesiology, Intensive Care Medicine, Emergency Medicine, Pain Therapy and Palliative Care, Klinikum am Steinenberg, Reutlingen, Germany
| | - Manuel F Struck
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Brugger
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Christian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
19
|
Aiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain 2021; 144:2863-2878. [PMID: 33768249 PMCID: PMC8536937 DOI: 10.1093/brain/awab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Ortiz-Villatoro NN, Reyes-Garcia SZ, Freitas L, Rodrigues LD, Santos LEC, Faber J, Cavalheiro EA, Finsterer J, Scorza FA, de Almeida ACG, Scorza CA. Amazon rainforest rodents (Proechimys) are resistant to post-stroke epilepsy. Sci Rep 2021; 11:16780. [PMID: 34408211 PMCID: PMC8373885 DOI: 10.1038/s41598-021-96235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
There are no clinical interventions to prevent post-injury epilepsy, a common and devastating outcome after brain insults. Epileptogenic events that run from brain injury to epilepsy are poorly understood. Previous studies in our laboratory suggested Proechimys, an exotic Amazonian rodent, as resistant to acquired epilepsy development in post-status epilepticus models. The present comparative study was conducted to assess (1) stroke-related brain responses 24-h and 30 days after cortical photothrombosis and (2) post-stroke epilepsy between Proechimys rodents and Wistar rats, a traditional animal used for laboratory research. Proechimys group showed smaller volume of ischemic infarction and lesser glial activation than Wistar group. In contrast to Wistar rats, post-stroke decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators and growth factors were found in Proechimys. Electrophysiological signaling changes assessed by cortical spreading depression, in vitro and in vivo, showed that Wistar's brain is most severely affected by stroke. Chronic electrocorticographic recordings showed that injury did not lead to epilepsy in Proechimys whereas 88% of the Wistar rats developed post-stroke epilepsy. Science gains insights from comparative studies on diverse species. Proechimys rodents proved to be a useful animal model to study antiepileptogenic mechanisms after brain insults and complement conventional animal models.
Collapse
Affiliation(s)
- Nancy N. Ortiz-Villatoro
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Selvin Z. Reyes-Garcia
- grid.10601.360000 0001 2297 2829Posgrado de Neurología, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Leandro Freitas
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Laís D. Rodrigues
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Luiz E. C. Santos
- grid.428481.30000 0001 1516 3599Neurociência Experimental e Computacional, Universidade Federal São João Del-Rey, São João del-Rei, Brazil
| | - Jean Faber
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Esper A. Cavalheiro
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Josef Finsterer
- grid.413303.60000 0004 0437 0893Krankenanstalt Rudolfstiftung, Mersserli Institute, Vienna, Austria
| | - Fulvio A. Scorza
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| | - Antônio C. G. de Almeida
- grid.428481.30000 0001 1516 3599Neurociência Experimental e Computacional, Universidade Federal São João Del-Rey, São João del-Rei, Brazil
| | - Carla A. Scorza
- grid.411249.b0000 0001 0514 7202Disciplina de Neurociência, Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, 04039-032 Brazil
| |
Collapse
|
21
|
Liu H, Zhang S, Zhang L. Epileptiform activity in mouse hippocampal slices induced by moderate changes in extracellular Mg 2+, Ca 2+, and K . BMC Neurosci 2021; 22:46. [PMID: 34301200 PMCID: PMC8305515 DOI: 10.1186/s12868-021-00650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent brain slices-particularly hippocampal slices-are widely used in experimental investigations of epileptiform activity. Oxygenated artificial cerebrospinal fluid (ACSF) is used to maintain slices in vitro. Physiological or standard ACSF containing 3-3.5 mM K+, 1-2 mM Mg2+, and 1-3 mM Ca2+ generally does not induce population epileptiform activity, which can be induced by ACSF with high K+ (8-10 mM), low Mg2+, or low Ca2+ alone or in combination. While low-Mg2+ ACSF without intentionally added Mg salt but with contaminating Mg2+ (≤ 50-80 µM) from other salts can induce robust epileptiform activity in slices, it is unclear whether such epileptiform activity can be achieved using ACSF with moderately decreased Mg2+. To explore this issue, we examined the effects of moderately modified (m)ACSF with 0.8 mM Mg2+, 1.3 mM Ca2+, and 5.7 mM K+ on induction of epileptiform discharges in mouse hippocampal slices. RESULTS Hippocampal slices were prepared from young (21-28 days old), middle-aged (13-14 months old), and aged (24-26 months old) C57/BL6 mice. Conventional thin (0.4 mm) and thick (0.6 mm) slices were obtained using a vibratome and pretreated with mACSF at 35-36 °C for 1 h prior to recordings. During perfusion with mACSF at 35-36 °C, spontaneous or self-sustained epileptiform field potentials following high-frequency stimulation were frequently recorded in slices pretreated with mACSF but not in those without the pretreatment. Seizure-like ictal discharges were more common in thick slices than in thin slices. CONCLUSIONS Prolonged exposure to mACSF by pretreatment and subsequent perfusion can induce epileptiform field potentials in mouse hippocampal slices.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China.,Graduate School of Tianjin Medical University, Tianjin, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sai Zhang
- Graduate School of Tianjin Medical University, Tianjin, China.
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada. .,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Vera J, Lippmann K. Post-stroke epileptogenesis is associated with altered intrinsic properties of hippocampal pyramidal neurons leading to increased theta resonance. Neurobiol Dis 2021; 156:105425. [PMID: 34119635 DOI: 10.1016/j.nbd.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3-8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- Jorge Vera
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristina Lippmann
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
23
|
Henning L, Steinhäuser C, Bedner P. Initiation of Experimental Temporal Lobe Epilepsy by Early Astrocyte Uncoupling Is Independent of TGFβR1/ALK5 Signaling. Front Neurol 2021; 12:660591. [PMID: 34025561 PMCID: PMC8137820 DOI: 10.3389/fneur.2021.660591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction following brain insults has been associated with the development and progression of focal epilepsy, although the underlying molecular mechanisms are not fully elucidated yet. Activation of transforming growth factor beta (TGFβ) signaling in astrocytes by extravasated albumin impairs the ability of astrocytes to properly interact with neurons, eventually leading to epileptiform activity. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to gain further insights into the role of BBB leakage in status epilepticus (SE)-induced epileptogenesis. Immunohistochemical examination revealed pronounced albumin extravasation already 4 h after SE induction. Astrocytes were virtually devoid of albumin immunoreactivity (IR), indicating the lack of uptake by this time point. Inhibition of the TGFβ pathway by the specific TGFβ receptor 1 (TGFβR1) kinase inhibitor IPW-5371 did not prevent seizure-induced reduction of astrocytic gap junction coupling. Thus, loss of coupling, which is thought to play a causative role in triggering TLE-HS, is most likely not mediated by extravasated albumin. Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed that inhibition of the TGFβ pathway during the initial phase of epileptogenesis slightly attenuated acute and chronic epileptiform activity, but did not reduce the extent of HS. Together, these data indicate that albumin extravasation due to increased BBB permeability and TGFβ pathway activation during the first hours after SE induction are not significantly involved in initiating TLE.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
25
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
26
|
Vagus nerve stimulation reduces spreading depolarization burden and cortical infarct volume in a rat model of stroke. PLoS One 2020; 15:e0236444. [PMID: 32702055 PMCID: PMC7377493 DOI: 10.1371/journal.pone.0236444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Cortical spreading depolarization (SD) waves negatively affect neuronal survival and outcome after ischemic stroke. We here aimed to investigate the effects of vagus nerve stimulation (VNS) on SDs in a rat model of focal ischemia. To this end, we delivered non-invasive VNS (nVNS) or invasive VNS (iVNS) during permanent middle cerebral artery occlusion (MCAO), and found that both interventions significantly reduced the frequency of SDs in the cortical peri-infarct area compared to sham VNS, without affecting relative blood flow changes, blood pressure, heart rate or breathing rate. In separate groups of rats subjected to transient MCAO, we found that cortical stroke volume was reduced 72 h after transient MCAO, whereas stroke volume in the basal ganglia remained unchanged. In rats treated with nVNS, motor outcome was improved 2 days after transient MCAO, but was similar to sham VNS animals 3 days after ischemia. We postulate that VNS may be a safe and efficient intervention to reduce the clinical burden of SD waves in stroke and other conditions.
Collapse
|
27
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
28
|
Hanael E, Veksler R, Friedman A, Bar-Klein G, Senatorov VV, Kaufer D, Konstantin L, Elkin M, Chai O, Peery D, Shamir MH. Blood-brain barrier dysfunction in canine epileptic seizures detected by dynamic contrast-enhanced magnetic resonance imaging. Epilepsia 2020; 60:1005-1016. [PMID: 31032909 DOI: 10.1111/epi.14739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dogs with spontaneous or acquired epilepsy exhibit resemblance in etiology and disease course to humans, potentially offering a translational model of the human disease. Blood-brain barrier dysfunction (BBBD) has been shown to partake in epileptogenesis in experimental models of epilepsy. To test the hypothesis that BBBD can be detected in dogs with naturally occurring seizures, we developed a linear dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis algorithm that was validated in clinical cases of seizing dogs and experimental epileptic rats. METHODS Forty-six dogs with naturally occurring seizures of different etiologies and 12 induced epilepsy rats were imaged using DCE-MRI. Six healthy dogs and 12 naive rats served as control. DCE-MRI was analyzed by linear-dynamic method. BBBD scores were calculated in whole brain and in specific brain regions. Immunofluorescence analysis for transforming growth factor beta (TGF-β) pathway proteins was performed on the piriform cortex of epileptic dogs. RESULTS We found BBBD in 37% of dogs with seizures. A significantly higher cerebrospinal fluid to serum albumin ratio was found in dogs with BBBD relative to dogs with intact blood-brain barrier (BBB). A significant difference was found between epileptic and control rats when BBBD scores were calculated for the piriform cortex at 48 hours and 1 month after status epilepticus. Mean BBBD score of the piriform lobe in idiopathic epilepsy (IE) dogs was significantly higher compared to control. Immunohistochemistry results suggested active TGF-β signaling and neuroinflammation in the piriform cortex of dogs with IE, showing increased levels of serum albumin colocalized with glial acidic fibrillary protein and pSMAD2 in an area where BBBD had been detected by linear DCE-MRI. SIGNIFICANCE Detection of BBBD in dogs with naturally occurring epilepsy provides the ground for future studies for evaluation of novel treatment targeting the disrupted BBB. The involvement of the piriform lobe seen using our linear DCE-MRI protocol and algorithm emphasizes the possibility of using dogs as a translational model for the human disease.
Collapse
Affiliation(s)
- Erez Hanael
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy Bar-Klein
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - Lilach Konstantin
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Maria Elkin
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Orit Chai
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Dana Peery
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Merav H Shamir
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| |
Collapse
|
29
|
Neurostereologic Lesion Volumes and Spreading Depolarizations in Severe Traumatic Brain Injury Patients: A Pilot Study. Neurocrit Care 2020; 30:557-568. [PMID: 30972614 DOI: 10.1007/s12028-019-00692-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) occur in 50-60% of patients after surgical treatment of severe traumatic brain injury (TBI) and are independently associated with unfavorable outcomes. Here we performed a pilot study to examine the relationship between SDs and various types of intracranial lesions, progression of parenchymal damage, and outcomes. METHODS In a multicenter study, fifty patients (76% male; median age 40) were monitored for SD by continuous electrocorticography (ECoG; median duration 79 h) following surgical treatment of severe TBI. Volumes of hemorrhage and parenchymal damage were estimated using unbiased stereologic assessment of preoperative, postoperative, and post-ECoG serial computed tomography (CT) studies. Neurologic outcomes were assessed at 6 months by the Glasgow Outcome Scale-Extended. RESULTS Preoperative volumes of subdural and subarachnoid hemorrhage, but not parenchymal damage, were significantly associated with the occurrence of SDs (P's < 0.05). Parenchymal damage increased significantly (median 34 ml [Interquartile range (IQR) - 2, 74]) over 7 (5, 8) days from preoperative to post-ECoG CT studies. Patients with and without SDs did not differ in extent of parenchymal damage increase [47 ml (3, 101) vs. 30 ml (- 2, 50), P = 0.27], but those exhibiting the isoelectric subtype of SDs had greater initial parenchymal damage and greater increases than other patients (P's < 0.05). Patients with temporal clusters of SDs (≥ 3 in 2 h; n = 10 patients), which included those with isoelectric SDs, had worse outcomes than those without clusters (P = 0.03), and parenchymal damage expansion also correlated with worse outcomes (P = 0.01). In multivariate regression with imputation, both clusters and lesion expansion were significant outcome predictors. CONCLUSIONS These results suggest that subarachnoid and subdural blood are important primary injury factors in provoking SDs and that clustered SDs and parenchymal lesion expansion contribute independently to worse patient outcomes. These results warrant future prospective studies using detailed quantification of TBI lesion types to better understand the relationship between anatomic and physiologic measures of secondary injury.
Collapse
|
30
|
Swissa E, Serlin Y, Vazana U, Prager O, Friedman A. Blood-brain barrier dysfunction in status epileptics: Mechanisms and role in epileptogenesis. Epilepsy Behav 2019; 101:106285. [PMID: 31711869 DOI: 10.1016/j.yebeh.2019.04.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB), a unique anatomical and physiological interface between the central nervous system (CNS) and the peripheral circulation, is essential for the function of neural circuits. Interactions between the BBB, cerebral blood vessels, neurons, astrocytes, microglia, and pericytes form a dynamic functional unit known as the neurovascular unit (NVU). The NVU-BBB crosstalk plays a key role in the regulation of blood flow, response to injury, neuronal firing, and synaptic plasticity. Blood-brain barrier dysfunction (BBBD), a hallmark of brain injury, is a prominent finding in status epilepticus. Blood-brain barrier dysfunction is observed within the first hour of status epilepticus, and in epileptogenic brain regions, may last for months. Blood-brain barrier dysfunction was shown to have a role in astroglial dysfunction, neuroinflammation, increasing neural excitability, reduction of seizure threshold, excitatory synaptogenesis, impaired plasticity, and epileptogenesis. A key signaling pathway associated with BBBD-induced neurovascular dysfunction is the transforming growth factor beta (TGF-β) proinflammatory pathway, activated by the extravasation of serum albumin into the brain when BBB functions are compromised. Specific small molecules blocking TGF-β, and the nonspecific, Food and Drug Administration (FDA) approved blocker and angiotensin antagonist losartan, were shown to reduce BBBD and block epileptogenesis. With these encouraging preclinical data, we have developed imaging approach to quantitatively assess BBBD as a diagnostic, predictive, and pharmacodynamic biomarker after brain injury. Clinical trials in the foreseen future are expected to test the feasibility of BBB-targeted diagnostic coupled therapy in status epileptics and seizure disorders. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- Evyatar Swissa
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Inter-Faculty Brain Science School, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva Israel
| | - Yonatan Serlin
- Neurology Residency Training Program, McGill University, Montreal, QC, Canada
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Inter-Faculty Brain Science School, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva Israel
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Inter-Faculty Brain Science School, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Inter-Faculty Brain Science School, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Hong S, JianCheng H, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Ru Z, Zhen G, HongWei R. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res Bull 2019; 149:251-259. [DOI: 10.1016/j.brainresbull.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
|
32
|
Mendes NF, Pansani AP, Carmanhães ERF, Tange P, Meireles JV, Ochikubo M, Chagas JR, da Silva AV, Monteiro de Castro G, Le Sueur-Maluf L. The Blood-Brain Barrier Breakdown During Acute Phase of the Pilocarpine Model of Epilepsy Is Dynamic and Time-Dependent. Front Neurol 2019; 10:382. [PMID: 31040818 PMCID: PMC6477033 DOI: 10.3389/fneur.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/28/2019] [Indexed: 11/29/2022] Open
Abstract
The maintenance of blood-brain barrier (BBB) integrity is essential for providing a suitable environment for nervous tissue function. BBB disruption is involved in many central nervous system diseases, including epilepsy. Evidence demonstrates that BBB breakdown may induce epileptic seizures, and conversely, seizure-induced BBB disruption may cause further epileptic episodes. This study was conducted based on the premise that the impairment of brain tissue during the triggering event may determine the organization and functioning of the brain during epileptogenesis, and that BBB may have a key role in this process. Our purpose was to investigate in rats the relationship between pilocarpine-induced status epilepticus (SE), and BBB integrity by determining the time course of the BBB opening and its subsequent recovery during the acute phase of the pilocarpine model. BBB integrity was assessed by quantitative and morphological methods, using sodium fluorescein and Evans blue (EB) dyes as markers of the increased permeability to micromolecules and macromolecules, respectively. Different time-points of the pilocarpine model were analyzed: 30 min after pilocarpine injection and then 1, 5, and 24 h after the SE onset. Our results show that BBB breakdown is a dynamic phenomenon and time-dependent, i.e., it happens at specific time-points of the acute phase of pilocarpine model of epilepsy, recovering in part its integrity afterwards. Pilocarpine-induced changes on brain tissue initially increases the BBB permeability to micromolecules, and subsequently, around 5 h after SE, the BBB breakdown to macromolecules occurs. After BBB breakdown, EB dye is captured by damaged cells, especially neurons, astrocytes, and oligodendrocytes. Although the BBB permeability to macromolecules is restored 24 h after the start of SE, the leakage of micromolecules persists and the consequences of BBB degradation are widely disseminated in the brain. Our findings reveal the existence of a temporal window of BBB dysfunction in the acute phase of the pilocarpine model that is important for the development of therapeutic strategies that could prevent the epileptogenesis.
Collapse
Affiliation(s)
| | - Aline Priscila Pansani
- Departmento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Poliana Tange
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | | | - Mayara Ochikubo
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Jair Ribeiro Chagas
- Departmento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
33
|
Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance. Curr Neuropharmacol 2019; 17:151-164. [PMID: 28925885 PMCID: PMC6343201 DOI: 10.2174/1570159x15666170915160707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
Collapse
Affiliation(s)
| | | | - Yasemin Gürsoy-Özdemir
- Address correspondence to these authors at the Department of Neurosurgery, School of Medicine, Koç University, İstanbul, Turkey; Tel: +90 850 250 8250; E-mails: ,
| |
Collapse
|
34
|
Sadeghian H, Lacoste B, Qin T, Toussay X, Rosa R, Oka F, Chung DY, Takizawa T, Gu C, Ayata C. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann Neurol 2018; 84:409-423. [PMID: 30014540 PMCID: PMC6153037 DOI: 10.1002/ana.25298] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain barrier (BBB), but the mechanisms are unknown. METHODS A total of six CSDs were evoked over 1 hour by topical application of 300 mM of KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized mice (C57BL/6 J wild type, Thy1-ChR2-YFP line 18, and cav-1-/- ). BBB disruption was assessed by Evans blue (2% EB, 3 ml/kg, intra-arterial) or dextran (200 mg/kg, fluorescein, 70,000 MW, intra-arterial) extravasation in parietotemporal cortex at 3 to 24 hours after CSD. Endothelial cell ultrastructure was examined using transmission electron microscopy 0 to 24 hours after the same CSD protocol in order to assess vesicular trafficking, endothelial tight junctions, and pericyte integrity. Mice were treated with vehicle, isoform nonselective rho-associated kinase (ROCK) inhibitor fasudil (10 mg/kg, intraperitoneally 30 minutes before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, per oral twice-daily for 5 doses before CSD). RESULTS We show that CSD-induced BBB opening to water and large molecules is mediated by increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 hours. Endothelial tight junctions, pericytes, and basement membrane remain preserved after CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent and requires rho-kinase 2 activity. Importantly, hyperoxia failed to prevent CSD-induced BBB breakdown, suggesting that the latter is independent of tissue hypoxia. INTERPRETATION Our data elucidate the mechanisms by which CSDs lead to transient BBB disruption, with diagnostic and therapeutic implications for migraine and brain injury.
Collapse
Affiliation(s)
- Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baptiste Lacoste
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xavier Toussay
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
| | - Roberto Rosa
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fumiaki Oka
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
35
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
36
|
Nozaki T, Ura H, Takumi I, Kobayashi S, Maru E, Morita A. The angiotensin II type I receptor antagonist losartan retards amygdala kindling-induced epileptogenesis. Brain Res 2018; 1694:121-128. [PMID: 29787768 DOI: 10.1016/j.brainres.2018.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
Blood-brain barrier (BBB) breakdown and the subsequent exposure of the cerebral cortex to serum albumin are known to activate transforming growth factor β (TGF-β) signaling in astrocytes and to play key roles in epileptogenesis after brain injury. It was recently reported that the angiotensin II type I receptor antagonist losartan suppresses activation of TGF-β signaling and prevents epileptogenesis in a rat vascular injury model. Here, we investigated the effects of losartan on epileptogenesis following amygdala kindling in rats. Systemic or intracerebroventricular (i.c.v.) administration of losartan significantly delayed the development of severe behavioral seizures and stimulus-induced seizures on EEG (afterdischarge) in the early stage of amygdala kindling, as assessed by electroencephalography. Losartan also significantly increased the number of stimulations required to reach the fully kindled state. However, losartan had no effects on the threshold for afterdischarge induction, the afterdischarge duration, or seizure severity in fully kindled rats. Evaluation of BBB permeability by Evans blue staining did not indicate BBB breakdown (extravasation of serum albumin) in any region of the brain in the fully kindled animals. Thus, losartan may be useful in preventing epileptogenesis, even in post brain-insult epilepsy, in the absence of BBB breakdown.
Collapse
Affiliation(s)
- Toshiki Nozaki
- Department of Neurosurgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan; Department of Neurosurgery, Kanto Rosai Hospital, Kanagawa 211-8510, Japan.
| | - Hiroyuki Ura
- Department of Pharmacy Services, Nippon Medical School Chiba Hokuso Hospital, Chiba 270-1694, Japan
| | - Ichiro Takumi
- Department of Neurosurgery, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Shiro Kobayashi
- Department of Neurosurgery, Nippon Medical School Chiba Hokuso Hospital, Chiba 270-1694, Japan
| | - Eiichi Maru
- Department of Neurosurgery, Nippon Medical School Chiba Hokuso Hospital, Chiba 270-1694, Japan
| | - Akio Morita
- Department of Neurosurgery, Nippon Medical School Hospital, Tokyo 113-8603, Japan
| |
Collapse
|
37
|
Piro JR, Suidan GL, Quan J, Pi Y, O'Neill SM, Ilardi M, Pozdnyakov N, Lanz TA, Xi H, Bell RD, Samad TA. Inhibition of 2-AG hydrolysis differentially regulates blood brain barrier permeability after injury. J Neuroinflammation 2018; 15:142. [PMID: 29759062 PMCID: PMC5952841 DOI: 10.1186/s12974-018-1166-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. Methods Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. Results Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. Conclusions Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults. Electronic supplementary material The online version of this article (10.1186/s12974-018-1166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin R Piro
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA. .,Present Address: Abbvie Inc., 200 Sidney St., Cambridge, MA, 02139, USA.
| | - Georgette L Suidan
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | - Jie Quan
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA
| | - YeQing Pi
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | - Sharon M O'Neill
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | - Marissa Ilardi
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: NYU School of Medicine, 550 1st Ave., New York, NY, 10016, USA
| | | | - Thomas A Lanz
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| | - Hualin Xi
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.,Present Address: Abbvie Inc., 200 Sidney St., Cambridge, MA, 02139, USA
| | - Robert D Bell
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA
| | - Tarek A Samad
- Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA. .,Present Address: Sanofi R&D, 49 New York Ave., Framingham, MA, 01701, USA.
| |
Collapse
|
38
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
39
|
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2017; 134:189-207. [PMID: 28941738 DOI: 10.1016/j.neuropharm.2017.09.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Departments of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
40
|
Effects of anti-epileptic drugs on spreading depolarization-induced epileptiform activity in mouse hippocampal slices. Sci Rep 2017; 7:11884. [PMID: 28928441 PMCID: PMC5605655 DOI: 10.1038/s41598-017-12346-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Epilepsy and spreading depolarization (SD) are both episodic brain disorders and often exist together in the same individual. In CA1 pyramidal neurons of mouse hippocampal slices, induction of SD evoked epileptiform activities, including the ictal-like bursts, which occurred during the repolarizing phase of SD, and the subsequent generation of paroxysmal depolarization shifts (PDSs), which are characterized by mild depolarization plateau with overriding spikes. The duration of the ictal-like activity was correlated with both the recovery time and the depolarization potential of SD, whereas the parameters of PDSs were not significantly correlated with the parameters of SD. Moreover, we systematically evaluated the effects of multiple anti-epileptic drugs (AEDs) on SD-induced epileptiform activity. Among the drugs that are known to inhibit voltage-gated sodium channels, carbamazepine, phenytoin, valproate, lamotrigine, and zonisamide reduced the frequency of PDSs and the overriding firing bursts in 20–25 min after the induction of SD. The GABA uptake inhibitor tiagabine exhibited moderate effects and partially limited the incidence of PDSs after SD. AEDs including gabapentin, levetiracetam, ethosuximide, felbamate, and vigabatrin, had no significant effect on SD-induced epileptic activity. Taken together, these results demonstrate the effects of AEDs on SD and the related epileptiform activity at the cellular level.
Collapse
|
41
|
Kim SY, Senatorov VV, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 2017; 7:7711. [PMID: 28794441 PMCID: PMC5550510 DOI: 10.1038/s41598-017-07394-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/27/2017] [Indexed: 01/17/2023] Open
Abstract
Brain damage due to stroke or traumatic brain injury (TBI), both leading causes of serious long-term disability, often leads to the development of epilepsy. Patients who develop post-injury epilepsy tend to have poor functional outcomes. Emerging evidence highlights a potential role for blood-brain barrier (BBB) dysfunction in the development of post-injury epilepsy. However, common mechanisms underlying the pathological hyperexcitability are largely unknown. Here, we show that comparative transcriptome analyses predict remodeling of extracellular matrix (ECM) as a common response to different types of injuries. ECM-related transcriptional changes were induced by the serum protein albumin via TGFβ signaling in primary astrocytes. In accordance with transcriptional responses, we found persistent degradation of protective ECM structures called perineuronal nets (PNNs) around fast-spiking inhibitory interneurons, in a rat model of TBI as well as in brains of human epileptic patients. Exposure of a naïve brain to albumin was sufficient to induce the transcriptional and translational upregulation of molecules related to ECM remodeling and the persistent breakdown of PNNs around fast-spiking inhibitory interneurons, which was contingent on TGFβ signaling activation. Our findings provide insights on how albumin extravasation that occurs upon BBB dysfunction in various brain injuries can predispose neural circuitry to the development of chronic inhibition deficits.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Christapher S Morrissey
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kristina Lippmann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, 04315, Germany
| | - Oscar Vazquez
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dan Z Milikovsky
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Feng Gu
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, 53105, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany
| | - Alon Friedman
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA. .,Canadian Institute for Advanced Research (CIFAR) Program in Child and Brain Development, ON M5G 1Z8, Toronto, Canada.
| |
Collapse
|
42
|
Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C, Graf R, Vajkoczy P, Helbok R, Suzuki M, Schiefecker AJ, Major S, Winkler MKL, Kang EJ, Milakara D, Oliveira-Ferreira AI, Reiffurth C, Revankar GS, Sugimoto K, Dengler NF, Hecht N, Foreman B, Feyen B, Kondziella D, Friberg CK, Piilgaard H, Rosenthal ES, Westover MB, Maslarova A, Santos E, Hertle D, Sánchez-Porras R, Jewell SL, Balança B, Platz J, Hinzman JM, Lückl J, Schoknecht K, Schöll M, Drenckhahn C, Feuerstein D, Eriksen N, Horst V, Bretz JS, Jahnke P, Scheel M, Bohner G, Rostrup E, Pakkenberg B, Heinemann U, Claassen J, Carlson AP, Kowoll CM, Lublinsky S, Chassidim Y, Shelef I, Friedman A, Brinker G, Reiner M, Kirov SA, Andrew RD, Farkas E, Güresir E, Vatter H, Chung LS, Brennan KC, Lieutaud T, Marinesco S, Maas AIR, Sahuquillo J, Dahlem MA, Richter F, Herreras O, Boutelle MG, Okonkwo DO, Bullock MR, Witte OW, Martus P, van den Maagdenberg AMJM, Ferrari MD, Dijkhuizen RM, Shutter LA, Andaluz N, Schulte AP, MacVicar B, Watanabe T, Woitzik J, Lauritzen M, Strong AJ, Hartings JA. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 2017; 37:1595-1625. [PMID: 27317657 PMCID: PMC5435289 DOI: 10.1177/0271678x16654496] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023]
Abstract
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian Dohmen
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Alois J Schiefecker
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Gajanan S Revankar
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nora F Dengler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Neurocritical Care Division, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bart Feyen
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | | | | | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Daniel Hertle
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Baptiste Balança
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Janos Lückl
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schöll
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Nina Eriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Julia S Bretz
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Heinemann
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Claassen
- Neurocritical Care, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Svetlana Lublinsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael Reiner
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Sergei A Kirov
- Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Lee S Chung
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - KC Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Thomas Lieutaud
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Stephane Marinesco
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- AniRA-Neurochem Technological Platform, Lyon, France
| | - Andrew IR Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juan Sahuquillo
- Department of Neurosurgery, Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lori A Shutter
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine and Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - André P Schulte
- Department of Spinal Surgery, St. Franziskus Hospital Cologne, Cologne, Germany
| | - Brian MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
43
|
Lippmann K, Kamintsky L, Kim SY, Lublinsky S, Prager O, Nichtweiss JF, Salar S, Kaufer D, Heinemann U, Friedman A. Epileptiform activity and spreading depolarization in the blood-brain barrier-disrupted peri-infarct hippocampus are associated with impaired GABAergic inhibition and synaptic plasticity. J Cereb Blood Flow Metab 2017; 37:1803-1819. [PMID: 27252228 PMCID: PMC5435286 DOI: 10.1177/0271678x16652631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peri-infarct opening of the blood-brain barrier may be associated with spreading depolarizations, seizures, and epileptogenesis as well as cognitive dysfunction. We aimed to investigate the mechanisms underlying neural network pathophysiology in the blood-brain barrier-dysfunctional hippocampus. Photothrombotic stroke within the rat neocortex was associated with increased intracranial pressure, vasogenic edema, and peri-ischemic blood-brain barrier dysfunction that included the ipsilateral hippocampus. Intrahippocampal recordings revealed electrographic seizures within the first week in two-thirds of animals, accompanied by a reduction in gamma and increase in theta frequency bands. Synaptic interactions were studied in parasagittal hippocampal slices at 24 h and seven days post-stroke. Field potential recordings in CA1 and CA3 uncovered multiple population spikes, epileptiform episodes, and spreading depolarizations at 24 h. Input-output analysis revealed that fEPSP-spike coupling was significantly enhanced at seven days. In addition, CA1 feedback and feedforward inhibition were diminished. Slices generating epileptiform activity at seven days revealed impaired bidirectional long-term plasticity following high and low-frequency stimulation protocols. Microarray and PCR data confirmed changes in expression of astrocyte-related genes and suggested downregulation in expression of GABAA-receptor subunits. We conclude that blood-brain barrier dysfunction in the peri-infarct hippocampus is associated with early disinhibition, hyperexcitability, and abnormal synaptic plasticity.
Collapse
Affiliation(s)
- Kristina Lippmann
- 1 Institute of Neurophysiology, Charité - University Medicine Berlin, Berlin, Germany.,2 Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Lyn Kamintsky
- 3 Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soo Young Kim
- 4 Helen Wills Neuroscience Institute and the Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Svetlana Lublinsky
- 3 Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Prager
- 3 Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Seda Salar
- 1 Institute of Neurophysiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Daniela Kaufer
- 4 Helen Wills Neuroscience Institute and the Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Uwe Heinemann
- 5 Neuroscience Research Center, Berlin, Germany.,6 Excellence Cluster NeuroCure, Berlin, Germany
| | - Alon Friedman
- 3 Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,7 Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
44
|
Mucke HA. Drug Repurposing Patent Applications January–March 2017. Assay Drug Dev Technol 2017; 15:127-132. [DOI: 10.1089/adt.2017.29057.pq1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
45
|
Electrocorticographic Dynamics as a Novel Biomarker in Five Models of Epileptogenesis. J Neurosci 2017; 37:4450-4461. [PMID: 28330876 DOI: 10.1523/jneurosci.2446-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Abstract
Postinjury epilepsy (PIE) is a devastating sequela of various brain insults. While recent studies offer novel insights into the mechanisms underlying epileptogenesis and discover potential preventive treatments, the lack of PIE biomarkers hinders the clinical implementation of such treatments. Here we explored the biomarker potential of different electrographic features in five models of PIE. Electrocorticographic or intrahippocampal recordings of epileptogenesis (from the insult to the first spontaneous seizure) from two laboratories were analyzed in three mouse and two rat PIE models. Time, frequency, and fractal and nonlinear properties of the signals were examined, in addition to the daily rate of epileptiform spikes, the relative power of five frequency bands (theta, alpha, beta, low gamma, and high gamma) and the dynamics of these features over time. During the latent pre-seizure period, epileptiform spikes were more frequent in epileptic compared with nonepileptic rodents; however, this feature showed limited predictive power due to high inter- and intra-animal variability. While nondynamic rhythmic representation failed to predict epilepsy, the dynamics of the theta band were found to predict PIE with a sensitivity and specificity of >90%. Moreover, theta dynamics were found to be inversely correlated with the latency period (and thus predict the onset of seizures) and with the power change of the high-gamma rhythm. In addition, changes in theta band power during epileptogenesis were associated with altered locomotor activity and distorted circadian rhythm. These results suggest that changes in theta band during the epileptogenic period may serve as a diagnostic biomarker for epileptogenesis, able to predict the future onset of spontaneous seizures.SIGNIFICANCE STATEMENT Postinjury epilepsy is an unpreventable and devastating disorder that develops following brain injuries, such as traumatic brain injury and stroke, and is often associated with neuropsychiatric comorbidities. As PIE affects as many as 20% of brain-injured patients, reliable biomarkers are imperative before any preclinical therapeutics can find clinical translation. We demonstrate the capacity to predict the epileptic outcome in five different models of PIE, highlighting theta rhythm dynamics as a promising biomarker for epilepsy. Our findings prompt the exploration of theta dynamics (using repeated electroencephalographic recordings) as an epilepsy biomarker in brain injury patients.
Collapse
|
46
|
Kramer DR, Fujii T, Ohiorhenuan I, Liu CY. Interplay between Cortical Spreading Depolarization and Seizures. Stereotact Funct Neurosurg 2017; 95:1-5. [PMID: 28088802 DOI: 10.1159/000452841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
Abstract
Cortical spreading depolarization (CSD) is an electrophysiologic phenomenon found mostly in the setting of neurologic injury resulting in the disturbance of ion homeostasis and leading to changes in the local vascular response. The bioelectric etiology of CSD shares similarities to those in epileptic disorders, yet the relationship between seizures and CSD is unclear, with several studies observing cortical depression before, during, and after seizure activity, thus obscuring our understanding of whether CSD activity potentiates or limits seizures and vice versa. Cortical sampling has exhibited how the redistribution of ion concentrations in the intra- and extracellular environments interplay between the excitation of seizures and the electrical depression of CSD. Modeling of both environments has suggested that CSD synchronizes the affected tissue, creating a favorable environment for seizure activity; however, other studies have demonstrated the opposite: epileptiform activity initiating waves of CSD. Further studies have underscored the role of the vascular response and subsequent ischemia in CSD that contributes to epileptogenesis. Investigations in migraine, traumatic brain injury, and other neurologic injuries suggest that several drugs may target CSD. Manipulations in the occurrence and nature of CSD can potentially alter the threshold for seizure activity, and perhaps minimize immediate and long-term sequelae associated with epilepsy.
Collapse
Affiliation(s)
- Daniel R Kramer
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
47
|
Skaper SD, Facci L, Zusso M, Giusti P. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist 2017; 23:478-498. [PMID: 29283023 DOI: 10.1177/1073858416687249] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions.
Collapse
Affiliation(s)
- Stephen D Skaper
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Laura Facci
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Morena Zusso
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Pietro Giusti
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
48
|
Liu Z, Liu J, Wang S, Liu S, Zhao Y. Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy. Exp Ther Med 2016; 12:695-701. [PMID: 27446263 PMCID: PMC4950244 DOI: 10.3892/etm.2016.3397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
It is well established that brain blood barrier dysfunction following the onset of seizures may lead to serum albumin extravasation into the brain. However, the effect of albumin extravasation on the development of epilepsy is yet to be fully elucidated. Previous studies have predominantly focused on the effect of albumin absorption by astrocytes; however, the present study investigated the effects of neuronal uptake of albumin in vitro and in kainic acid-induced Sprague-Dawley rat models of temporal lobe epilepsy. In the present study, electroencephalogram recordings were conducted to record seizure onset, Nissl and Evans blue staining were used to detect neuronal damage and albumin extravasation, respectively, and double immunofluorescence was used to explore neuronal absorption of albumin. Cell counting was also conducted in vitro to determine whether albumin contributes to neuronal death. The results of the present study indicated that extravasated serum albumin was absorbed by neurons, and the neurons that had absorbed albumin died and were dissolved 28 days after seizure onset in vivo. Furthermore, significant neuronal death was detected after albumin absorption in vitro in a dose- and time-dependent manner. These results suggested that albumin may be absorbed by neurons following the onset of seizures. Furthermore, the results indicated that neuronal albumin uptake may be associated with neuronal damage and death in epileptic seizures. Therefore, attenuating albumin extravasation following epileptic seizures may reduce brain damage and slow the development of epilepsy.
Collapse
Affiliation(s)
- Zanhua Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 11600, P.R. China
| | - Jinjie Liu
- No. 2 VIP Ward, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 11600, P.R. China
| | - Suping Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 11600, P.R. China
| | - Sibo Liu
- Surgical Intensive Care Unit, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 11600, P.R. China
| | - Yongbo Zhao
- Department of Neurology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
49
|
Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 2016; 12:439-54. [PMID: 27364743 DOI: 10.1038/nrneurol.2016.88] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain function critically relies on blood vessels to supply oxygen and nutrients, to establish a barrier for neurotoxic substances, and to clear waste products. The archetypal vascular endothelial growth factor, VEGF, arose in evolution as a signal affecting neural cells, but was later co-opted by blood vessels to regulate vascular function. Consequently, VEGF represents an attractive target to modulate brain function at the neurovascular interface. On the one hand, VEGF is neuroprotective, through direct effects on neural cells and their progenitors and indirect effects on brain perfusion. In accordance, preclinical studies show beneficial effects of VEGF administration in neurodegenerative diseases, peripheral neuropathies and epilepsy. On the other hand, pathologically elevated VEGF levels enhance vessel permeability and leakage, and disrupt blood-brain barrier integrity, as in demyelinating diseases, for which blockade of VEGF may be beneficial. Here, we summarize current knowledge on the role and therapeutic potential of VEGF in neurological diseases.
Collapse
Affiliation(s)
- Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149 Muenster, Germany.,Faculty of Medicine, University of Muenster, Roentgenstrasse 20, D-48149 Muenster, Germany
| | | | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| |
Collapse
|
50
|
Farbood Y, Sarkaki A, Khalaj L, Khodagholi F, Badavi M, Ashabi G. Targeting Adenosine Monophosphate-Activated Protein Kinase by Metformin Adjusts Post-Ischemic Hyperemia and Extracellular Neuronal Discharge in Transient Global Cerebral Ischemia. Microcirculation 2016. [PMID: 26213885 DOI: 10.1111/micc.12224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE I/R and its subsequent reactive hyperemia results in different adverse effects such as brain edema and BBB disruption. AMPK activation has been perceived as one of the target factors for I/R treatment. We investigated the effect of Met (an AMPK activator) on some physiological parameters including vascular responses, hyperemia, BBB disruption, and electrophysiological activity following tGCI. METHODS Rats were pretreated with Met for two weeks and CC was administered half an hour before tGCI. Brain vascular responses, hyperemia, BBB disruption, and electrophysiological activity were evaluated following the ischemia. RESULTS Met attenuated BBB disruption and reactive hyperemia in tGCI rats compared with the untreated I/R rats (p < 0.001). Met administration along with CC in the ischemic rats reversed the beneficial effects of Met on BBB disruption and reactive hyperemia (p < 0.001). Electrophysiological records indicated that Met increased spike rates in the ischemic rats comparing with I/R rats (p < 0.001), whereas, CC administration blocked the beneficial effects of Met on the neuronal discharges (p < 0.05). CONCLUSION We established a regulatory role for AMPK in vascular and electrophysiological responses to tGCI. Studies are ongoing to determine if activation of AMPK in the reperfusion period would offer similar protection.
Collapse
Affiliation(s)
- Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Alborz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|