1
|
Imamura K, Nagahashi A, Okusa A, Sakasai T, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Sahara N, Kanaan NM, Higuchi M, Mori K, Ikeda M, Inoue H. iPSC screening identifies CACNA2D2 as a potential therapeutic target for FTLD-Tau. Eur J Cell Biol 2025; 104:151484. [PMID: 40158290 DOI: 10.1016/j.ejcb.2025.151484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Frontotemporal Lobar Degeneration (FTLD) is a neurodegenerative disorder that affects the frontal and temporal lobes, which are crucial for regulating personality, behavior, and language. Pathologically, FTLD is characterized by Tau protein accumulation and neuronal death. In our effort to identify disease-modifying treatments, we conducted drug screening using neurons derived from induced pluripotent stem cells (iPSCs) of FTLD-Tau patients. This screening identified gabapentin as an existing drug that suppresses neuronal cell death with suppressed accumulation of Tau oligomers. Treatment with gabapentinoids, including pregabalin and mirogabalin, demonstrated similar neuroprotective effects. These compounds bind to the α2δ subunit of voltage-dependent calcium channels and specifically target the two isoforms α2δ-1 and α2δ-2. To determine which isoform is involved in the neurodegeneration seen in FTLD-Tau, we employed a knockout approach using iPSCs, which revealed that α2δ-2, encoded by CACNA2D2, plays a key role in the degeneration of FTLD-Tau neurons. Moreover, Neural organoids of FTLD-Tau exhibited features indicative of neurodegeneration, and CACNA2D2 knockout reversed a part of the gene expression alterations associated with these neurodegenerative features. These findings suggest that α2δ-2 may be a promising target for disease-modifying therapies in FTLD-Tau.
Collapse
Affiliation(s)
- Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Ayako Nagahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Aya Okusa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Tomoki Sakasai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Neuroetiology and Diagnostic Science, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
2
|
Wan L, Zhong P, Li P, Ren Y, Wang W, Yu M, Feng HY, Yan Z. CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model. Neurobiol Dis 2025; 206:106826. [PMID: 39894446 DOI: 10.1016/j.nbd.2025.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
GABAergic signaling in the brain plays a key role in regulating synaptic transmission, neuronal excitability, and cognitive processes. Large-scale sequencing has revealed the diminished expression of GABA-related genes in Alzheimer's disease (AD), however, it is largely unclear about the epigenetic mechanisms that dysregulate the transcription of these genes in AD. We confirmed that GABA synthesizing enzymes, GAD1 and GAD2, were significantly downregulated in prefrontal cortex (PFC) of AD human postmortem tissues. A tauopathy mouse model also had the significantly reduced expression of GABA-related genes, as well as the diminished GABAergic synaptic transmission in PFC pyramidal neurons. To elevate endogenous Gad1 levels, we used the CRISPR/Cas9-based epigenome editing technology to recruit histone acetyltransferase p300 to Gad1. Cells transfected with a fusion protein consisting of the nuclease-null dCas9 protein and the catalytic core of p300 (dCas9p300), as well as a guide RNA targeting Gad1 promoter (gRNAGad1), had significantly increased Gad1 mRNA expression and histone acetylation at Gad1 promoter. Furthermore, the tauopathy mouse model with PFC injection of dCas9p300 and gRNAGad1 lentiviruses had significantly elevated GABAergic synaptic currents and improved spatial memory. These results have provided an epigenetic editing-based gene-targeting strategy to restore synaptic inhibition and cognitive function in AD and related disorders.
Collapse
Affiliation(s)
- Lei Wan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Pei Li
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Yong Ren
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mingjun Yu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Henry Y Feng
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
3
|
Boggess SC, Gandhi V, Tsai MC, Marzette E, Teyssier N, Chou JYY, Hu X, Cramer A, Yadanar L, Shroff K, Jeong CG, Eidenschenk C, Hanson JE, Tian R, Kampmann M. A Massively Parallel CRISPR-Based Screening Platform for Modifiers of Neuronal Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.28.582546. [PMID: 39990495 PMCID: PMC11844385 DOI: 10.1101/2024.02.28.582546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Understanding the complex interplay between gene expression and neuronal activity is crucial for unraveling the molecular mechanisms underlying cognitive function and neurological disorders. Here, we developed pooled screens for neuronal activity, using CRISPR interference (CRISPRi) and the fluorescent calcium integrator CaMPARI2. Using this screening method, we evaluated 1343 genes for their effect on excitability in human iPSC-derived neurons, revealing potential links to neurodegenerative and neurodevelopmental disorders. These genes include known regulators of neuronal excitability, such as TARPs and ion channels, as well as genes associated with autism spectrum disorder and Alzheimer's disease not previously described to affect neuronal excitability. This CRISPRi-based screening platform offers a versatile tool to uncover molecular mechanisms controlling neuronal activity in health and disease.
Collapse
|
4
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zou Y, Wang C, Li H, Zhong M, Lin J, Hu Y, Chen Z, Gan CL. Epileptic seizures induced by pentylenetetrazole kindling accelerate Alzheimer-like neuropathology in 5×FAD mice. Front Pharmacol 2024; 15:1500105. [PMID: 39545066 PMCID: PMC11560768 DOI: 10.3389/fphar.2024.1500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Clinical studies have shown that epileptic seizures worsen Alzheimer's disease (AD) pathology and related cognitive deficits; however, the underlying mechanism is unclear. To assess the effects of seizures on the progression of AD, chronic temporal lobe epilepsy was induced in five familial AD mutation (5×FAD) mice by kindling with the chemoconvulsant pentylenetetrazole (PTZ) at 3-3.5 months of age. The amyloidogenic pathway, tauopathy, synaptic damage, neuronal death, neurological inflammatory response and associated kinase signaling pathway dysregulation were examined at 9 months of age. We found that APP, p-APP, BACE1, Aβ and kinase-associated p-tau levels were elevated after PTZ kindling in 5×FAD mice. In addition, PTZ kindling exacerbated hippocampal synaptic damage and neuronal cell death, as determined by scanning electron microscopy and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, respectively. Finally, the levels of the neuroinflammation markers GFAP and Iba1, as well as the inflammatory cytokine IL-1β, were increased after PTZ insult. PTZ kindling profoundly exacerbated extracellular regulated kinase (ERK)-death-associated protein kinase (DAPK) signaling pathway overactivation, and acute ERK inhibitor treatment downregulated Aβ production and p-APP and p-tau levels in epileptic 5×FAD mice. In addition, long-term use of the antiseizure drug carbamazepine (CBZ) alleviated seizure-induced accelerated amyloid and tau pathology and ERK-DAPK overactivation in 5×FAD mice. Collectively, these results demonstrate that seizure-induced increases in AD-like neuropathology in 5×FAD mice are partially regulated by the ERK-DAPK pathway, suggesting that the ERK-DAPK axis could be a new therapeutic target for the treatment of AD patients with comorbid seizures.
Collapse
Affiliation(s)
- Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Huang Li
- Department of Pharmacy of Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Hu
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
8
|
Xie M, Miller AS, Pallegar PN, Umpierre A, Liang Y, Wang N, Zhang S, Nagaraj NK, Fogarty ZC, Ghayal NB, Oskarsson B, Zhao S, Zheng J, Qi F, Nguyen A, Dickson DW, Wu LJ. Rod-shaped microglia interact with neuronal dendrites to regulate cortical excitability in TDP-43 related neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601396. [PMID: 39005475 PMCID: PMC11244918 DOI: 10.1101/2024.06.30.601396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.
Collapse
|
9
|
Parra Bravo C, Giani AM, Madero-Perez J, Zhao Z, Wan Y, Samelson AJ, Wong MY, Evangelisti A, Cordes E, Fan L, Ye P, Zhu D, Pozner T, Mercedes M, Patel T, Yarahmady A, Carling GK, Sterky FH, Lee VMY, Lee EB, DeTure M, Dickson DW, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 2024; 187:2446-2464.e22. [PMID: 38582079 PMCID: PMC11365117 DOI: 10.1016/j.cell.2024.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alice Maria Giani
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jesus Madero-Perez
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zeping Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yuansong Wan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alessandro Evangelisti
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ethan Cordes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tatyana Pozner
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fredrik H Sterky
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Institute of Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mingrui Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
10
|
Scekic-Zahirovic J, Benetton C, Brunet A, Ye X, Logunov E, Douchamps V, Megat S, Andry V, Kan VWY, Stuart-Lopez G, Gilet J, Guillot SJ, Dirrig-Grosch S, Gorin C, Trombini M, Dieterle S, Sinniger J, Fischer M, René F, Gunes Z, Kessler P, Dupuis L, Pradat PF, Goumon Y, Goutagny R, Marchand-Pauvert V, Liebscher S, Rouaux C. Cortical hyperexcitability in mouse models and patients with amyotrophic lateral sclerosis is linked to noradrenaline deficiency. Sci Transl Med 2024; 16:eadg3665. [PMID: 38478631 DOI: 10.1126/scitranslmed.adg3665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2024] [Indexed: 05/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Cristina Benetton
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 75006 Paris, France
| | - Aurore Brunet
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Biomedical Center, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Evgeny Logunov
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Biomedical Center, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Vincent Douchamps
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Université de Strasbourg, 67000 Strasbourg, France
| | - Salim Megat
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Virginie Andry
- CNRS UPR3212, SMPMS-INCI, Mass Spectrometry Facilities, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, 67 000 Strasbourg, France
| | - Vanessa Wing Yin Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Biomedical Center, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Geoffrey Stuart-Lopez
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Johan Gilet
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Simon J Guillot
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Gorin
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Margaux Trombini
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterle
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Jérôme Sinniger
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Mathieu Fischer
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Zeynep Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Biomedical Center, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Pascal Kessler
- Inserm UMS 38, Centre de Recherche en Biomédecine de Strasbourg, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| | - Pierre-François Pradat
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 75006 Paris, France
- Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013-Paris, France
| | - Yannick Goumon
- CNRS UPR3212, SMPMS-INCI, Mass Spectrometry Facilities, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, 67 000 Strasbourg, France
| | - Romain Goutagny
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Université de Strasbourg, 67000 Strasbourg, France
| | | | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Biomedical Center, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital of Cologne, Cologne, 50937 Germany
| | - Caroline Rouaux
- Université de Strasbourg, Inserm UMRS 1329, Strasbourg Translational Neuroscience and Psychiatry (STEP), Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
11
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Chen H, Cai J, Wang A, Su W, Ji C, Zhao L. Treadmill exercise prevents the hyperexcitability of pyramidal neurons in medial entorhinal cortex in the 3xTg-AD mouse model of Alzheimer's disease. Exp Gerontol 2023; 182:112309. [PMID: 37832802 DOI: 10.1016/j.exger.2023.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Neuronal hyperactivity is a key abnormality in early stage Alzheimer's disease (AD). Medial entorhinal cortex (mEC) plays a vital role in memory function and is affected early in AD. Growing evidence indicates benefits of regular exercise on memory and cognitive function in humans with AD, although, the underlying mechanisms are not clear. Therefore, this study was designed to test the effects of 16 weeks treadmill exercise on spatial learning memory and the underlying cellular mechanisms in 6-month-old 3xTg-AD mice. Whole-cell patch clamp was used to examine neuronal intrinsic excitability, spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents (sIPSCs) of mEC layer II/III pyramidal neurons in the following groups: wild type (WT + sham), 3xTg-AD (AD+sham), WT receiving exercise (WT + Ex), and AD receiving exercise (AD+Ex). We found that at a behavioral level, treadmill exercise decreased working memory errors in radial arm maze (RAM) test in 6-month-old AD mice. At a cellular level, we found that treadmill exercise prevented the abnormal increase in mEC pyramidal neuron input resistance and action potential firing in 6-month-old 3xTg-AD mice compared with WT + sham and AD+Ex mice; further, sEPSC amplitude and frequency were normal in AD+Ex but overactive in AD+sham; additionally, GABAergic inhibition was normal in AD+Ex mice but reduced in AD+sham. In conclusion, our results indicate that treadmill exercise improves spatial learning memory and prevents network hyperexcitability in mEC by reducing pyramidal neuronal intrinsic excitability and normalizing excitatory and inhibitory synaptic transmission in 3xTg-AD mice.
Collapse
Affiliation(s)
- Huimin Chen
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China.
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Aozhe Wang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Wantang Su
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China.
| | - Chunyan Ji
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
14
|
Bravo CP, Giani AM, Perez JM, Zhao Z, Samelson A, Wong MY, Evangelisti A, Fan L, Pozner T, Mercedes M, Ye P, Patel T, Yarahmady A, Carling G, Lee VMY, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.544278. [PMID: 37745431 PMCID: PMC10516028 DOI: 10.1101/2023.06.19.544278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to lack of appropriate human models. Current human induced pluripotent stem cell (hiPSC)-derived neurons express very low levels of 4-repeat (4R)-tau isoforms that are normally expressed in adult brain. Here, we engineered new iPSC lines to express 4R-tau and 4R-tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes, including shared transcriptomic signatures, autophagic body accumulation, and impaired neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of Tau-seeding-induced Tau propagation, including retromer VPS29 and the UFMylation cascade as top modifiers. In AD brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade suppressed seeding-induced Tau propagation. This model provides a powerful platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
|
15
|
Early impairments of visually-driven neuronal ensemble dynamics in the rTg4510 tauopathy mouse model. Neurobiol Dis 2023; 178:106012. [PMID: 36696792 DOI: 10.1016/j.nbd.2023.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Collapse
|
16
|
Dahal A, Govindarajan K, Kar S. Administration of Kainic Acid Differentially Alters Astrocyte Markers and Transiently Enhanced Phospho-tau Level in Adult Rat Hippocampus. Neuroscience 2023; 516:27-41. [PMID: 36805001 DOI: 10.1016/j.neuroscience.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Kainic acid (KA), an analogue of the excitatory neurotransmitter glutamate, when administered systemically can trigger seizures and neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy (mTLE), which affects ∼50 million people globally. Evidence suggests that changes in astrocytes which precede neuronal damage play an important role in the degeneration of neurons and/or development of seizures in TLE pathogenesis. Additionally, a role for microtubule associated tau protein, involved in various neurodegenerative diseases including Alzheimer's disease, has also been suggested in the development of seizure and/or neurodegeneration in TLE pathogenesis. At present, possible alterations of different subtypes of astrocytes and their association, if any, with tau protein in TLE remain unclear. In this study, we evaluated alterations of different subtypes of astrocytes and phospho-/cleaved-tau levels in KA-treated rat model of TLE. Our results reveal that levels/expression of various astrocyte markers such as GFAP, vimentin, S100B, Aldh1L1, but not GS, are increased in the hippocampus of KA-treated rats. The levels/expression of both A1(C3+) and A2(S100A10+)-like astrocytes are also increased in KA-treated rats. Concurrently, the total (Tau1 and Tau5) and phospho-tau (AT270 and PHF1) levels are transiently enhanced following KA administration. Furthermore, the level/expression of cleaved-tau, which is apparent in a subset of GFAP-, S100B- and A2-positive astrocytes, are increased in KA-treated rats. These results, taken together, suggest a differential role for various astrocytic subpopulations and tau protein in the development of seizure and/or loss of neurons in KA model of TLE and possibly in human mTLE pathogenesis.
Collapse
Affiliation(s)
- Abhishek Dahal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Karthivashan Govindarajan
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Satyabrata Kar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2M8, Canada.
| |
Collapse
|
17
|
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, Karl T, Kovacs GG, Morahan G, Ke YD, Ittner LM. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathol 2022; 144:637-650. [PMID: 35780436 PMCID: PMC9467963 DOI: 10.1007/s00401-022-02457-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), where amyloid-β (Aβ) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aβ- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mian Bi
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shelley L Forrest
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, M5S 2S1, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia
| | - Yazi D Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
18
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
19
|
Govaarts R, Beeldman E, Fraschini M, Griffa A, Engels MMA, van Es MA, Veldink JH, van den Berg LH, van der Kooi AJ, Pijnenburg YAL, de Visser M, Stam CJ, Raaphorst J, Hillebrand A. Cortical and subcortical changes in resting-state neuronal activity and connectivity in early symptomatic ALS and advanced frontotemporal dementia. Neuroimage Clin 2022; 34:102965. [PMID: 35217500 PMCID: PMC8867127 DOI: 10.1016/j.nicl.2022.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023]
Abstract
The objective of this study was to examine if patterns of resting-state brain activity and functional connectivity in cortical and subcortical regions in patients with early symptomatic amyotrophic lateral sclerosis (ALS) resemble those of behavioural variant frontotemporal dementia (bvFTD). In a cross-sectional design, eyes-closed resting-state magnetoencephalography (MEG) data of 34 ALS patients, 18 bvFTD patients and 18 age- and gender-matched healthy controls (HCs) were projected to source-space using an atlas-based beamformer. Group differences in peak frequency, band-specific oscillatory activity and functional connectivity (corrected amplitude envelope correlation) in 78 cortical regions and 12 subcortical regions were determined. False discovery rate was used to correct for multiple comparisons. BvFTD patients, as compared to ALS and HCs, showed lower relative beta power in parietal, occipital, temporal and nearly all subcortical regions. Compared to HCs, patients with ALS and patients with bvFTD had a higher delta (0.5-4 Hz) and gamma (30-48 Hz) band resting-state functional connectivity in a high number of overlapping regions in the frontal lobe and in limbic and subcortical regions. Higher delta band connectivity was widespread in the bvFTD patients compared to HCs. ALS showed a more widespread higher gamma band functional connectivity compared to bvFTD. In conclusion, MEG in early symptomatic ALS patients shows resting-state functional connectivity changes in frontal, limbic and subcortical regions that overlap considerably with bvFTD. The findings show the potential of MEG to detect brain changes in early symptomatic phases of ALS and contribute to our understanding of the disease spectrum, with ALS and bvFTD at the two extreme ends.
Collapse
Affiliation(s)
- Rosanne Govaarts
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Emma Beeldman
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matteo Fraschini
- University of Cagliari, Department of Electrical and Electronic Engineering, Cagliari, Italy
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center of Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Marjolein M A Engels
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michael A van Es
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Jan H Veldink
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Leonard H van den Berg
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Anneke J van der Kooi
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Amsterdam University Medical Centers, Vrije Universiteit, Alzheimer Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne de Visser
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
21
|
Chronic Intermittent Hypoxia Enhances Pathological Tau Seeding, Propagation, and Accumulation and Exacerbates Alzheimer-like Memory and Synaptic Plasticity Deficits and Molecular Signatures. Biol Psychiatry 2022; 91:346-358. [PMID: 34130857 PMCID: PMC8895475 DOI: 10.1016/j.biopsych.2021.02.973] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obstructive sleep apnea, characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), is a risk factor for Alzheimer's disease (AD) progression. Recent epidemiological studies point to CIH as the best predictor of developing cognitive decline and AD in older adults with obstructive sleep apnea. However, the precise underlying mechanisms remain unknown. This study was undertaken to evaluate the effect of CIH on pathological human tau seeding, propagation, and accumulation; cognition; synaptic plasticity; neuronal network excitability; and gene expression profiles in a P301S human mutant tau mouse model of AD and related tauopathies. METHODS We exposed 4- to 4.5-month-old male P301S and wild-type mice to an 8-week CIH protocol (6-min cycle: 21% O2 to 8% O2 to 21% O2, 80 cycles per 8 hours during daytime) and assessed its effect on tau pathology and various AD-related phenotypic and molecular signatures. Age- and sex-matched P301S and wild-type mice were reared in normoxia (21% O2) as experimental controls. RESULTS CIH significantly enhanced pathological human tau seeding and spread across connected brain circuitry in P301S mice; it also increased phosphorylated tau load. CIH also exacerbated memory and synaptic plasticity deficits in P301S mice. However, CIH had no effect on seizure susceptibility and network hyperexcitability in these mice. Finally, CIH exacerbated AD-related pathogenic molecular signaling in P301S mice. CONCLUSIONS CIH-induced increase in pathologic human tau seeding and spread and exacerbation of other AD-related impairments provide new insights into the role of CIH and obstructive sleep apnea in AD pathogenesis.
Collapse
|
22
|
Pasniceanu IS, Atwal MS, Souza CDS, Ferraiuolo L, Livesey MR. Emerging Mechanisms Underpinning Neurophysiological Impairments in C9ORF72 Repeat Expansion-Mediated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Front Cell Neurosci 2021; 15:784833. [PMID: 34975412 PMCID: PMC8715728 DOI: 10.3389/fncel.2021.784833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Matthew R. Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Haoudy S, Jonveaux T, Puisieux S, Epstein J, Hopes L, Maillard L, Aron O, Tyvaert L. Epilepsy in Early Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:615-626. [PMID: 34864663 DOI: 10.3233/jad-210681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epilepsy seems to be an important comorbidity in patients with early onset Alzheimer's disease (EOAD). Currently, seizures are still underestimated in this population. However, seizures may interact with AD evolution with possible acceleration of cognitive decline. OBJECTIVE To better define the epileptic disorders observed in patients with EOAD. METHODS All patients diagnosed as EOAD in our hospital between 2013 and 2019 with positive CSF biomarkers for AD were selected. The usual follow-up was extended with a 3-h EEG and a consultation with an epilepsy expert. Information on epilepsy and AD were collected and analyzed. RESULTS Among the 25 included patients, 10 (40%) were classified as epileptic. Seizure types were tonic-clonic (25%), typical temporal seizures (25%), myoclonus (25%), focal extra-temporal seizures (8%), and other seizure types (17%). AD-E patients had a significant lower MMSE (15.3±8.4 AD-E versus 22.1±5.1 AD-NE, p = 0.036) and a lower autonomy (IADL 4.1±2.7 AD-E versus 6.4±1.9 AD-NE, p = 0.046) at AD diagnosis with comparable ages between AD-E and AD-NE. Epileptic patients seemed to present a faster cognitive decline ([ΔMMSE per year 1.7±1.3 AD-E versus 0.9±1.4 AD-NE; p = 0.09). All patients with severe cognitive impairment (MMSE ≤ 10) had an epileptic comorbidity. CONCLUSION Epilepsy is a frequent comorbidity in EOAD patients, with a percentage of 40%in our study. This comorbidity may be associated with a severe form of EOAD. The role of epilepsy in the acceleration of cognitive decline and the positive impact of antiepileptic drugs on cognition need further research.
Collapse
Affiliation(s)
- Sarah Haoudy
- Department of Neurology, University Hospital Nancy, France
| | - Thérèse Jonveaux
- Department of Neurology, University Hospital Nancy, France.,CMRR, University Hospital Nancy, France.,Laboratoire Lorrain de Psychologie et deNeurosciences de la Dynamique des Comportements 2LPN EA 7489
| | | | - Jonathan Epstein
- Department of Clinical Epidemiology, INSERM, University of Lorraine and University Hospital Nancy, France
| | - Lucie Hopes
- Department of Neurology, University Hospital Nancy, France
| | - Louis Maillard
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France.,University of Lorraine Nancy, France
| | - Olivier Aron
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France
| | - Louise Tyvaert
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France.,University of Lorraine Nancy, France
| |
Collapse
|
24
|
Chang CW, Evans MD, Yu X, Yu GQ, Mucke L. Tau reduction affects excitatory and inhibitory neurons differently, reduces excitation/inhibition ratios, and counteracts network hypersynchrony. Cell Rep 2021; 37:109855. [PMID: 34686344 PMCID: PMC8648275 DOI: 10.1016/j.celrep.2021.109855] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
The protein tau has been implicated in many brain disorders. In animal models, tau reduction suppresses epileptogenesis of diverse causes and ameliorates synaptic and behavioral abnormalities in various conditions associated with excessive excitation-inhibition (E/I) ratios. However, the underlying mechanisms are unknown. Global genetic ablation of tau in mice reduces the action potential (AP) firing and E/I ratio of pyramidal cells in acute cortical slices without affecting the excitability of these cells. Tau ablation reduces the excitatory inputs to inhibitory neurons, increases the excitability of these cells, and structurally alters their axon initial segments (AISs). In primary neuronal cultures subjected to prolonged overstimulation, tau ablation diminishes the homeostatic response of AISs in inhibitory neurons, promotes inhibition, and suppresses hypersynchrony. Together, these differential alterations in excitatory and inhibitory neurons help explain how tau reduction prevents network hypersynchrony and counteracts brain disorders causing abnormally increased E/I ratios.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mark D Evans
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Dávila-Bouziguet E, Casòliba-Melich A, Targa-Fabra G, Galera-López L, Ozaita A, Maldonado R, Ávila J, Delgado-García JM, Gruart A, Soriano E, Pascual M. Functional protection in J20/VLW mice: a model of non-demented with Alzheimer's disease neuropathology. Brain 2021; 145:729-743. [PMID: 34424282 DOI: 10.1093/brain/awab319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease comprises amyloid-β and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms, and cognitive deficits. Non-Demented with Alzheimer's disease Neuropathology (NDAN) defines a novel clinical entity with amyloid-β and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of NDAN are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-β and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-β accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in NDAN. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.
Collapse
Affiliation(s)
- Eva Dávila-Bouziguet
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Arnau Casòliba-Melich
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Georgina Targa-Fabra
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain
| | - José M Delgado-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain.,Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Agnès Gruart
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain.,Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| |
Collapse
|
26
|
Mostovenko E, Saunders S, Muldoon PP, Bishop L, Campen MJ, Erdely A, Ottens AK. Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicol Sci 2021; 182:107-119. [PMID: 33892499 DOI: 10.1093/toxsci/kfab042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unique physicochemical properties of carbon nanomaterials and their ever-growing utilization generate a serious concern for occupational risk. Pulmonary exposure to these nanoparticles induces local and systemic inflammation, cardiovascular dysfunction, and even cognitive deficits. Although multiple routes of extrapulmonary toxicity have been proposed, the mechanism for and manner of neurologic effects remain minimally understood. Here, we examine the cerebral spinal fluid (CSF)-derived peptidomic fraction as a reflection of neuropathological alterations induced by pulmonary carbon nanomaterial exposure. Male C57BL/6 mice were exposed to 10 or 40 µg of multiwalled carbon nanotubes (MWCNT) by oropharyngeal aspiration. Serum and CSFs were collected 4 h post exposure. An enriched peptide fraction of both biofluids was analyzed using ion mobility-enabled data-independent mass spectrometry for label-free quantification. MWCNT exposure induced a prominent peptidomic response in the blood and CSF; however, correlation between fluids was limited. Instead, we determined that a MWCNT-induced peptidomic shift occurred specific to the CSF with 292 significant responses found that were not in serum. Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), antiplastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. Overall, the significant pathologic changes observed were consistent with early neurodegenerative disease and were diagnostically reflected in the CSF peptidome.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Samantha Saunders
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
27
|
Cloyd RA, Koren J, Abisambra JF, Smith BN. Effects of altered tau expression on dentate granule cell excitability in mice. Exp Neurol 2021; 343:113766. [PMID: 34029610 DOI: 10.1016/j.expneurol.2021.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Tauopathies, including Alzheimer's disease, are characterized by progressive accumulation of hyperphosphorylated and pathologic tau protein in association with onset of cognitive and behavioral impairment. Tau pathology is also associated with increased susceptibility to seizures and epilepsy, with tau-/- mice showing seizure resistance in some epilepsy models. To better understand how tau pathology is related to neuronal excitability, we performed whole-cell patch-clamp electrophysiology in dentate gyrus granule cells of tau-/- and human-tau expressing, htau mice. The htau mouse is unique from other transgenic tau models in that the endogenous murine tau gene has been and replaced with readily phosphorylated human tau. We assessed several measures of neuronal excitability, including evoked action potential frequency and excitatory synaptic responses in dentate granule cells from tau-/-, htau, and non-transgenic control mice at 1.5, 4, and 9 months of age. Compared to age matched controls, dentate granule cells from both tau-/- and htau mice had a lower peak frequency of evoked action potentials and greater paired pulse facilitation, suggesting reduced neuronal excitability. Our results suggest that neuronal excitability is more strongly influenced by the absence of functional tau than by the presence of pathologic tau. These results also suggest that tau's effect on neuronal excitability is more complex than previously understood.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John Koren
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Neuronal Network Excitability in Alzheimer's Disease: The Puzzle of Similar versus Divergent Roles of Amyloid β and Tau. eNeuro 2021; 8:ENEURO.0418-20.2020. [PMID: 33741601 PMCID: PMC8174042 DOI: 10.1523/eneuro.0418-20.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aβ and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aβ production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aβ on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.
Collapse
|
29
|
Saint M, Alakbarzade V, McLean B. Frontotemporal Dementia with Parkinsonism and Epilepsy Associated with VGKC Antibodies: Case Report and Literature Review. Case Rep Neurol 2021; 13:205-210. [PMID: 33976657 PMCID: PMC8077438 DOI: 10.1159/000513852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
Antibodies directed against the voltage-gated potassium channel complex (anti-VGKCs) are implicated in several autoimmune conditions including limbic encephalitis and epilepsy. However, emerging evidence suggests that only specific subtypes of anti-VGKCs are pathogenic. We present the case of a 55-year-old man who initially presented with focal unaware seizures and behavioural changes mimicking anti-VGKC-seropositive encephalitis that further progressed to parkinsonism with evidence of frontotemporal dementia and pre-synaptic dopaminergic deficit. Aggressive treatment with immunotherapy was ineffective, and antibody subtyping later revealed the anti-VGKC antibodies to be negative for leucine-rich glioma-associated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) − the two known pathogenic subtypes. The clinical relevance of so-called “double-negative” anti-VGKCs (i.e., those not directed towards LGI1 or CASPR2) has been called into question in recent years, with evidence to suggest they may be clinically insignificant. Our case emphasises the importance of antibody subtyping in cases of anti-VGKC seropositivity; negative results, particularly when combined with a poor response to immunotherapy, should prompt a rapid reconsideration of the working diagnosis.
Collapse
Affiliation(s)
- Matthew Saint
- College of Medicine and Health, Exeter, United Kingdom
| | - Vafa Alakbarzade
- Department of Neurology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Brendan McLean
- Department of Neurology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| |
Collapse
|
30
|
Lamoureux L, Marottoli FM, Tseng KY, Tai LM. APOE4 Promotes Tonic-Clonic Seizures, an Effect Modified by Familial Alzheimer's Disease Mutations. Front Cell Dev Biol 2021; 9:656521. [PMID: 33796539 PMCID: PMC8007905 DOI: 10.3389/fcell.2021.656521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Seizures are emerging as a common symptom in Alzheimer's disease (AD) patients, often attributed to high levels of amyloid β (Aβ). However, the extent that AD disease risk factors modulate seizure activity in aging and AD-relevant contexts is unclear. APOE4 is the greatest genetic risk factor for AD and has been linked to seizures independent of AD and Aβ. The goal of the present study was to evaluate the role of APOE genotype in modulating seizures in the absence and presence of high Aβ levels in vivo. To achieve this goal, we utilized EFAD mice, which express human APOE3 or APOE4 in the absence (EFAD-) or presence (EFAD+) of familial AD mutations that result in Aβ overproduction. When quantified during cage change day, we found that unlike APOE3, APOE4 is associated with tonic-clonic seizures. Interestingly, there were lower tonic-clonic seizures in E4FAD+ mice compared to E4FAD- mice. Restraint handing and auditory stimuli failed to recapitulate the tonic-clonic phenotype in EFAD mice that express APOE4. However, after chemical-induction with pentylenetetrazole, there was a higher incidence of tonic-clonic seizures with APOE4 compared to APOE3. Interestingly, the distribution of seizures to the tonic-clonic phenotype was higher with FAD mutations. These data support that APOE4 is associated with higher tonic-clonic seizures in vivo, and that FAD mutations impact tonic-clonic seizures in a paradigm dependent manner.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021; 371:371/6532/eabb8255. [PMID: 33632820 DOI: 10.1126/science.abb8255] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
32
|
Perkins EM, Burr K, Banerjee P, Mehta AR, Dando O, Selvaraj BT, Suminaite D, Nanda J, Henstridge CM, Gillingwater TH, Hardingham GE, Wyllie DJA, Chandran S, Livesey MR. Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction. Mol Neurodegener 2021; 16:13. [PMID: 33663561 PMCID: PMC7931347 DOI: 10.1186/s13024-021-00433-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. METHODS To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. RESULTS We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. CONCLUSION These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.
Collapse
Affiliation(s)
- Emma M. Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Poulomi Banerjee
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Arpan R. Mehta
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Bhuvaneish T. Selvaraj
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Jyoti Nanda
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Christopher M. Henstridge
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - David J. A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Matthew R. Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ UK
| |
Collapse
|
33
|
Przybyla M, van Eersel J, van Hummel A, van der Hoven J, Sabale M, Harasta A, Müller J, Gajwani M, Prikas E, Mueller T, Stevens CH, Power J, Housley GD, Karl T, Kassiou M, Ke YD, Ittner A, Ittner LM. Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. Brain 2021; 143:1889-1904. [PMID: 32375177 DOI: 10.1093/brain/awaa133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023] Open
Abstract
Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.
Collapse
Affiliation(s)
- Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Anne Harasta
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Julius Müller
- Genome Informatics at Molecular Health GmbH, Heidelberg, Germany
| | - Mehul Gajwani
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Emmanuel Prikas
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Thomas Mueller
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and the Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - John Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| |
Collapse
|
34
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Adan G, Mitchell JW, Ziso B, Larner AJ. Diagnosis and Management of Seizures in Neurodegenerative Diseases. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-020-00656-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
|
37
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [PMID: 32998028 DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
38
|
K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed Behaviour. Neuroscience 2020; 449:46-62. [PMID: 32949670 DOI: 10.1016/j.neuroscience.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
Pathological forms of the microtubule-associated protein tau are involved in a large group of neurodegenerative diseases named tauopathies, including frontotemporal lobar degeneration (FTLD-tau). K369I mutant tau transgenic mice (K3 mice) recapitulate neural and behavioural symptoms of FTLD, including tau aggregates in the cortex, alterations to nigrostriatum, memory deficits and parkinsonism. The aim of this study was to further characterise the K3 mouse model by examining functional alterations to the striatum. Whole-cell patch-clamp electrophysiology was used to investigate the properties of striatal neurons in K3 mice and wildtype controls. Additionally, striatal-based instrumental learning tasks were conducted to assess goal-directed versus habitual behaviours (i.e., by examining sensitivity to outcome devaluation and progressive ratios). The K3 model demonstrated significant alterations in the discharge properties of striatal neurons relative to wildtype mice, which manifested as a shift in neuronal output towards a burst firing state. K3 mice acquired goal-directed responding faster than control mice and were goal-directed at test unlike wildtype mice, which is likely to indicate reduced capacity to develop habitual behaviour. The observed pattern of behaviour in K3 mice is suggestive of deficits in dorsal lateral striatal function and this was supported by our electrophysiological findings. Thus, both the electrophysiological and behavioural alterations indicate that K3 mice have early deficits in striatal function. This finding adds to the growing literature which indicate that the striatum is impacted in tau-related neuropathies such as FTLD, and further suggests that the K3 model is a unique mouse model for investigating FTLD especially with striatal involvement.
Collapse
|
39
|
Rodriguez GA, Barrett GM, Duff KE, Hussaini SA. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol 2020; 18:e3000851. [PMID: 32822389 PMCID: PMC7467290 DOI: 10.1371/journal.pbio.3000851] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/02/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
High levels of the amyloid-beta (Aβ) peptide have been shown to disrupt neuronal function and induce hyperexcitability, but it is unclear what effects Aβ-associated hyperexcitability may have on tauopathy pathogenesis or propagation in vivo. Using a novel transgenic mouse line to model the impact of human APP (hAPP)/Aβ accumulation on tauopathy in the entorhinal cortex–hippocampal (EC-HIPP) network, we demonstrate that hAPP overexpression aggravates EC-Tau aggregation and accelerates pathological tau spread into the hippocampus. In vivo recordings revealed a strong role for hAPP/Aβ, but not tau, in the emergence of EC neuronal hyperactivity and impaired theta rhythmicity. Chronic chemogenetic attenuation of EC neuronal hyperactivity led to reduced hAPP/Aβ accumulation and reduced pathological tau spread into downstream hippocampus. These data strongly support the hypothesis that in Alzheimer’s disease (AD), Aβ-associated hyperactivity accelerates the progression of pathological tau along vulnerable neuronal circuits, and demonstrates the utility of chronic, neuromodulatory approaches in ameliorating AD pathology in vivo. A novel, triple transgenic mouse model of Alzheimer's disease reveals that amyloid beta-associated neuronal hyperactivity and network dysfunction accelerates the spread of pathological tau from the entorhinal cortex into the hippocampus. Chronic attenuation of neuronal activity using chemogenetics reduces this effect, supporting a role for neuronal hyperactivity in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Gustavo A. Rodriguez
- Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Geoffrey M. Barrett
- Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Karen E. Duff
- Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
- UK Dementia Research Institute at University College London, London, United Kingdom
- * E-mail: (SAH); (KED)
| | - S. Abid Hussaini
- Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail: (SAH); (KED)
| |
Collapse
|
40
|
Valls-Carbó A, Gajate V, Romeral M, Gutiérrez-Viedma Á, Parejo-Carbonell B, Cabrera-Martín MN, Matías-Guiu J, Matías-Guiu JA, García-Morales I. Non-Convulsive Status Epilepticus in Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2020; 77:985-991. [PMID: 32804149 DOI: 10.3233/jad-200512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epilepsy in frontotemporal dementia is considered to be less frequent than in Alzheimer's disease. We report two cases of patients with non-convulsive status epilepticus associated with behavioral variant frontotemporal dementia. In the first case, status epilepticus was the first symptom of the disease, and consisted of loss of consciousness and mutism. In the second case, status epilepticus led to a clinical worsening one year after the diagnosis. Our study highlights the importance of suspecting non-convulsive status epilepticus in patients with frontotemporal dementia, and including frontotemporal dementia within the differential diagnosis of new-onset seizures.
Collapse
Affiliation(s)
- Adrián Valls-Carbó
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Vicente Gajate
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Romeral
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Gutiérrez-Viedma
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Parejo-Carbonell
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Nieves Cabrera-Martín
- Nuclear Medicine, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Irene García-Morales
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Harris SS, Wolf F, De Strooper B, Busche MA. Tipping the Scales: Peptide-Dependent Dysregulation of Neural Circuit Dynamics in Alzheimer’s Disease. Neuron 2020; 107:417-435. [DOI: 10.1016/j.neuron.2020.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
42
|
Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:303-324. [PMID: 32739009 DOI: 10.1016/bs.irn.2020.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aβ42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.
Collapse
|
43
|
Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res Bull 2020; 160:107-120. [DOI: 10.1016/j.brainresbull.2020.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
44
|
Gomez-Murcia V, Sandau U, Ferry B, Parrot S, Laurent C, Basquin M, Buée L, Boison D, Blum D. Hyperexcitability and seizures in the THY-Tau22 mouse model of tauopathy. Neurobiol Aging 2020; 94:265-270. [PMID: 32679397 DOI: 10.1016/j.neurobiolaging.2020.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Epileptic seizures constitute a significant comorbidity of Alzheimer's disease (AD), which are recapitulated in transgenic mouse models of amyloidogenesis. Here, we sought to evaluate the potential role of tau pathology regarding seizure occurrence. To this end, we performed intra-hippocampal electroencephalogram (EEG) recordings and PTZ (pentylenetetrazol) seizure threshold tests in THY-Tau22 transgenic mice of AD-like tau pathology. We demonstrate that despite a lack of spontaneous epileptiform activity in Tau22 mice, the animals display increased PTZ-induced seizure susceptibility and mortality. The increased propensity for induced seizures in THY-Tau22 mutants correlates with astrogliosis and increased expression of adenosine kinase, consistent with increased network excitability. These data support an impact of tau pathology toward AD-associated seizures and suggest that tau pathology may contribute to seizure generation in AD independent of Aβ pathology.
Collapse
Affiliation(s)
- Victoria Gomez-Murcia
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Ursula Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Sciences University, Portland, OR, USA
| | - Barbara Ferry
- Centre of Research in Neuroscience Lyon, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Bron, France
| | - Sandrine Parrot
- Centre of Research in Neuroscience Lyon, CNRS UMR 5292 - INSERM U 1028 - Université Claude Bernard Lyon 1, Bron, France
| | - Cyril Laurent
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Marie Basquin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| |
Collapse
|
45
|
Unravelling the Role of Glycogen Synthase Kinase-3 in Alzheimer's Disease-Related Epileptic Seizures. Int J Mol Sci 2020; 21:ijms21103676. [PMID: 32456185 PMCID: PMC7279454 DOI: 10.3390/ijms21103676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. An increasing body of evidence describes an elevated incidence of epilepsy in patients with AD, and many transgenic animal models of AD also exhibit seizures and susceptibility to epilepsy. However, the biological mechanisms that underlie the occurrence of seizure or increased susceptibility to seizures in AD is unknown. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates various cellular signaling pathways, and plays a crucial role in the pathogenesis of AD. It has been suggested that GSK-3 might be a key factor that drives epileptogenesis in AD by interacting with the pathological hallmarks of AD, amyloid precursor protein (APP) and tau. Furthermore, seizures may also contribute to the progression of AD through GSK-3. In this way, GSK-3 might be involved in initiating a vicious cycle between AD and seizures. This review aims to summarise the possible role of GSK-3 in the link between AD and seizures. Understanding the role of GSK-3 in AD-associated seizures and epilepsy may help researchers develop new therapeutic approach that can manage seizure and epilepsy in AD patients as well as decelerate the progression of AD.
Collapse
|
46
|
Arnaldi D, Donniaquio A, Mattioli P, Massa F, Grazzini M, Meli R, Filippi L, Grisanti S, Famà F, Terzaghi M, Girtler N, Brugnolo A, Doglione E, Pardini M, Villani F, Nobili F. Epilepsy in Neurodegenerative Dementias: A Clinical, Epidemiological, and EEG Study. J Alzheimers Dis 2020; 74:865-874. [DOI: 10.3233/jad-191315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Matteo Grazzini
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Riccardo Meli
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Laura Filippi
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Stefano Grisanti
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Francesco Famà
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Doglione
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Flavio Nobili
- Department of Neuroscience (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
47
|
Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model. J Neurosci 2020; 40:3491-3501. [PMID: 32265258 DOI: 10.1523/jneurosci.2880-19.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [11C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies.SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11C]ABP688 and [11C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy.
Collapse
|
48
|
What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 2020; 85:58-73. [DOI: 10.1016/j.neurobiolaging.2019.09.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
|
49
|
Van Erum J, Valkenburg F, Van Dam D, De Deyn PP. Pentylenetetrazole-induced Seizure Susceptibility in the Tau58/4 Transgenic Mouse Model of Tauopathy. Neuroscience 2019; 425:112-122. [PMID: 31785360 DOI: 10.1016/j.neuroscience.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022]
Abstract
In several tauopathies such as Alzheimer's disease (AD), an increased incidence of seizures is observed. Tau, one of the major proteins implicated in AD pathology, is an important regulator of neural network excitability and might participate in the underlying epileptic cascade. However, the mechanisms underlying this relationship are not fully elucidated. We aim to investigate this mechanism by analyzing seizure susceptibility to the convulsant pentylenetetrazole (PTZ) in a novel rodent tauopathy model. A single dose of PTZ was systemically injected in Tau58/4 transgenic mice. To investigate whether young and aged heterozygous (HET) mice exhibit a higher susceptibility to seizures in comparison with wild-type (WT) littermates, video electroencephalography (EEG) in combination with behavioral scoring according to a modified Racine scale was used. The employment of different dosage groups enabled us to characterize the dose range reliably inducing seizures. Here, we report an increased seizure susceptibility in young but not in old HET Tau58/4 mice. Young HET animals displayed more severe seizures and had a reduced latency to the first seizure compared to WTs. Also, age-related differences in susceptibility could be demonstrated for both genotypes. Identification and targeting of secondary diseases such as epilepsy, which aggravate dementia and lead to earlier institutionalization, is key. This study finds that tau pathology itself is sufficient to alter seizure susceptibility in a rodent model, indicating that the disease process is crucial in the emergence of epilepsy in patients with tauopathy.
Collapse
Affiliation(s)
- Jan Van Erum
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Femke Valkenburg
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium; Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium; Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands; Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|
50
|
Gureviciene I, Ishchenko I, Ziyatdinova S, Jin N, Lipponen A, Gurevicius K, Tanila H. Characterization of Epileptic Spiking Associated With Brain Amyloidosis in APP/PS1 Mice. Front Neurol 2019; 10:1151. [PMID: 31781019 PMCID: PMC6861424 DOI: 10.3389/fneur.2019.01151] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptic activity without visible convulsions is common in Alzheimer's disease (AD) and may contribute adversely to the disease progress and symptoms. Transgenic mice with amyloid plaque pathology also display epileptic seizures, but those are too infrequent to assess the effect of anti-epileptic treatments. Besides spontaneous seizures, these mice also display frequent epileptic spiking in epidural EEG recordings, and these have provided a means to test potential drug treatment to AD-related epilepsy. However, the origin of EEG spikes in transgenic AD model mice has remained elusive, which makes it difficult to relate electrophysiology with underlying pathology at the cellular and molecular level. Using multiple cortical and subcortical electrodes in freely moving APP/PS1 transgenic mice and their wild-type littermates, we identified several types of epileptic spikes among over 15 800 spikes visible with cortical screw electrodes based on their source localization. Cortical spikes associated with muscle twitches, cortico-hippocampal spikes, and spindle and fast-spindle associated spikes were present equally often in both APP/PS1 and wild-type mice, whereas pure cortical spikes were slightly more common in APP/PS1 mice. In contrast, spike-wave discharges, cortico-hippocampal spikes with after hyperpolarization and giant spikes were seen almost exclusively in APP/PS1 mice but only in a subset of them. Interestingly, different subtypes of spikes responded differently to anti-epileptic drugs ethosuximide and levetiracetam. From the translational point most relevant may be the giant spikes generated in the hippocampus that reached an amplitude up to ± 5 mV in the hippocampal channel. As in AD patients, they occurred exclusively during sleep. Further, we could demonstrate that a high number of giant spikes in APP/PS1 mice predicts seizures. These data show that by only adding a pair of hippocampal deep electrodes and EMG to routine cortical epidural screw electrodes and by taking into account underlying cortical oscillations, one can drastically refine the analysis of cortical spike data. This new approach provides a powerful tool to preclinical testing of potential new treatment options for AD related epilepsy.
Collapse
Affiliation(s)
- Irina Gureviciene
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Irina Ishchenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Sofya Ziyatdinova
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Nanxiang Jin
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|