1
|
Rizea RE, Corlatescu AD, Costin HP, Dumitru A, Ciurea AV. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:9966. [PMID: 39337454 PMCID: PMC11432652 DOI: 10.3390/ijms25189966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.
Collapse
Affiliation(s)
- Radu Eugen Rizea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Neurosurgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Morphopathology, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
2
|
Tziortzouda P, Steyaert J, Scheveneels W, Sicart A, Stoklund Dittlau K, Barbosa Correia AM, Burg T, Pal A, Hermann A, Van Damme P, Moens TG, Van Den Bosch L. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. Acta Neuropathol 2024; 147:41. [PMID: 38363426 PMCID: PMC10873455 DOI: 10.1007/s00401-024-02689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adriana Margarida Barbosa Correia
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Thibaut Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden Rossendorf, 01328, Dresden, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum Fur Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas G Moens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Odeh HM, Fare CM, Shorter J. Nuclear-Import Receptors Counter Deleterious Phase Transitions in Neurodegenerative Disease. J Mol Biol 2022; 434:167220. [PMID: 34464655 PMCID: PMC8748273 DOI: 10.1016/j.jmb.2021.167220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023]
Abstract
Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cytoplasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15, hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent findings that multiple NIR family members can prevent and reverse liquid-liquid phase separation of specific clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR activity or expression, which could have therapeutic utility for several neurodegenerative disorders, including ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauopathies, and related diseases.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/CharlotteFare
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
7
|
Goodman LD, Cope H, Nil Z, Ravenscroft TA, Charng WL, Lu S, Tien AC, Pfundt R, Koolen DA, Haaxma CA, Veenstra-Knol HE, Wassink-Ruiter JSK, Wevers MR, Jones M, Walsh LE, Klee VH, Theunis M, Legius E, Steel D, Barwick KES, Kurian MA, Mohammad SS, Dale RC, Terhal PA, van Binsbergen E, Kirmse B, Robinette B, Cogné B, Isidor B, Grebe TA, Kulch P, Hainline BE, Sapp K, Morava E, Klee EW, Macke EL, Trapane P, Spencer C, Si Y, Begtrup A, Moulton MJ, Dutta D, Kanca O, Wangler MF, Yamamoto S, Bellen HJ, Tan QKG. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am J Hum Genet 2021; 108:1669-1691. [PMID: 34314705 PMCID: PMC8456166 DOI: 10.1016/j.ajhg.2021.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - An-Chi Tien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, Nijmegen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, Nijmegen, the Netherlands
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, the Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Jolien S Klein Wassink-Ruiter
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Marijke R Wevers
- Department of Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Melissa Jones
- Houston Area Pediatric Neurology, 24514 Kingsland Blvd, Katy, TX 77494, USA
| | - Laurence E Walsh
- Department of Pediatric Neurology, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Victoria H Klee
- Department of Pediatric Neurology, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Miel Theunis
- Center for Human Genetics, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Katy E S Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Shekeeb S Mohammad
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Westmead, NSW 2145, Australia
| | - Russell C Dale
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Westmead, NSW 2145, Australia
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Brian Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bethany Robinette
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Benjamin Cogné
- Centre hospitalier universitaire (CHU) de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, France; INSERM, CNRS, UNIV Nantes, Centre hospitalier universitaire (CHU) de Nantes, l'institut du thorax, 44007 Nantes, France
| | - Bertrand Isidor
- Centre hospitalier universitaire (CHU) de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, France; INSERM, CNRS, UNIV Nantes, Centre hospitalier universitaire (CHU) de Nantes, l'institut du thorax, 44007 Nantes, France
| | - Theresa A Grebe
- Phoenix Children's Hospital, Phoenix, AZ 85016, USA; Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Peggy Kulch
- Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Bryan E Hainline
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katherine Sapp
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Erica L Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pamela Trapane
- University of Florida, College of Medicine, Jacksonville, Jacksonville, FL 32209, USA
| | - Christopher Spencer
- University of Florida, College of Medicine, Jacksonville, Jacksonville, FL 32209, USA
| | - Yue Si
- GeneDx, Gaithersburg, MD 20877, USA
| | | | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Palacios V, Kimble GC, Tootle TL, Buszczak M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J Cell Sci 2021; 134:237786. [PMID: 33632744 DOI: 10.1242/jcs.258391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Germ cells undergo distinct nuclear processes as they differentiate into gametes. Although these events must be coordinated to ensure proper maturation, the stage-specific transport of proteins in and out of germ cell nuclei remains incompletely understood. Our efforts to genetically characterize Drosophila genes that exhibit enriched expression in germ cells led to the finding that loss of the highly conserved Importin β/karyopherin family member Importin-9 (Ipo9, herein referring to Ranbp9) results in female and male sterility. Immunofluorescence and fluorescent in situ hybridization revealed that Ipo9KO mutants display chromosome condensation and segregation defects during meiosis. In addition, Ipo9KO mutant males form abnormally structured sperm and fail to properly exchange histones for protamines. Ipo9 physically interacts with proteasome proteins, and Ipo9 mutant males exhibit disruption of the nuclear localization of several proteasome components. Thus, Ipo9 coordinates the nuclear import of functionally related factors necessary for the completion of gametogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Victor Palacios
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett C Kimble
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
10
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
11
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Keegan SE, Hughes SC. Role of nuclear-cytoplasmic protein localization during Drosophila neuroblast development. Genome 2020; 64:75-85. [PMID: 32526151 DOI: 10.1139/gen-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear-cytoplasmic localization is an efficient way to regulate transcription factors and chromatin remodelers. Altering the location of existing protein pools also facilitates a more rapid response to changes in cell activity or extracellular signals. There are several examples of proteins that are regulated by nucleo-cytoplasmic shuttling, which are required for Drosophila neuroblast development. Disruption of the localization of homologs of these proteins has also been linked to several neurodegenerative disorders in humans. Drosophila has been used extensively to model the neurodegenerative disorders caused by aberrant nucleo-cytoplasmic localization. Here, we focus on the role of alternative nucleo-cytoplasmic protein localization in regulating proliferation and cell fate decisions in the Drosophila neuroblast and in neurodegenerative disorders. We also explore the analogous role of RNA binding proteins and mRNA localization in the context of regulation of nucleo-cytoplasmic localization during neural development and a role in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie E Keegan
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
14
|
Gois AM, Mendonça DMF, Freire MAM, Santos JR. IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW. Brain Res Bull 2020; 159:32-43. [PMID: 32247802 DOI: 10.1016/j.brainresbull.2020.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper motor neurons (UMN) and lower motor neurons (LMN). Disease affects people all over the world and is more prevalent in men. Patients with ALS develop extensive muscle wasting, paralysis and ultimately death, with a median survival of usually fewer than five years after disease onset. ALS may be sporadic (sALS, 90%) or familial (fALS, 10%). The large majority of fALS cases are associated with genetic alterations, which are mainly related to the genes SOD1, TDP-43, FUS, and C9ORF72. In vitro and in vivo models have helped elucidate ALS etiology and pathogenesis, as well as its molecular, cellular, and physiological mechanisms. Many studies in cell cultures and animal models, such as Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and non-human primates have been performed to clarify the relationship of these genes to ALS disease. However, there are inherent limitations to consider when using experimental models. In this review, we provide an updated overview of the most used in vitro and in vivo studies that have contributed to a better understanding of the different ALS pathogenic mechanisms.
Collapse
Affiliation(s)
- Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Deise M F Mendonça
- Laboratory of Neurobiology of Degenerative Diseases of the Nervous System, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Postgraduation Program in Health and Society, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jose R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
15
|
Bogaert E, Boeynaems S, Kato M, Guo L, Caulfield TR, Steyaert J, Scheveneels W, Wilmans N, Haeck W, Hersmus N, Schymkowitz J, Rousseau F, Shorter J, Callaerts P, Robberecht W, Van Damme P, Van Den Bosch L. Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Rep 2019; 24:529-537.e4. [PMID: 30021151 PMCID: PMC6077250 DOI: 10.1016/j.celrep.2018.06.070] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/11/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding protein aggregation is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). To gain better insight into the molecular interactions underlying this process, we investigated FUS, which is mutated and aggregated in both ALS and FTLD. We generated a Drosophila model of FUS toxicity and identified a previously unrecognized synergistic effect between the N-terminal prion-like domain and the C-terminal arginine-rich domain to mediate toxicity. Although the prion-like domain is generally considered to mediate aggregation of FUS, we find that arginine residues in the C-terminal low-complexity domain are also required for maturation of FUS in cellular stress granules. These data highlight an important role for arginine-rich domains in the pathology of RNA-binding proteins. Both QGSY and RGG2 domains are necessary for FUS-induced neurodegeneration in flies Arginine-rich domains interact with QGSY hydrogels and liquid droplets RGG2 arginines promote phase separation of FUS in vitro and in cells FUS phase separation behavior in vitro correlates with neurodegeneration in vivo
Collapse
Affiliation(s)
- Elke Bogaert
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Steven Boeynaems
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jolien Steyaert
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Wendy Scheveneels
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Nathalie Wilmans
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Wanda Haeck
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Nicole Hersmus
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Wim Robberecht
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Lo Piccolo L, Mochizuki H, Nagai Y. The lncRNA hsrω regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila. J Cell Sci 2019; 132:jcs.236836. [PMID: 31519807 PMCID: PMC6826006 DOI: 10.1242/jcs.236836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have structural and regulatory effects on RNA-binding proteins (RBPs). However, the mechanisms by which lncRNAs regulate the neurodegenerative-causative RBP like FUS protein remain poorly understood. Here, we show that knockdown of the Drosophila lncRNA hsrω causes a shift in the methylation status of human FUS from mono- (MMA) to di-methylated (DMA) arginine via upregulation of the arginine methyltransferase 5 (PRMT5, known as ART5 in flies). We found this novel regulatory role to be critical for FUS toxicity since the PRMT5-dependent dimethylation of FUS is required for its proteasomal degradation and causes a reduction of high levels of FUS. Moreover, we show that an increase of FUS causes a decline of both PRMT1 (known as ART1 in flies) and PRMT5 transcripts, leading to an accumulation of neurotoxic MMA-FUS. Therefore, overexpression of either PRMT1 or PRMT5 is able to rescue the FUS toxicity. These results highlight a novel role of lncRNAs in post-translation modification (PTM) of FUS and suggest a causal relationship between lncRNAs and dysfunctional PRMTs in the pathogenesis of FUSopathies. Summary: The lncRNA hsrω regulates the arginine methyltransferases type I and II to modify the human FUS RNA-binding protein, recombinantly expressed in flies, in a fashion that controls both its cellular localization and homeostasis.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan .,Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Walters R, Manion J, Neely GG. Dissecting Motor Neuron Disease With Drosophila melanogaster. Front Neurosci 2019; 13:331. [PMID: 31031583 PMCID: PMC6473072 DOI: 10.3389/fnins.2019.00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Motor Neuron Disease (MND) typically affects patients during the later stages of life, and thus, MND is having an increasingly devastating impact on diagnosed individuals, their families and society. The umbrella term MND refers to diseases which cause the progressive loss of upper and/or lower motor neurons and a subsequent decrease in motor ability such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The study of these diseases is complex and has recently involved the use of genome-wide association studies (GWAS). However, in the case of MND, it has been difficult to identify the complex genetics involved in subtypes, and functional investigation of new candidate disease genes is warranted. Drosophila is a powerful model for addressing these complex diseases. The UAS/Gal4/Gal80 system allows for the upregulation of Drosophila genes, the “knockdown” of genes and the ectopic expression of human genes or mutations in a tissue-specific manner; often resulting in Drosophila models which exhibit typical MND disease pathologies. These can then be further interrogated to identify disease-modifying genes or mutations and disease pathways. This review will discuss two common MNDs and the current Drosophila models which are being used to research their genetic basis and the different pathologies of MND.
Collapse
Affiliation(s)
- Rachel Walters
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - John Manion
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Ling SC, Dastidar SG, Tokunaga S, Ho WY, Lim K, Ilieva H, Parone PA, Tyan SH, Tse TM, Chang JC, Platoshyn O, Bui NB, Bui A, Vetto A, Sun S, McAlonis-Downes M, Han JS, Swing D, Kapeli K, Yeo GW, Tessarollo L, Marsala M, Shaw CE, Tucker-Kellogg G, La Spada AR, Lagier-Tourenne C, Da Cruz S, Cleveland DW. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. eLife 2019; 8:40811. [PMID: 30747709 PMCID: PMC6389288 DOI: 10.7554/elife.40811] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-mediated toxicity.
Collapse
Affiliation(s)
- Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Somasish Ghosh Dastidar
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, United States
| | - Seiya Tokunaga
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Kenneth Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Hristelina Ilieva
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Philippe A Parone
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, San Diego, United States.,Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Tsemay M Tse
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jer-Cherng Chang
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Oleksandr Platoshyn
- Department of Anesthesiology, University of California, San Diego, San Diego, United States
| | - Ngoc B Bui
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Anh Bui
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Anne Vetto
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Shuying Sun
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Joo Seok Han
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Debbie Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, United States
| | - Katannya Kapeli
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, United States
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, United States
| | - Martin Marsala
- Department of Anesthesiology, University of California, San Diego, San Diego, United States
| | - Christopher E Shaw
- Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Albert R La Spada
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, United States
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego, San Diego, United States
| |
Collapse
|
19
|
Matsumoto T, Matsukawa K, Watanabe N, Kishino Y, Kunugi H, Ihara R, Wakabayashi T, Hashimoto T, Iwatsubo T. Self-assembly of FUS through its low-complexity domain contributes to neurodegeneration. Hum Mol Genet 2019; 27:1353-1365. [PMID: 29425337 DOI: 10.1093/hmg/ddy046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Aggregation of fused in sarcoma (FUS) protein, and mutations in FUS gene, are causative to a range of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To gain insights into the molecular mechanism whereby FUS causes neurodegeneration, we generated transgenic Drosophila melanogaster overexpressing human FUS in the photoreceptor neurons, which exhibited mild retinal degeneration. Expression of familial ALS-mutant FUS aggravated the degeneration, which was associated with an increase in cytoplasmic localization of FUS. A carboxy-terminally truncated R495X mutant FUS also was localized in cytoplasm, whereas the degenerative phenotype was diminished. Double expression of R495X and wild-type FUS dramatically exacerbated degeneration, sequestrating wild-type FUS into cytoplasmic aggregates. Notably, replacement of all tyrosine residues within the low-complexity domain, which abolished self-assembly of FUS, completely eliminated the degenerative phenotypes. Taken together, we propose that self-assembly of FUS through its low-complexity domain contributes to FUS-induced neurodegeneration.
Collapse
Affiliation(s)
- Taisei Matsumoto
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Matsukawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naruaki Watanabe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuya Kishino
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hayato Kunugi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoko Ihara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Guo L, Fare CM, Shorter J. Therapeutic Dissolution of Aberrant Phases by Nuclear-Import Receptors. Trends Cell Biol 2019; 29:308-322. [PMID: 30660504 DOI: 10.1016/j.tcb.2018.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Nuclear-import receptors (NIRs) bind nuclear-localization signals (NLSs) of protein cargo in the cytoplasm and transport them into the nucleus. Here, we review advances establishing that NIRs also function in the cytoplasm to prevent and reverse functional and aberrant phase transitions of their cargo, including neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains, such as TDP-43, FUS, hnRNPA1, and hnRNPA2. NIRs selectively extract cargo from condensed liquid phases thereby regulating functional phase separation. Consequently, NIRs sculpt cytoplasmic membraneless organelles and regulate cellular organization beyond their canonical role in nuclear import. Elevating NIR expression dissolves cytoplasmic RBP aggregates, restores functional RBPs to the nucleus, and rescues disease-linked RBP toxicity. Thus, NIRs could be leveraged therapeutically to restore RBP homeostasis and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Joint first authors
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Joint first authors
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Steyaert J, Scheveneels W, Vanneste J, Van Damme P, Robberecht W, Callaerts P, Bogaert E, Van Den Bosch L. FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins. Hum Mol Genet 2018; 27:4103-4116. [PMID: 30379317 PMCID: PMC6240733 DOI: 10.1093/hmg/ddy303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases characterized by the progressive loss of specific groups of neurons. Due to clinical, genetic and pathological overlap, both diseases are considered as the extremes of one disease spectrum and in a number of ALS and FTD patients, fused in sarcoma (FUS) aggregates are present. Even in families with a monogenetic disease cause, a striking variability is observed in disease presentation. This suggests the presence of important modifying genes. The identification of disease-modifying genes will contribute to defining clear therapeutic targets and to understanding the pathways involved in motor neuron death. In this study, we established a novel in vivo screening platform in which new modifying genes of FUS toxicity can be identified. Expression of human FUS induced the selective apoptosis of crustacean cardioactive peptide (CCAP) neurons from the ventral nerve cord of fruit flies. No defects in the development of these neurons were observed nor were the regulatory CCAP neurons from the brain affected. We used the number of CCAP neurons from the ventral nerve cord as an in vivo read-out for FUS toxicity in neurons. Via a targeted screen, we discovered a potent modifying role of proteins involved in nucleocytoplasmic transport. Downregulation of Nucleoporin 154 and Exportin1 (XPO1) prevented FUS-induced neurotoxicity. Moreover, we show that XPO1 interacted with FUS. Silencing XPO1 significantly reduced the propensity of FUS to form inclusions upon stress. Taken together, our findings point to an important role of nucleocytoplasmic transport proteins in FUS-induced ALS/FTD.
Collapse
Affiliation(s)
- Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, Leuven, Belgium
| | - Elke Bogaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| |
Collapse
|
22
|
Machamer JB, Woolums BM, Fuller GG, Lloyd TE. FUS causes synaptic hyperexcitability in Drosophila dendritic arborization neurons. Brain Res 2018; 1693:55-66. [PMID: 29625118 PMCID: PMC6347466 DOI: 10.1016/j.brainres.2018.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022]
Abstract
Mutations in the nuclear localization signal of the RNA binding protein FUS cause both Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). These mutations result in a loss of FUS from the nucleus and the formation of FUS-containing cytoplasmic aggregates in patients. To better understand the role of cytoplasmic FUS mislocalization in the pathogenesis of ALS, we identified a population of cholinergic neurons in Drosophila that recapitulate these pathologic hallmarks. Expression of mutant FUS or the Drosophila homolog, Cabeza (Caz), in class IV dendritic arborization neurons results in cytoplasmic mislocalization and axonal transport to presynaptic terminals. Interestingly, overexpression of FUS or Caz causes the progressive loss of neuronal projections, reduction of synaptic mitochondria, and the appearance of large calcium transients within the synapse. Additionally, we find that overexpression of mutant but not wild type FUS results in a reduction in presynaptic Synaptotagmin, an integral component of the neurotransmitter release machinery, and mutant Caz specifically disrupts axonal transport and induces hyperexcitability. These results suggest that FUS/Caz overexpression disrupts neuronal function through multiple mechanisms, and that ALS-causing mutations impair the transport of synaptic vesicle proteins and induce hyperexcitability.
Collapse
Affiliation(s)
- James B Machamer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Brian M Woolums
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Gregory G Fuller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
23
|
Yamamoto I, Azuma Y, Kushimura Y, Yoshida H, Mizuta I, Mizuno T, Ueyama M, Nagai Y, Tokuda T, Yamaguchi M. NPM-hMLF1 fusion protein suppresses defects of a Drosophila FTLD model expressing the human FUS gene. Sci Rep 2018; 8:11291. [PMID: 30050143 PMCID: PMC6062494 DOI: 10.1038/s41598-018-29716-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Fused in sarcoma (FUS) was identified as a component of typical inclusions in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In FTLD, both nuclear and cytoplasmic inclusions with wild-type FUS exist, while cytoplasmic inclusions with a mutant-form of FUS occur in many ALS cases. These observations imply that FUS plays a role across these two diseases. In this study, we examined the effect of several proteins including molecular chaperons on the aberrant eye morphology phenotype induced by overexpression of wild-type human FUS (hFUS) in Drosophila eye imaginal discs. By screening, we found that the co-expression of nucleophosmin–human myeloid leukemia factor 1 (NPM-hMLF1) fusion protein could suppress the aberrant eye morphology phenotype induced by hFUS. The driving of hFUS expression at 28 °C down-regulated levels of hFUS and endogenous cabeza, a Drosophila homolog of hFUS. The down-regulation was mediated by proteasome dependent degradation. Co-expression of NPM-hMLF1 suppressed this down-regulation. In addition, co-expression of NPM-hMLF1 partially rescued pharate adult lethal phenotype induced by hFUS in motor neurons. These findings with a Drosophila model that mimics FTLD provide clues for the development of novel FTLD therapies.
Collapse
Affiliation(s)
- Itaru Yamamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yumiko Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yukie Kushimura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiko Tokuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. .,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
24
|
Zhang K, Coyne AN, Lloyd TE. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 2018; 1693:109-120. [PMID: 29752901 DOI: 10.1016/j.brainres.2018.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
The fruit fly Drosophila Melanogaster has been widely used to study neurodegenerative diseases. The conservation of nervous system biology coupled with the rapid life cycle and powerful genetic tools in the fly have enabled the identification of novel therapeutic targets that have been validated in vertebrate model systems and human patients. A recent example is in the study of the devastating motor neuron degenerative disease amyotrophic lateral sclerosis (ALS). Mutations in genes that regulate RNA metabolism are a major cause of inherited ALS, and functional analysis of these genes in the fly nervous system has shed light on how mutations cause disease. Importantly, unbiased genetic screens have identified key pathways that contribute to ALS pathogenesis such as nucleocytoplasmic transport and stress granule assembly. In this review, we will discuss the utilization of Drosophila models of ALS with defects in RNA metabolism.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
FUS toxicity is rescued by the modulation of lncRNA hsrω expression in Drosophila melanogaster. Sci Rep 2017; 7:15660. [PMID: 29142303 PMCID: PMC5688078 DOI: 10.1038/s41598-017-15944-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
FUS is an aggregation-prone hnRNP involved in transcriptional and post-transcriptional regulation that aberrantly forms immunoreactive inclusion bodies in a range of neurological diseases classified as FUS-proteinopathies. Although FUS has been extensively examined, the underlying molecular mechanisms of these diseases have not yet been elucidated in detail. We previously reported that RNAi of the lncRNA hsrω altered the expression and sub-cellular localization of Drosophila FUS in the central nervous system of the fly. In order to obtain a clearer understanding of the role of hsrω in FUS toxicity, we herein drove the expression of human FUS in Drosophila eyes with and without a hsrω RNAi background. We found that hFUS was largely soluble and also able to form aggregates. As such, hFUS was toxic, inducing an aberrant eye morphology with the loss of pigmentation. The co-expression of hsrω double-stranded RNA reduced hFUS transcript levels and induced the formation of cytoplasmic non-toxic hFUS-LAMP1-insoluble inclusions. The combination of these events caused the titration of hFUS molar excess and a removal of hFUS aggregates to rescue toxicity. These results revealed the presence of a lncRNA-dependent pathway involved in the management of aggregation-prone hnRNPs, suggesting that properly formed FUS inclusions are not toxic to cells.
Collapse
|
27
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Higelin J, Demestre M, Putz S, Delling JP, Jacob C, Lutz AK, Bausinger J, Huber AK, Klingenstein M, Barbi G, Speit G, Huebers A, Weishaupt JH, Hermann A, Liebau S, Ludolph AC, Boeckers TM. FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons. Front Cell Neurosci 2016; 10:290. [PMID: 28082870 PMCID: PMC5183648 DOI: 10.3389/fncel.2016.00290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.
Collapse
Affiliation(s)
- Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Stefan Putz
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; Department of Neurology, Ulm UniversityUlm, Germany
| | - Jan P Delling
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Christian Jacob
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | | | | | | | - Moritz Klingenstein
- Institute of Neuroanatomy, Eberhard Karls University of Tübingen Tübingen, Germany
| | - Gotthold Barbi
- Institute for Human Genetics, Ulm University Ulm, Germany
| | - Günter Speit
- Institute for Human Genetics, Ulm University Ulm, Germany
| | | | | | - Andreas Hermann
- Department of Neurology, Technische Universität DresdenDresden, Germany; German Center for Neurodegenerative DiseasesDresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University of Tübingen Tübingen, Germany
| | | | | |
Collapse
|
29
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
30
|
Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 2016; 132:159-173. [PMID: 27271576 PMCID: PMC4947127 DOI: 10.1007/s00401-016-1586-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are characterized by the presence of protein inclusions with a different protein content depending on the type of disease. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are no exceptions to this common theme. In most ALS and FTLD cases, the predominant pathological species are RNA-binding proteins. Interestingly, these proteins are both depleted from their normal nuclear localization and aggregated in the cytoplasm. This key pathological feature has suggested a potential dual mechanism with both nuclear loss of function and cytoplasmic gain of function being at play. Yet, why and how this pathological cascade is initiated in most patients, and especially sporadic cases, is currently unresolved. Recent breakthroughs in C9orf72 ALS/FTLD disease models point at a pivotal role for the nuclear transport system in toxicity. To address whether defects in nuclear transport are indeed implicated in the disease, we reviewed two decades of ALS/FTLD literature and combined this with bioinformatic analyses. We find that both RNA-binding proteins and nuclear transport factors are key players in ALS/FTLD pathology. Moreover, our analyses suggest that disturbances in nucleocytoplasmic transport play a crucial initiating role in the disease, by bridging both nuclear loss and cytoplasmic gain of functions. These findings highlight this process as a novel and promising therapeutic target for ALS and FTLD.
Collapse
Affiliation(s)
- Steven Boeynaems
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Bogaert
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Philip Van Damme
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
- />Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis 2015. [DOI: 10.1016/j.nbd.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Yang L, Zhang J, Kamelgarn M, Niu C, Gal J, Gong W, Zhu H. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet 2015; 24:5174-83. [PMID: 26123490 DOI: 10.1093/hmg/ddv239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS) gene cause a subset of familial amyotrophic lateral sclerosis (ALS), a fatal motor neuron degenerative disease. Wild-type FUS is largely localized in the nucleus, but mutant FUS accumulates in the cytoplasm and forms inclusions. It is unclear whether FUS depletion from the nucleus or FUS inclusions in the cytoplasm triggers motor neuron degeneration. In this study, we revealed that the nuclear and cytoplasmic FUS proteins form distinct local distribution patterns. The nuclear FUS forms oligomers and appears granular under confocal microscope. In contrast, the cytoplasmic FUS forms inclusions with no oligomers detected. These patterns are determined by the subcellular localization of FUS, regardless of wild-type or mutant protein. Moreover, mutant FUS remained or re-directed in the nucleus can oligomerize and behave similarly to the wild-type FUS protein. We further found that nuclear RNAs are critical to its oligomerization. Interestingly, the formation of cytoplasmic FUS inclusions is also dependent on RNA binding. Since the ALS mutations disrupt the nuclear localization sequence, mutant FUS is likely retained in the cytoplasm after translation and interacts with cytoplasmic RNAs. We therefore propose that local RNA molecules interacting with the FUS protein in different subcellular compartments play a fundamental role in determining FUS protein architecture and function.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Molecular and Cellular Biochemistry
| | - Jiayu Zhang
- Department of Molecular and Cellular Biochemistry
| | - Marisa Kamelgarn
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA
| | - Chunyan Niu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China and
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry
| | - Weimin Gong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, Graduate Center for Toxicology, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA,
| |
Collapse
|
33
|
Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE. Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet 2015; 24:3529-44. [PMID: 25792726 PMCID: PMC4498158 DOI: 10.1093/hmg/ddv104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neuron-like cells. Mutations in the RNA- and DNA-binding proteins, fused in sarcoma (FUS) and transactive response DNA-binding protein 43 kDa (TDP-43), are responsible for 5–10% of familial and 1% of sporadic ALS cases. Importantly, aggregation of misfolded FUS or TDP-43 is also characteristic of several neurodegenerative disorders in addition to ALS, including frontotemporal lobar degeneration. Moreover, splicing deregulation of FUS and TDP-43 target genes as well as mitochondrial abnormalities are associated with disease-causing FUS and TDP-43 mutants. While progress has been made to understand the functions of these proteins, the exact mechanisms by which FUS and TDP-43 cause ALS remain unknown. Recently, we discovered that, in addition to being up-regulated in spinal cords of ALS patients, the novel protein oxidative resistance 1 (Oxr1) protects neurons from oxidative stress-induced apoptosis. To further understand the function of Oxr1, we present here the first interaction study of the protein. We show that Oxr1 binds to Fus and Tdp-43 and that certain ALS-associated mutations in Fus and Tdp-43 affect their Oxr1-binding properties. We further demonstrate that increasing Oxr1 levels in cells expressing specific Fus and Tdp-43 mutants improves the three main cellular features associated with ALS: cytoplasmic mis-localization and aggregation, splicing changes of a mitochondrial gene and mitochondrial defects. Taken together, these findings suggest that OXR1 may have therapeutic benefits for the treatment of ALS and related neurodegenerative disorders with TDP-43 pathology.
Collapse
Affiliation(s)
- Mattéa J Finelli
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kevin X Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Yixing Wu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kay E Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|