1
|
SheikhBahaei S, Millwater M, Maguire GA. Stuttering as a spectrum disorder: A hypothesis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100116. [PMID: 38020803 PMCID: PMC10663130 DOI: 10.1016/j.crneur.2023.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Gerald A. Maguire
- CenExel Research/ American University of Health Sciences, Signal Hill, CA, 90755, USA
| |
Collapse
|
2
|
Polikowsky HG, Shaw DM, Petty LE, Chen HH, Pruett DG, Linklater JP, Viljoen KZ, Beilby JM, Highland HM, Levitt B, Avery CL, Mullan Harris K, Jones RM, Below JE, Kraft SJ. Population-based genetic effects for developmental stuttering. HGG ADVANCES 2022; 3:100073. [PMID: 35047858 PMCID: PMC8756529 DOI: 10.1016/j.xhgg.2021.100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Despite a lifetime prevalence of at least 5%, developmental stuttering, characterized by prolongations, blocks, and repetitions of speech sounds, remains a largely idiopathic speech disorder. Family, twin, and segregation studies overwhelmingly support a strong genetic influence on stuttering risk; however, its complex mode of inheritance combined with thus-far underpowered genetic studies contribute to the challenge of identifying and reproducing genes implicated in developmental stuttering susceptibility. We conducted a trans-ancestry genome-wide association study (GWAS) and meta-analysis of developmental stuttering in two primary datasets: The International Stuttering Project comprising 1,345 clinically ascertained cases from multiple global sites and 6,759 matched population controls from the biobank at Vanderbilt University Medical Center (VUMC), and 785 self-reported stuttering cases and 7,572 controls ascertained from The National Longitudinal Study of Adolescent to Adult Health (Add Health). Meta-analysis of these genome-wide association studies identified a genome-wide significant (GWS) signal for clinically reported developmental stuttering in the general population: a protective variant in the intronic or genic upstream region of SSUH2 (rs113284510, protective allele frequency = 7.49%, Z = -5.576, p = 2.46 × 10-8) that acts as an expression quantitative trait locus (eQTL) in esophagus-muscularis tissue by reducing its gene expression. In addition, we identified 15 loci reaching suggestive significance (p < 5 × 10-6). This foundational population-based genetic study of a common speech disorder reports the findings of a clinically ascertained study of developmental stuttering and highlights the need for further research.
Collapse
Affiliation(s)
- Hannah G Polikowsky
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dillon G Pruett
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Kathryn Z Viljoen
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Janet M Beilby
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandt Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robin M Jones
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelly Jo Kraft
- Communication Sciences and Disorders, Wayne State University, Detroit, MI, USA
| |
Collapse
|
3
|
Sun Y, Gao Y, Zhou Y, Zhou Y, Zhang Y, Wang D, Tan LH. IFNAR1 gene mutation may contribute to developmental stuttering in the Chinese population. Hereditas 2021; 158:46. [PMID: 34794508 PMCID: PMC8600687 DOI: 10.1186/s41065-021-00211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental stuttering is the most common form of stuttering without apparent neurogenic or psychogenic impairment. Recently, whole-exome sequencing (WES) has been suggested to be a promising approach to study Mendelian disorders. METHODS Here, we describe an application of WES to identify a gene potentially responsible for persistent developmental stuttering (PDS) by sequencing DNA samples from 10 independent PDS families and 11 sporadic cases. Sanger sequencing was performed for verification with samples obtained from 73 additional patients with sporadic cases. RESULTS We first searched for cosegregating variants/candidate genes in a Chinese family (Family 0) by sequencing DNA obtained from 3 affected members and 3 controls. Next, we sequenced DNA samples obtained from 9 additional Chinese families (Families 1-9) with stuttering to verify the identified candidate genes. Intriguingly, we found that two missense variants (Leu552Pro and Lys428Gln) of interferon-alpha/beta receptor 1 (IFNAR1) cosegregated with stuttering in three independent families (Families 0, 5 and 9). Moreover, we found two additional mutations (Gly301Glu and Pro335del) in the IFNAR1 gene in 4 patients with sporadic cases by using WES or Sanger sequencing. Further receptor mutagenesis and cell signaling studies revealed that these IFNAR1 variants may impair the activity of type I IFN signaling. CONCLUSION Our data indicate that IFNAR1 might be a potential pathogenic gene of PDS in the Chinese population.
Collapse
Affiliation(s)
- Yimin Sun
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China.
| | - Yong Gao
- Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China
| | - Yuxi Zhou
- Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China
| | - Yulong Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China
| | - Ying Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Hai Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China. .,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Benito-Aragón C, Gonzalez-Sarmiento R, Liddell T, Diez I, d'Oleire Uquillas F, Ortiz-Terán L, Bueichekú E, Chow HM, Chang SE, Sepulcre J. Neurofilament-lysosomal genetic intersections in the cortical network of stuttering. Prog Neurobiol 2020; 184:101718. [PMID: 31669185 PMCID: PMC6938554 DOI: 10.1016/j.pneurobio.2019.101718] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/03/2019] [Accepted: 10/12/2019] [Indexed: 02/02/2023]
Abstract
The neurobiological underpinnings of stuttering, a speech disorder characterized by disrupted speech fluency, remain unclear. While recent developments in the field have afforded researchers the ability to pinpoint several genetic profiles associated with stuttering, how these specific genetic backgrounds impact neuronal circuits and how they generate or facilitate the emergence of stuttered speech remains unknown. In this study, we identified the large-scale cortical network that characterizes stuttering using functional connectivity MRI and graph theory. We performed a spatial similarity analysis that examines whether the topology of the stuttering cortical network intersects with genetic expression levels of previously reported genes for stuttering from the protein-coding transcriptome data of the Allen Human Brain Atlas. We found that GNPTG - a gene involved in the mannose-6-phosphate lysosomal targeting pathways - was significantly co-localized with the stuttering cortical network. An enrichment analysis demonstrated that the genes identified with the stuttering cortical network shared a significantly overrepresented biological functionality of Neurofilament Cytoskeleton Organization (NEFH, NEFL and INA). The relationship between lysosomal pathways, cytoskeleton organization, and stuttering, was investigated by comparing the genetic interactome between GNPTG and the neurofilament genes implicated in the current study. We found that genes of the interactome network, including CDK5, SNCA, and ACTB, act as functional links between lysosomal and neurofilament genes. These findings support the notion that stuttering is due to a lysosomal dysfunction, which has deleterious effects on the neurofilament organization of the speech neuronal circuits. They help to elucidate the intriguing, unsolved link between lysosomal mutations and the presence of stuttering.
Collapse
Affiliation(s)
- Claudia Benito-Aragón
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Navarra School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Ricardo Gonzalez-Sarmiento
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Navarra School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Thomas Liddell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Exeter, Exeter, England, UK
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neurotechnology Laboratory, Tecnalia Health Department, Tecnalia, Derio, Basque Country, Spain
| | - Federico d'Oleire Uquillas
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Universitat Jaume I, Castellón, Spain
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Michigan, USA; Katzin Diagnostic and Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Michigan, USA; Cognitive Imaging Research Center, Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
5
|
Nisar S, Hashem S, Bhat AA, Syed N, Yadav S, Azeem MW, Uddin S, Bagga P, Reddy R, Haris M. Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Najeeb Syed
- Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Muhammad Waqar Azeem
- Department of Psychiatry, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Haris
- Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Human GNPTAB stuttering mutations engineered into mice cause vocalization deficits and astrocyte pathology in the corpus callosum. Proc Natl Acad Sci U S A 2019; 116:17515-17524. [PMID: 31405983 DOI: 10.1073/pnas.1901480116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stuttering is a common neurodevelopmental disorder that has been associated with mutations in genes involved in intracellular trafficking. However, the cellular mechanisms leading to stuttering remain unknown. Engineering a mutation in N-acetylglucosamine-1-phosphate transferase subunits α and β (GNPTAB) found in humans who stutter into the mouse Gnptab gene resulted in deficits in the flow of ultrasonic vocalizations similar to speech deficits of humans who stutter. Here we show that other human stuttering mutations introduced into this mouse gene, Gnptab Ser321Gly and Ala455Ser, produce the same vocalization deficit in 8-day-old pup isolation calls and do not affect other nonvocal behaviors. Immunohistochemistry showed a marked decrease in staining of astrocytes, particularly in the corpus callosum of the Gnptab Ser321Gly homozygote mice compared to wild-type littermates, while the staining of cerebellar Purkinje cells, oligodendrocytes, microglial cells, and dopaminergic neurons was not significantly different. Diffusion tensor imaging also detected deficits in the corpus callosum of the Gnptab Ser321Gly mice. Using a range of cell type-specific Cre-drivers and a Gnptab conditional knockout line, we found that only astrocyte-specific Gnptab-deficient mice displayed a similar vocalization deficit. These data suggest that vocalization defects in mice carrying human stuttering mutations in Gnptab derive from abnormalities in astrocytes, particularly in the corpus callosum, and provide support for hypotheses that focus on deficits in interhemispheric communication in stuttering.
Collapse
|
7
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Farhangdoost H. Relationship between serum homovanillic acid, DRD2 C957T (rs6277), and hDAT A559V (rs28364997) polymorphisms and developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2018; 76:37-46. [PMID: 30199750 DOI: 10.1016/j.jcomdis.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/12/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The involvement of the brain dopamine system in the pathophysiology of developmental stuttering has been previously suggested. In the present study, we aimed to investigate the relationship between developmental stuttering in children and the levels of serum homovanillic acid (HVA), dopamine D2 receptor (DRD2) C957T (rs6277), and solute carrier family 6 member 3 (SLC6A3) human dopamine transporter (hDAT) A559V (rs28364997) single-nucleotide polymorphisms. In a case-control study, serum level of HVA, DRD2 C957T, and DAT A559V were compared between 85 children who stuttered (CWS) and 85 age- and sex-matched children who did not stutter (CWNS). Although serum level of HVA was higher among the CWS (median = 25.50 ng/mL) than that in the CWNS (median = 17.40 ng/mL), the difference between the two groups was not significant (p = 0.43). No significant correlation was observed between age and the level of HVA among all the participants (r = -0.15, p = 0.06), nor was there any correlation among the CWS (r = -0.19, p = 0.14) or among the CWNS (r = -0.13, p = 0.27) according to the Spearman correlation coefficient. On the other hand, there was a significant negative correlation between age from stuttering onset and the serum level of HVA among the CWS group (r = -0.32, p = 0.01). The Spearman correlation coefficient did not indicate any significant correlation between stuttering severity and HVA in CWS (r = -0.06, p = 0.59). The mutant allele of hDAT A559V was observed neither in the CWS nor in the controls. The allele frequencies of DRD2 C957T were not significantly different between the CWS and the CWNS; however, the frequency of the TT genotype was significantly higher among the CWS (p = 0.02), which was associated with 2.25-fold susceptibility to stuttering (OR = 2.25, 95% CI = 1.03 to 4.90, p = 0.04). Our findings suggest that the serum level of HVA might be a biomarker for dopaminergic involvement in the pathogenesis of stuttering. Moreover, the present study indicates that the DRD2 C957T polymorphism might be a risk factor for the development of stuttering among Iranian Kurdish population.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
8
|
Busan P, Battaglini P, Sommer M. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives. Clin Neurophysiol 2017; 128:952-964. [DOI: 10.1016/j.clinph.2017.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
|
9
|
Dean B, Udawela M, Scarr E. Validating reference genes using minimally transformed qpcr data: findings in human cortex and outcomes in schizophrenia. BMC Psychiatry 2016; 16:154. [PMID: 27206773 PMCID: PMC4875643 DOI: 10.1186/s12888-016-0855-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND It is common practice, when using quantitative real time polymerase chain reaction (qPCR), to normalise levels of mRNA to reference gene mRNA which, by definition, should not vary between tissue, with any disease aetiology or after drug treatments. The complexity of human CNS means it unlikely that any gene could fulfil these criteria. METHODS To address this issue we measured levels of mRNA for six potential reference genes (GAPDH, PPIA, SNCA, NOL9, TFB1M and SKP1) in three cortical regions (Brodmann's areas (BA) 8, 9 and 44) from 30 subjects with schizophrenia and 30 age and sex matched controls. We used a structured statistical approach to examine the characteristics of these data to determine their suitability as reference genes. We also analysed our data using reference genes selected by rank as defined using the average of the standard deviation of pair-gene ΔCt and the BestKeeper, NormFinder and geNorm algorithms to determine if they suggested the same reference genes. RESULTS Our minimally derived data showed that levels of mRNA for all of the six genes varied between cortical regions and therefore no gene fulfilled the absolute requirements for use as reference genes. As levels of some mRNA for some genes did not vary with diagnoses within a cortical region from subjects with schizophrenia compared to controls, we normalised levels of mRNA for all the other genes to mRNA for one, two or three reference genes in each cortical region. This showed that using the geometric mean of at least two reference genes gave more reproducible results. Finally, using the reference gene ranking protocols the average of the standard deviation of pair-gene ΔCt, BestKeeper, NormFinder and geNorm we showed that these approaches ranked potential reference genes differently. We then showed that outcomes of comparing data from subjects with schizophrenia and controls varied depending on the reference genes chosen. CONCLUSIONS Our data shows that the selection of reference genes is a significant component of qPCR study design and therefore the process by which reference genes are selected must be clearly listed as a potential confound in studying gene expression in human CNS. This should include showing that, using minimally derived qPCR data, levels of mRNA for proposed reference genes does not vary with variables such as diagnoses and CNS region.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia. .,The Division of Biological Psychiatry and Mental Health and the Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC Australia
| | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC Australia ,The Department of Psychiatry, the University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
11
|
Insights into the genetic foundations of human communication. Neuropsychol Rev 2015; 25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Collapse
|