1
|
Xiong K, Lou S, Lian Z, Wu Y, Kou Z. The GluN3-containing NMDA receptors. Channels (Austin) 2025; 19:2490308. [PMID: 40235311 PMCID: PMC12005412 DOI: 10.1080/19336950.2025.2490308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are heterotetrameric ion channels that play crucial roles in brain function. Among all the NMDAR subtypes, GluN1-N3 receptors exhibit unique agonist binding and gating properties. Unlike "conventional" GluN1-N2 receptors, which require both glycine and glutamate for activation, GluN1-N3 receptors are activated solely by glycine. Furthermore, GluN1-N3 receptors display faster desensitization, reduced Ca2+ permeability, and lower sensitivity to Mg2+ blockage compared to GluN1-N2 receptors. Due to these characteristics, GluN1-N3 receptors are thought to play critical roles in eliminating redundant synapses and pruning spines in early stages of brain development. Recent studies have advanced pharmacological tools for specifically targeting GluN1-N3 receptors and provided direct evidence of these glycine-activated excitatory receptors in native brain tissue. The structural basis of GluN1-N3 receptors has also been elucidated through cryo-EM and artificial intelligence. These findings highlight that GluN1-N3 receptors are not only involved in essential brain functions but also present potential targets for drug development.
Collapse
Affiliation(s)
- Kunlong Xiong
- Department of Pulmonary and Critical Care Medicine, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zuoyu Lian
- Department of General Practice, Cicheng Town Central Health Center, Ningbo, Zhejiang, China
| | - Yunlin Wu
- Hospital Infection Control Section, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
González-González IM, Gray JA, Ferreira J, Conde-Dusman MJ, Bouchet D, Perez-Otaño I, Groc L. GluN3A subunit tunes NMDA receptor synaptic trafficking and content during postnatal brain development. Cell Rep 2023; 42:112477. [PMID: 37149869 PMCID: PMC11189104 DOI: 10.1016/j.celrep.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Signaling via N-methyl-d-aspartate receptors (NMDARs) is critical for the maturation of glutamatergic synapses, partly through a developmental switch from immature synapses expressing primarily GluN2B- and GluN3A-containing subtypes to GluN2A-rich mature ones. This subunit switch is thought to underlie the synaptic stabilization of NMDARs necessary for neural network consolidation. However, the cellular mechanisms controlling the NMDAR exchange remain unclear. Using a combination of single-molecule and confocal imaging and biochemical and electrophysiological approaches, we show that surface GluN3A-NMDARs form a highly diffusive receptor pool that is loosely anchored to synapses. Remarkably, changes in GluN3A subunit expression selectively alter the surface diffusion and synaptic anchoring of GluN2A- but not GluN2B-NMDARs, possibly through altered interactions with cell surface receptors. The effects of GluN3A on NMDAR surface diffusion are restricted to an early time window of postnatal development in rodents, allowing GluN3A subunits to control the timing of NMDAR signaling maturation and neuronal network refinements.
Collapse
Affiliation(s)
- Inmaculada M González-González
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - John A Gray
- Department of Neurology, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Joana Ferreira
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - María Jose Conde-Dusman
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Cellular and Systems Biology, Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Delphine Bouchet
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - Isabel Perez-Otaño
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Cellular and Systems Biology, Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain.
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
4
|
Dietrich P, Alli S, Mulligan MK, Cox R, Ashbrook DG, Williams RW, Dragatsis I. Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration. Neurobiol Dis 2022; 162:105581. [PMID: 34871739 PMCID: PMC8717869 DOI: 10.1016/j.nbd.2021.105581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Rachel Cox
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,The University of Tennessee, Knoxville, TN 37996, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| |
Collapse
|
5
|
Crawley O, Conde-Dusman MJ, Pérez-Otaño I. GluN3A NMDA receptor subunits: more enigmatic than ever? J Physiol 2021; 600:261-276. [PMID: 33942912 DOI: 10.1113/jp280879] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Non-conventional N-methyl-d-aspartate receptors (NMDARs) containing GluN3A subunits have unique biophysical, signalling and localization properties within the NMDAR family, and are typically thought to counterbalance functions of classical NMDARs made up of GluN1/2 subunits. Beyond their recognized roles in synapse refinement during postnatal development, recent evidence is building a wider perspective for GluN3A functions. Here we draw particular attention to the latest developments for this multifaceted and unusual subunit: from finely timed expression patterns that correlate with plasticity windows in developing brains or functional hierarchies in the mature brain to new insight onto presynaptic GluN3A-NMDARs, excitatory glycine receptors and behavioural impacts, alongside further connections to a range of brain disorders.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - María J Conde-Dusman
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - Isabel Pérez-Otaño
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| |
Collapse
|
6
|
The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Sci Rep 2020; 10:18576. [PMID: 33122756 PMCID: PMC7596085 DOI: 10.1038/s41598-020-75646-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Although numerous pathogenic mutations have been identified in various subunits of N-methyl-D-aspartate receptors (NMDARs), ionotropic glutamate receptors that are central to glutamatergic neurotransmission, the functional effects of these mutations are often unknown. Here, we combined in silico modelling with microscopy, biochemistry, and electrophysiology in cultured HEK293 cells and hippocampal neurons to examine how the pathogenic missense mutation S688Y in the GluN1 NMDAR subunit affects receptor function and trafficking. We found that the S688Y mutation significantly increases the EC50 of both glycine and d-serine in GluN1/GluN2A and GluN1/GluN2B receptors, and significantly slows desensitisation of GluN1/GluN3A receptors. Moreover, the S688Y mutation reduces the surface expression of GluN3A-containing NMDARs in cultured hippocampal neurons, but does not affect the trafficking of GluN2-containing receptors. Finally, we found that the S688Y mutation reduces Ca2+ influx through NMDARs and reduces NMDA-induced excitotoxicity in cultured hippocampal neurons. These findings provide key insights into the molecular mechanisms that underlie the regulation of NMDAR subtypes containing pathogenic mutations.
Collapse
|
7
|
Zhu Z, Yi F, Epplin MP, Liu D, Summer SL, Mizu R, Shaulsky G, XiangWei W, Tang W, Burger PB, Menaldino DS, Myers SJ, Liotta DC, Hansen KB, Yuan H, Traynelis SF. Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology 2020; 176:108117. [PMID: 32389749 DOI: 10.1016/j.neuropharm.2020.108117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.
Collapse
Affiliation(s)
- Zongjian Zhu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Feng Yi
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Matthew P Epplin
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Ruth Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pieter B Burger
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends Mol Med 2020; 26:533-551. [PMID: 32470382 DOI: 10.1016/j.molmed.2020.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stroke is a leading cause of death and disability in developed countries. N-methyl-D-aspartate glutamate receptors (NMDARs) have important roles in stroke pathology and recovery. Depending on their subtypes and locations, these NMDARs may promote either neuronal survival or death. Recently, the functions of previously overlooked NMDAR subtypes during stroke were characterized, and NMDARs expressed at different subcellular locations were found to have synergistic rather than opposing functions. Moreover, the complexity of the neuronal survival and death signaling pathways following NMDAR activation was further elucidated. In this review, we summarize the recent developments in these areas and discuss how delineating the dual roles of NMDARs in stroke has directed the development of novel neuroprotective therapeutics for stroke.
Collapse
|
9
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
10
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Pérez-Otaño I, Larsen RS, Wesseling JF. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci 2016; 17:623-35. [DOI: 10.1038/nrn.2016.92] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
15
|
Nakanishi N, Kang YJ, Tu S, McKercher SR, Masliah E, Lipton SA. Differential Effects of Pharmacologic and Genetic Modulation of NMDA Receptor Activity on HIV/gp120-Induced Neuronal Damage in an In Vivo Mouse Model. J Mol Neurosci 2015; 58:59-65. [PMID: 26374431 DOI: 10.1007/s12031-015-0651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 12/01/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND. Interestingly, we found that while both NitroMemantine and GluN3A have been shown to inhibit NMDAR activity, NitroMemantine protected synapses in gp120-tg mice, but overexpression of GluN3A augmented the damage. Given recent findings in the field, one explanation for this apparently paradoxical result is the location of the NMDARs primarily affected, with NitroMemantine inhibiting predominantly extrasynaptic pathologically activated NMDARs, but GluN3A disrupting normal NMDAR-mediated neuroprotective activity via inhibition of synaptic NMDARs.
Collapse
Affiliation(s)
- Nobuki Nakanishi
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Yeon-Joo Kang
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Shichun Tu
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Scott R McKercher
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stuart A Lipton
- Center for Neuroscience and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA. .,Present Address: Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
16
|
Winkelmann A, Semtner M, Meier JC. Chloride transporter KCC2-dependent neuroprotection depends on the N-terminal protein domain. Cell Death Dis 2015; 6:e1776. [PMID: 26043076 PMCID: PMC4669822 DOI: 10.1038/cddis.2015.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023]
Abstract
Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl(-) transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- A Winkelmann
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - M Semtner
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - J C Meier
- RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
- Division of Cell Physiology, TU Braunschweig, Zoological Institute, Braunschweig 38106, Germany
| |
Collapse
|
17
|
Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 2015; 11:297-310. [PMID: 25709452 PMCID: PMC4327398 DOI: 10.2147/ndt.s78226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysegul Yildiz-Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey
| | - Sirin Korulu
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
18
|
Chakraborty J, Nthenge-Ngumbau D, Rajamma U, Mohanakumar K. Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington's disease. Behav Brain Res 2014; 264:91-104. [DOI: 10.1016/j.bbr.2014.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 12/15/2022]
|
19
|
Parsons M, Raymond L. Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron 2014; 82:279-93. [DOI: 10.1016/j.neuron.2014.03.030] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/21/2022]
|
20
|
Kehoe LA, Bernardinelli Y, Muller D. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013; 2013:145387. [PMID: 24386575 PMCID: PMC3872238 DOI: 10.1155/2013/145387] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/12/2013] [Indexed: 12/19/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) are pivotal for synaptic plasticity and memory formation. Conventional NMDAR consist of heterotetrameric structures composed of GluN1 and GluN2 subunits. A third subunit, GluN3, can also assemble with NMDAR subunits giving a remarkable modification of their heteromeric structure, forming a "nonconventional" NMDAR. As a consequence, the stoichiometry and kinetic properties of the receptors are dramatically changed. Among the GluN3 family, the GluN3A subunit has been the focus of a large amount of studies during recent years. These studies reveal that GluN3A is transiently expressed during development and could play a role in the fine tuning of neuronal networks as well as associated diseases. Moreover, GluN3A distribution outside the postsynaptic densities, including perisynaptic astrocytes, places it at a strategic position to play an important role in the interactions between neurons and glial cells. This review highlights GluN3A properties and addresses its role in neurophysiology and associated pathologies.
Collapse
Affiliation(s)
- Laura A. Kehoe
- Department of Neuroscience, University of Geneva, CMU, 1211 Geneve 4, Switzerland
- Cellular Neurobiology, Departamento de Neurociencias, Centro de Investigacion Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Yann Bernardinelli
- Department of Neuroscience, University of Geneva, CMU, 1211 Geneve 4, Switzerland
| | - Dominique Muller
- Department of Neuroscience, University of Geneva, CMU, 1211 Geneve 4, Switzerland
| |
Collapse
|
21
|
GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling. Proc Natl Acad Sci U S A 2013; 110:20807-12. [PMID: 24297929 DOI: 10.1073/pnas.1312211110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
NMDA-type glutamate receptors (NMDARs) guide the activity-dependent remodeling of excitatory synapses and associated dendritic spines during critical periods of postnatal brain development. Whereas mature NMDARs composed of GluN1 and GluN2 subunits mediate synapse plasticity and promote spine growth and stabilization, juvenile NMDARs containing GluN3A subunits are thought to inhibit these processes via yet unknown mechanisms. Here, we report that GluN3A binds G protein-coupled receptor kinase-interacting protein (GIT1), a postsynaptic scaffold that assembles actin regulatory complexes, including the Rac1 guanine nucleotide exchange factor βPIX, to promote Rac1 activation in spines. Binding to GluN3A limits the synaptic localization of GIT1 and its ability to complex βPIX, leading to decreased Rac1 activation and reduced spine density and size in primary cultured neurons. Conversely, knocking out GluN3A favors the formation of GIT1/βPIX complexes and increases the activation of Rac1 and its main effector p21-activated kinase. We further show that binding of GluN3A to GIT1 is regulated by synaptic activity, a response that might restrict the negative regulatory effects of GluN3A on actin signaling to inactive synapses. Our results identify inhibition of Rac1/p21-activated kinase actin signaling pathways as an activity-dependent mechanism mediating the inhibitory effects of GluN3A on spine morphogenesis.
Collapse
|
22
|
Wang H, Yan H, Zhang S, Wei X, Zheng J, Li J. The GluN3A subunit exerts a neuroprotective effect in brain ischemia and the hypoxia process. ASN Neuro 2013; 5:231-42. [PMID: 23883441 PMCID: PMC3756525 DOI: 10.1042/an20130009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 02/04/2023] Open
Abstract
NMDARs (N-methyl-D-aspartate receptors) mediate the predominantly excitatory neurotransmission in the CNS (central nervous system). Excessive release of glutamate and overactivation of NMDARs during brain ischemia and the hypoxia process are causally linked to excitotoxicity and neuronal damage. GluN3 subunits, the third member of the NMDAR family with two isoforms, GluN3A and GluN3B, have been confirmed to display an inhibitory effect on NMDAR activity. However, the effect of GluN3 subunits in brain ischemia and hypoxia is not clearly understood. In the present study, the influence of ischemia and hypoxia on GluN3 subunit expression was observed by using the 2VO (two-vessel occlusion) rat brain ischemia model and cell OGD (oxygen and glucose deprivation) hypoxia model. It was found that GluN3A protein expression in rat hippocampus and the prefrontal cortex was increased quickly after brain ischemia and remained at a high level for at least 24 h. However, the expression of the GluN3B subunit was not remarkably changed in both the animal and cell models. After OGD exposure, rat hippocampal neurons with GluN3A subunit overexpression displayed more viability than the wild-type neurons. NG108-15 cells overexpressing GluN3A presented pronounced resistance to glutamate insult. Blocking the increase of intracellular Ca2+ concentration may underlie the neuroprotective mechanism of up-regulated GluN3A subunit. Suppressing the generation of hydroxyl radicals and NO (nitric oxide) is probably also involved in the neuroprotection.
Collapse
Key Words
- brain hypoxia and ischemia
- excitotoxicity
- glun3a
- n-methyl-d-aspartate receptor (nmdar)
- oxygen and glucose deprivation (ogd)
- 2vo, two-vessel occlusion
- cns, central nervous system
- dapi, 4′,6-diamidino-2-phenylindole
- fcm, flow cytometry
- gdna, genomic dna
- hbss, hanks’ balanced salt solution
- mtt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2h-tetrazolium bromide
- nmdar, n-methyl-d-aspartate receptor
- no, nitric oxide
- ogd, oxygen and glucose deprivation
- pi, propidium iodide
- rt, reverse transcription
- s–d, sprague–dawley
- tbst, tbs containing 0.1% tween-20
- ttc, triphenyltetrazolium chloride
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| | - Haitao Yan
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| | - Shuzhuo Zhang
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| | - Xiaoli Wei
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| | - Jianquan Zheng
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| | - Jin Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, People's Republic of China
| |
Collapse
|
23
|
Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Bräuner-Osborne H. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 2013; 75:324-36. [PMID: 23973313 DOI: 10.1016/j.neuropharm.2013.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/04/2013] [Accepted: 08/08/2013] [Indexed: 01/28/2023]
Abstract
NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activated diheteromeric GluN1/N3 receptors. The glycine-binding GluN1 and GluN3 subunits display strikingly different pharmacological selectivity profiles. However, the pharmacological characterization of GluN3-containing receptors has been hampered by the lack of methods and pharmacological tools to study GluN3 subunit pharmacology in isolation. Here, we have developed a method to study the pharmacology of GluN3 subunits in recombinant diheteromeric GluN1/N3 receptors by mutating the orthosteric ligand-binding pocket in GluN1. This method is suitable for performing compound screening and characterization of structure-activity relationship studies on GluN3 ligands. We have performed a virtual screen of the orthosteric binding site of GluN3A in the search for antagonists with selectivity for GluN3 subunits. In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands.
Collapse
Affiliation(s)
- Trine Kvist
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | | | - Kasper B Hansen
- Dept. of Pharmacology, Emory University School of Medicine, 5062 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Stephen F Traynelis
- Dept. of Pharmacology, Emory University School of Medicine, 5062 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hans Bräuner-Osborne
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Fruebjergvej 3, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat Med 2013; 19:1030-8. [PMID: 23852340 PMCID: PMC3936794 DOI: 10.1038/nm.3246] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/20/2013] [Indexed: 02/08/2023]
Abstract
Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing. Here we show that mutant HTT redirects an intracellular store of juvenile NMDARs containing GluN3A subunits to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the endocytic adaptor PACSIN1, which is specific for GluN3A. Overexpressing GluN3A in wild-type mouse striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline and reduced striatal atrophy and neuronal loss in the YAC128 Huntington's disease mouse model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease and suggest that therapies targeting GluN3A or pathogenic HTT-PACSIN1 interactions might prevent or delay disease progression.
Collapse
|