1
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024; 28:1047-1059. [PMID: 39632509 PMCID: PMC11801519 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
| | - Deborah A. Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Gonzalez L, Sébrié C, Laroche S, Vaillend C, Poirier R. Delayed postnatal brain development and ontogenesis of behavior and cognition in a mouse model of intellectual disability. Neurobiol Dis 2023:106163. [PMID: 37270162 DOI: 10.1016/j.nbd.2023.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder associated with impaired cognitive and adaptive behaviors and represents a major medical issue. Although ID-patients develop behavioral problems and are diagnosed during childhood, most behavioral studies in rodent models have been conducted in adulthood, missing precocious phenotypes expressed during this critical time-window characterized by intense brain plasticity. Here, we selectively assessed postnatal ontogenesis of behavioral and cognitive processes, as well as postnatal brain development in the male Rsk2-knockout mouse model of the Coffin-Lowry syndrome, an X-linked disorder characterized by ID and neurological abnormalities. While Rsk2-knockout mice were born healthy, a longitudinal MRI study revealed a transient secondary microcephaly and a persistent reduction of hippocampal and cerebellar volumes. Specific behavioral parameters from postnatal day 4 (P4) unveiled delayed acquisition of sensory-motor functions and alterations of spontaneous and cognitive behaviors during adolescence, which together, represent hallmarks of neurodevelopmental disorders. Together, our results suggest for the first time that RSK2, an effector of the MAPK signaling pathways, plays a crucial role in brain and cognitive postnatal development. This study also provides new relevant measures to characterize postnatal cognitive development of mouse models of ID and to design early therapeutic approaches.
Collapse
Affiliation(s)
- Laurine Gonzalez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Catherine Sébrié
- Université Paris-Saclay CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Serge Laroche
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Roseline Poirier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| |
Collapse
|
3
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
4
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Chaves Filho AJM, Mottin M, Lós DB, Andrade CH, Macedo DS. The tetrapartite synapse in neuropsychiatric disorders: Matrix metalloproteinases (MMPs) as promising targets for treatment and rational drug design. Biochimie 2022; 201:79-99. [PMID: 35931337 DOI: 10.1016/j.biochi.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/26/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Deniele Bezerra Lós
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Quantitative description of the interactions among kinase cascades underlying long-term plasticity of Aplysia sensory neurons. Sci Rep 2021; 11:14931. [PMID: 34294802 PMCID: PMC8298407 DOI: 10.1038/s41598-021-94393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation. This study provides new insights into how these pathways contribute to the temporal domains of memory, using empirical and computational approaches. Empirical studies of Aplysia sensory neurons identified a positive feedforward loop in which the PKA and ERK pathways converge to regulate RSK, and a negative feedback loop in which p38 MAPK inhibits the activation of ERK and RSK. A computational model incorporated these findings to simulate the dynamics of kinase activity produced by different stimulus protocols and predict the critical roles of kinase interactions in the dynamics of these pathways. These findings may provide insights into the mechanisms underlying aberrant synaptic plasticity observed in genetic disorders such as RASopathies and Coffin-Lowry syndrome.
Collapse
|
7
|
Morice E, Enderlin V, Gautron S, Laroche S. Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission. Neuroscience 2021; 463:70-85. [PMID: 33722673 DOI: 10.1016/j.neuroscience.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. In turn, they can activate cyclic AMP-response-element-binding protein (CREB), thereby modulating the expression of immediate early genes crucial for the formation of long-term memories. While MSK1 has been previously implicated in certain forms of learning and memory, little is known concerning MSK2. Our goal was to explore the respective contribution of MSK1 and MSK2 in hippocampal synaptic transmission and plasticity and hippocampal-dependent recognition memory. In Msk1- and Msk2-knockout mice, we evaluated object and object-place recognition memory, basal synaptic transmission, paired-pulse facilitation (PPF) and inhibition (PPI), and the capacity to induce and sustain long-term potentiation (LTP) in vivo. We also assessed the level of two proteins downstream in the MAPK/ERK1/2 pathway crucial for long-term memory, CREB and the immediate early gene (IEG) Early growth response 1 (EGR1). Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.
Collapse
Affiliation(s)
- Elise Morice
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France; University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Valérie Enderlin
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France.
| | - Serge Laroche
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| |
Collapse
|
8
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Sci Rep 2020; 10:608. [PMID: 31953461 PMCID: PMC6969148 DOI: 10.1038/s41598-020-57484-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple kinases converge on the transcription factor cAMP response element-binding protein (CREB) to enhance the expression of proteins essential for long-term synaptic plasticity and memory. The p90 ribosomal S6 kinase (RSK) is one of these kinases, although its role is poorly understood. The present study exploited the technical advantages of the Aplysia sensorimotor culture system to examine the role of RSK in long-term synaptic facilitation (LTF) and long-term enhancement of neuronal excitability (LTEE), two correlates of long-term memory (LTM). Inhibition of RSK expression or RSK activity both significantly reduced CREB1 phosphorylation, LTF, and LTEE, suggesting RSK is required for learning-related synaptic plasticity and enhancement in neuronal excitability. In addition, knock down of RSK by RNAi in Aplysia sensory neurons impairs LTF, suggesting that this may be a useful single-cell system to study aspects of defective synaptic plasticity in Coffin-Lowry Syndrome (CLS), a cognitive disorder that is caused by mutations in rsk2 and associated with deficits in learning and memory. We found that the impairments in LTF and LTEE can be rescued by a computationally designed spaced training protocol, which was previously demonstrated to augment normal LTF and LTM.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
10
|
Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat Commun 2018; 9:2451. [PMID: 29934532 PMCID: PMC6015085 DOI: 10.1038/s41467-018-04705-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Learning and memory depend on neuronal plasticity originating at the synapse and requiring nuclear gene expression to persist. However, how synapse-to-nucleus communication supports long-term plasticity and behavior has remained elusive. Among cytonuclear signaling proteins, γCaMKII stands out in its ability to rapidly shuttle Ca2+/CaM to the nucleus and thus activate CREB-dependent transcription. Here we show that elimination of γCaMKII prevents activity-dependent expression of key genes (BDNF, c-Fos, Arc), inhibits persistent synaptic strengthening, and impairs spatial memory in vivo. Deletion of γCaMKII in adult excitatory neurons exerts similar effects. A point mutation in γCaMKII, previously uncovered in a case of intellectual disability, selectively disrupts CaM sequestration and CaM shuttling. Remarkably, this mutation is sufficient to disrupt gene expression and spatial learning in vivo. Thus, this specific form of cytonuclear signaling plays a key role in learning and memory and contributes to neuropsychiatric disease. Activity-dependent gene expression is thought to involve translocation of Ca2+/calmodulin (CaM) to the nucleus. Here, the authors examine a translocation-deficient mutant of γCaMKII, a Ca2+/CaM shuttle protein, to show that translocation of Ca2+/CaM is required for memory and synaptic plasticity.
Collapse
|
11
|
Fischer M, Raabe T. Animal Models for Coffin-Lowry Syndrome: RSK2 and Nervous System Dysfunction. Front Behav Neurosci 2018; 12:106. [PMID: 29875643 PMCID: PMC5974046 DOI: 10.3389/fnbeh.2018.00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023] Open
Abstract
Loss of function mutations in the rsk2 gene cause Coffin-Lowry syndrome (CLS), which is associated with multiple symptoms including severe mental disabilities. Despite the characterization of ribosomal S6 kinase 2 (RSK2) as a protein kinase acting as a downstream effector of the well characterized ERK MAP-kinase signaling pathway, it turns out to be a challenging task to link RSK2 to specific neuronal processes dysregulated in case of mutation. Animal models such as mouse and Drosophila combine advanced genetic manipulation tools with in vivo imaging techniques, high-resolution connectome analysis and a variety of behavioral assays, thereby allowing for an in-depth analysis for gene functions in the nervous system. Although modeling mental disability in animal systems has limitations because of the complexity of phenotypes, the influence of genetic variation and species-specific characteristics at the neural circuit and behavioral level, some common aspects of RSK2 function in the nervous system have emerged, which will be presented. Only with this knowledge our understanding of the pathophysiology of CLS can be improved, which might open the door for development of potential intervention strategies.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Wang X, Li M, Zhu H, Yu Y, Xu Y, Zhang W, Bian C. Transcriptional Regulation Involved in Fear Memory Reconsolidation. J Mol Neurosci 2018; 65:127-140. [PMID: 29796837 DOI: 10.1007/s12031-018-1084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Memory reconsolidation has been demonstrated to offer a potential target period during which the fear memories underlying fear disorders can be disrupted. Reconsolidation is a labile stage that consolidated memories re-enter after memories are reactivated. Reactivated memories, induced by cues related to traumatic events, are susceptible to strengthening and weakening. Gene transcription regulation and protein synthesis have been suggested to be required for fear memory reconsolidation. Investigating the transcriptional regulation mechanisms underlying reconsolidation may provide a therapeutic method for the treatment of fear disorders such as post-traumatic stress disorder (PTSD). However, the therapeutic effect of treating a fear disorder through interfering with reconsolidation is still contradictory. In this review, we summarize several transcription factors that have been linked to fear memory reconsolidation and propose that transcription factors, as well as related signaling pathways can serve as targets for fear memory interventions. Then, we discuss the application of pharmacological and behavioral interventions during reconsolidation that may or not efficiently treat fear disorders.
Collapse
Affiliation(s)
- Xu Wang
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
- Forth Battalion of Cadet Brigade, Army Medical University, Chongqing, 400038, China
| | - Min Li
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Haitao Zhu
- Medical Company, Troops 95848 of People's Liberation Army, Xiaogan, 432100, China
| | - Yongju Yu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Xu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Wenmo Zhang
- Department of Fundamental, Army Logistical University of PLA, Chongqing, 401331, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Apazoglou K, Farley S, Gorgievski V, Belzeaux R, Lopez JP, Grenier J, Ibrahim EC, El Khoury MA, Tse YC, Mongredien R, Barbé A, de Macedo CEA, Jaworski W, Bochereau A, Orrico A, Isingrini E, Guinaudie C, Mikasova L, Louis F, Gautron S, Groc L, Massaad C, Yildirim F, Vialou V, Dumas S, Marti F, Mechawar N, Morice E, Wong TP, Caboche J, Turecki G, Giros B, Tzavara ET. Antidepressive effects of targeting ELK-1 signal transduction. Nat Med 2018; 24:591-597. [DOI: 10.1038/s41591-018-0011-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
|
14
|
Beck K, Hovhanyan A, Menegazzi P, Helfrich-Förster C, Raabe T. Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity. Front Mol Neurosci 2018; 11:122. [PMID: 29706866 PMCID: PMC5908959 DOI: 10.3389/fnmol.2018.00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin–Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.
Collapse
Affiliation(s)
- Katherina Beck
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Anna Hovhanyan
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Institute of Neurobiology and Genetics, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome. Neurobiol Dis 2018; 115:69-81. [PMID: 29627578 DOI: 10.1016/j.nbd.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023] Open
Abstract
Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS.
Collapse
|
16
|
Fischer M, Cabello V, Popp S, Krackow S, Hommers L, Deckert J, Lesch KP, Schmitt-Böhrer AG. Rsk2 Knockout Affects Emotional Behavior in the IntelliCage. Behav Genet 2017; 47:434-448. [PMID: 28585192 DOI: 10.1007/s10519-017-9853-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022]
Abstract
Ribosomal s6 kinase 2 is a growth factor activated serine/threonine kinase and member of the ERK signaling pathway. Mutations in the Rsk2 gene cause Coffin-Lowry syndrome, a rare syndromic form of intellectual disability. The Rsk2 KO mouse model was shown to have learning and memory defects. We focused on the investigation of the emotional behavioral phenotype of Rsk2 KO mice mainly in the IntelliCage. They exhibited an anti-depressive, sucrose reward seeking phenotype and showed reduced anxiety. Spontaneous activity was increased in some conventional tests. However, KO mice did not show defects in place learning, working memory and motor impulsivity. In addition, we found changes of the monoaminergic system in HPLC and qRT-PCR experiments. Taken together, RSK2 not only plays a role in cognitive processes but also in emotional and reward-related behaviors.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany.
| | - Victoria Cabello
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany
| | - Sandy Popp
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany
| | - Sven Krackow
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany.,Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Margarete-Höppel-Platz 1, 97080, Wuerzburg, Germany
| |
Collapse
|
17
|
Hashimoto K, Tsuji Y. Arsenic-Induced Activation of the Homeodomain-Interacting Protein Kinase 2 (HIPK2) to cAMP-Response Element Binding Protein (CREB) Axis. J Mol Biol 2016; 429:64-78. [PMID: 27884605 DOI: 10.1016/j.jmb.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Cyclic AMP-response element-binding protein (CREB) plays key transcriptional roles in cell metabolism, proliferation, and survival. Ser133 phosphorylation by protein kinase A (PKA) is a well-characterized CREB activation mechanism. Homeodomain-interacting protein kinase (HIPK) 2, a nuclear serine/threonine kinase, activates CREB through Ser271 phosphorylation; however, the regulatory mechanism remains uncharacterized. Transfection of CREB in HEK293 cells together with the kinase demonstrated that HIPK2 phosphorylated CREB at Ser271 but not Ser133; likewise, PKA phosphorylated CREB at Ser133 but not Ser271, suggesting two distinct CREB regulatory mechanisms by HIPK2 and PKA. In vitro kinase assay revealed that HIPK2, and HIPK1 and HIPK3, directly phosphorylated CREB. Cells exposed to 10μM sodium arsenite increased the stability of HIPK1 and HIPK2 proteins, leading to CREB activation via Ser271 phosphorylation. Phospho-Ser271 CREB showed facilitated interaction with the TFIID subunit coactivator TAF4 assessed by immunoprecipitation. Furthermore, a focused gene array between cells transfected with CREB alone and CREB plus HIPK2 over empty vector-transfected control displayed 14- and 32-fold upregulation of cyclin A1, respectively, while no upregulation was displayed by HIPK2 alone. These results suggest that the HIPK2-phospho-Ser271 CREB axis is a new arsenic-responsive CREB activation mechanism in parallel with the PKA-phospho-Ser133 CREB axis.
Collapse
Affiliation(s)
- Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
Vogel KR, Ainslie GR, Gibson KM. mTOR inhibitors rescue premature lethality and attenuate dysregulation of GABAergic/glutamatergic transcription in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism. J Inherit Metab Dis 2016; 39:877-886. [PMID: 27518770 PMCID: PMC5114712 DOI: 10.1007/s10545-016-9959-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Recent studies have identified a role for supraphysiological gamma-aminobutyric acid (GABA) in the regulation of mechanistic target of rapamycin (mTOR), a protein kinase with pleiotropic roles in cellular development and homeostasis, including integration of growth factors and nutrient sensing and synaptic input in neurons (Lakhani et al. 2014; Vogel et al. 2015). Aldehyde dehydrogenase 5a1-deficient (aldh5a1 -/- ) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA that disrupts mitophagy and increases mitochondria number with enhanced oxidant stress. Treatment with the mTOR inhibitor, rapamycin, significantly attenuates these GABA-related anomalies. We extend those studies through characterization of additional rapamycin analog (rapalog) agents including temsirolimus, dual mTOR inhibitors [Torin 1 and 2 (Tor 1/ Tor 2), Ku-0063794, and XL-765], as well as mTOR-independent autophagy inducers [trehalose, tat-Beclin 1, tacrolimus (FK-506), and NF-449) in aldh5a1 -/- mice. Rapamycin, Tor 1, and Tor 2 rescued these mice from premature lethality associated with status epilepticus. XL-765 extended lifespan significantly and induced weight gain in aldh5a1 -/- mice; untreated aldh5a1 -/- mice failed to increase body mass. Expression profiling of animals rescued with Tor 1/Tor 2 and XL-765 revealed multiple instances of pharmacological compensation and/or correction of GABAergic and glutamatergic receptors, GABA/glutamate transporters, and GABA/glutamate-associated proteins, with Tor 2 and XL-765 showing optimal outcomes. Our studies lay the groundwork for further evaluation of mTOR inhibitors in aldh5a1 -/- mice, with therapeutic ramifications for heritable disorders of GABA and glutamate neurotransmission.
Collapse
Affiliation(s)
- Kara R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Pharmaceutical and Basic Sciences Building Room 347, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA.
| | - Garrett R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Pharmaceutical and Basic Sciences Building Room 347, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - K Michael Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Pharmaceutical and Basic Sciences Building Room 347, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| |
Collapse
|
19
|
Abstract
The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability.
Collapse
Affiliation(s)
- Hans Tomas Bjornsson
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
20
|
Anglada-Huguet M, Giralt A, Rué L, Alberch J, Xifró X. Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription dysfunction in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1255-66. [DOI: 10.1016/j.bbadis.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 04/03/2016] [Indexed: 12/20/2022]
|
21
|
van den Akker GGH, Surtel DAM, Cremers A, Hoes MFGA, Caron MM, Richardson SM, Rodrigues-Pinto R, van Rhijn LW, Hoyland JA, Welting TJM, Voncken JW. EGR1 controls divergent cellular responses of distinctive nucleus pulposus cell types. BMC Musculoskelet Disord 2016; 17:124. [PMID: 26975996 PMCID: PMC4791893 DOI: 10.1186/s12891-016-0979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. Methods To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. Results We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1β than the NP progenitor cells and aspects of this response were controlled by EGR1. Conclusions Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells’ epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0979-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current Address: Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn F G A Hoes
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen M Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Ricardo Rodrigues-Pinto
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,Current Address: Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Beck K, Ehmann N, Andlauer TFM, Ljaschenko D, Strecker K, Fischer M, Kittel RJ, Raabe T. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons. Dis Model Mech 2015; 8:1389-400. [PMID: 26398944 PMCID: PMC4631788 DOI: 10.1242/dmm.021246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023] Open
Abstract
Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.
Collapse
Affiliation(s)
- Katherina Beck
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| | - Nadine Ehmann
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Till F M Andlauer
- University of Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef-Schneider-Straße 2, Würzburg D-97080, Germany Freie Universität Berlin, Institute of Biology, Takusstraße 6, Berlin D-14195, Germany Max Planck Institute of Colloidals and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Dmitrij Ljaschenko
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Katrin Strecker
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| | - Matthias Fischer
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Füchsleinstraße 15, Würzburg 97080, Germany
| | - Robert J Kittel
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Thomas Raabe
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| |
Collapse
|
23
|
Milenkovic M, Mielnik CA, Ramsey AJ. NMDA receptor-deficient mice display sexual dimorphism in the onset and severity of behavioural abnormalities. GENES BRAIN AND BEHAVIOR 2014; 13:850-62. [PMID: 25327402 DOI: 10.1111/gbb.12183] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 01/14/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptor-deficient mice can be used to understand the role that NMDA receptors (NMDARs) play in the pathophysiology of neurodevelopmental disorders such as schizophrenia. Genetically modified mice with low levels of NR1 subunit (NR1 knockdown mice) have reduced receptor levels throughout development, and have robust abnormalities in behaviours that are relevant to schizophrenia. We traced the onset and severity of these behaviours at three developmental stages to understand when in development the underlying circuits depend on intact NMDAR function. We examined social behaviour, working memory, executive function, locomotor activity and stereotypy at 3, 6 and 12 weeks of age in NR1 knockdown mice and their wild-type littermates. We discovered that each of these behaviours had a unique developmental trajectory in mutant mice, and males showed an earlier onset and severity than females in several behaviours. Hyperlocomotion was most substantial in juvenile mice and plateaued in adult mice, whereas stereotypy progressively worsened with age. Impairments in working memory and sociability were sexually dimorphic, with deficits first detected in peri-adolescent males but only detected in adult females. Interestingly, executive function was most impaired in peri-adolescent mice of either sex. Furthermore, while juvenile mutant mice had some ability to problem solve in the puzzle box test, the same mice lost this ability when tested 4 weeks later. Our studies highlight key developmental periods for males and females in the expression of behaviours that are relevant to psychiatric disorders.
Collapse
Affiliation(s)
- M Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
24
|
Nishimoto HK, Ha K, Jones JR, Dwivedi A, Cho HM, Layman LC, Kim HG. The historical Coffin-Lowry syndrome family revisited: identification of two novel mutations of RPS6KA3 in three male patients. Am J Med Genet A 2014; 164A:2172-9. [PMID: 25044551 DOI: 10.1002/ajmg.a.36488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Abstract
Coffin-Lowry syndrome (CLS) is a rare X-linked dominant disorder characterized by intellectual disability, craniofacial abnormalities, short stature, tapering fingers, hypotonia, and skeletal malformations. CLS is caused by mutations in the Ribosomal Protein S6 Kinase, 90 kDa, Polypeptide 3 (RPS6KA3) gene located at Xp22.12, which encodes Ribosomal S6 Kinase 2 (RSK2). Here we analyzed RPS6KA3 in three unrelated CLS patients including one from the historical Coffin-Lowry syndrome family and found two novel mutations. To date, over 140 mutations in RPS6KA3 have been reported. However, the etiology of the very first familial case, which was described in 1971 by Lowry with detailed phenotype and coined the term CLS, has remained unknown. More than 40 years after the report, we succeeded in identifying deposited fibroblast cells from one patient of this historic family and found a novel heterozygous 216 bp in-frame deletion, encompassing exons 15 and 16 of RPS6KA3. Drop episodes in CLS patients were reported to be associated with truncating mutations deleting the C-terminal kinase domain (KD), and only one missense mutation and one single basepair duplication involving the C-terminal KD of RSK2 in the patients with drop episode have been reported thus far. Here we report the first in-frame deletion in C-terminal KD of RPS6KA3 in a CLS patient with drop episodes.
Collapse
Affiliation(s)
- Hiromi Koso Nishimoto
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics and Gynecology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | |
Collapse
|
25
|
PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. J Neurosci 2014; 34:4054-63. [PMID: 24623782 DOI: 10.1523/jneurosci.4024-13.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment is a quintessential feature of Alzheimer's disease (AD) and AD mouse models. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist rosiglitazone improves hippocampus-dependent cognitive deficits in some AD patients and ameliorates deficits in the Tg2576 mouse model for AD amyloidosis. Tg2576 cognitive enhancement occurs through the induction of a gene and protein expression profile reflecting convergence of the PPARγ signaling axis and the extracellular signal-regulated protein kinase (ERK) cascade, a critical mediator of memory consolidation. We therefore tested whether PPARγ and ERK associated in protein complexes that subserve cognitive enhancement through PPARγ agonism. Coimmunoprecipitation of hippocampal extracts revealed that PPARγ and activated, phosphorylated ERK (pERK) associated in Tg2576 in vivo, and that PPARγ agonism facilitated recruitment of PPARγ to pERK during memory consolidation. Furthermore, the amount of PPARγ recruited to pERK correlated with the cognitive reserve in humans with AD and in Tg2576. Our findings implicate a previously unidentified PPARγ-pERK complex that provides a molecular mechanism for the convergence of these pathways during cognitive enhancement, thereby offering new targets for therapeutic development in AD.
Collapse
|
26
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|