1
|
Hill A, Amendolara AB, Small C, Guzman SC, Pfister D, McFarland K, Settelmayer M, Baker S, Donnelly S, Payne A, Sant D, Kriak J, Bills KB. Metabolic Pathophysiology of Cortical Spreading Depression: A Review. Brain Sci 2024; 14:1026. [PMID: 39452037 PMCID: PMC11505892 DOI: 10.3390/brainsci14101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Cortical spreading depression (CSD) is an electrophysiologic pathological state in which a wave of depolarization in the cerebral cortex is followed by the suppression of spontaneous neuronal activity. This transient spread of neuronal depolarization on the surface of the cortex is the hallmark of CSD. Numerous investigations have demonstrated that transmembrane ion transport, astrocytic ion clearing and fatigue, glucose metabolism, the presence of certain genetic markers, point mutations, and the expression of the enzyme responsible for the production of various arachidonic acid derivatives that participate in the inflammatory response, namely, cyclooxygenase (COX), all influence CSD. Here, we explore the associations between CSD occurrence in the cortex and various factors, including how CSD is related to migraines, how the glucose state affects CSD, the effect of TBI and its relationship with CSD and glucose metabolism, how different markers can be measured to determine the severity of CSD, and possible connections to oligemia, orexin, and leptin.
Collapse
|
2
|
Piccirillo A, Perri F, Vittori A, Ionna F, Sabbatino F, Ottaiano A, Cascella M. Evaluating Nutritional Risk Factors for Delirium in Intensive-Care-Unit Patients: Present Insights and Prospects for Future Research. Clin Pract 2023; 13:1577-1592. [PMID: 38131687 PMCID: PMC10742123 DOI: 10.3390/clinpract13060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Malnutrition, hypercatabolism, and metabolic changes are well-established risk factors for delirium in critically ill patients. Although the exact mechanisms are not fully understood, there is mounting evidence suggesting that malnutrition can cause a variety of changes that contribute to delirium, such as electrolyte imbalances, immune dysfunction, and alterations in drug metabolism. Therefore, a comprehensive metabolic and malnutrition assessment, along with appropriate nutritional support, may help to prevent or ameliorate malnutrition, reduce hypercatabolism, and improve overall physiological function, ultimately lowering the risk of delirium. For this aim, bioelectrical impedance analysis can represent a valuable strategy. Further research into the underlying mechanisms and nutritional risk factors for delirium is crucial to developing more effective prevention strategies. Understanding these processes will allow clinicians to personalize treatment plans for individual patients, leading to improved outcomes and quality of life in the intensive-care-unit survivors.
Collapse
Affiliation(s)
- Arianna Piccirillo
- Otolaryngology and Maxillo-Facial Surgery Unit, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Franco Ionna
- Otolaryngology and Maxillo-Facial Surgery Unit, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | | | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Naples, Italy;
| | - Marco Cascella
- Unit of Anesthesiology, Intensive Care Medicine, and Pain Medicine, Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende, 43, 84081 Baronissi, Italy
| |
Collapse
|
3
|
Li C, Chai X, Pan J, Huang J, Wu Y, Xue Y, Zhou W, Yang J, Zhu X, Zhao S. β-Hydroxybutyrate Alleviates Low Glucose-Induced Apoptosis via Modulation of ROS-Mediated p38 MAPK Signaling. J Mol Neurosci 2022; 72:923-938. [PMID: 35129799 DOI: 10.1007/s12031-022-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
Abstract
Hypoglycemia has emerged as a prominent complication in anti-diabetic drug therapy or negative energy balance of animals, which causes brain damage, cognitive impairment, and even death. Brain injury induced by hypoglycemia is closely related to oxidative stress and the production of reactive oxygen species (ROS). The intracellular accumulation of ROS leads to neuronal damage, even death. Ketone body β-hydroxybutyrate (BHBA) not only serves as alternative energy source for glucose in extrahepatic tissues, but is also involved in cellular signaling transduction. Previous studies showed that BHBA reduces apoptosis by inhibiting the excessive production of ROS and activation of caspase-3. However, the effects of BHBA on apoptosis induced by glucose deprivation and its related molecular mechanisms have been seldom reported. In the present study, PC12 cells and primary cortical neurons were used to establish a low glucose injury model. The effects of BHBA on the survival and apoptosis in a glucose deficient condition and related molecular mechanisms were investigated by using flow cytometry, immunofluorescence, and western blotting. PC12 cells were incubated with 1 mM glucose for 24 h as a low glucose cell model, in which ROS accumulation and cell mortality were significantly increased. After 24 h and 48 h treatment with different concentrations of BHBA (0 mM, 0.05 mM, 0.5 mM, 1 mM, 2 mM), ROS production was significantly inhibited. Moreover, cell apoptosis rate was decreased and survival rate was significantly increased in 1 mM and 2 mM BHBA groups. In primary cortical neurons, at 24 h after treatment with 2 mM BHBA, the injured length and branch of neurites were significantly improved. Meanwhile, the intracellular ROS level, the proportion of c-Fos+ cells, apoptosis rate, and nuclear translocation of NF-κB protein after treatment with BHBA were significantly decreased when compared with that in low glucose cells. Importantly, the expression of p38, p-p38, NF-κB, and caspase-3 were significantly decreased, while the expression of p-ERK was significantly increased in both PC12 cells and primary cortical neurons. Our results demonstrate that BHBA decreased the accumulation of intracellular ROS, and further inhibited cell apoptosis by mediating the p38 MAPK signaling pathway and caspase-3 apoptosis cascade during glucose deprivation. In addition, BHBA inhibited apoptosis by activating ERK phosphorylation and alleviated the damage of low glucose to PC12 cells and primary cortical neurons. These results provide new insight into the anti-apoptotic effect of BHBA in a glucose deficient condition and the related signaling cascade.
Collapse
Affiliation(s)
- Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, Shaanxi, 710021, People's Republic of China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuhuan Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wentai Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiping Yang
- College of Basic Medicine, Xi'An Medical University, Xi'An, Shaanxi, 710021, People's Republic of China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
4
|
Costa LRR, Donelly CG, Crowe CM, Vaughan B, Alex CE, Aleman M. Electroencephalographic alterations in a mare with presumed intermittent neuroglycopenia caused by severe hypoglycaemia‐associated with nonislet cell tumour. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.12947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- L. R. R. Costa
- School of Veterinary Medicine, Veterinary Medicine and Epidemiology University of California‐Davis USA
| | - C. G. Donelly
- Veterinary Medical Teaching Hospital – Large Animal Clinic University of California‐Davis USA
| | - C. M. Crowe
- Neurology and Neurosurgery Service – Electrophysiology Laboratory University of California‐DavisUSA
| | - B. Vaughan
- Surgical and Radiological Sciences University of California‐DavisUSA
| | - C. E. Alex
- Veterinary Medical Teaching Hospital – Anatomic Pathology Service University of California‐Davis USA
| | - M. Aleman
- School of Veterinary Medicine, Veterinary Medicine and Epidemiology University of California‐Davis USA
| |
Collapse
|
5
|
Mongkhonsiri P, Tong-un T, Wyss JM, Roysommuti S. Blunted Nighttime Sympathetic Nervous System Response to Stress Among Thai Men with Positive Family History of Sudden Unexplained Nocturnal Death Syndrome. Int Heart J 2019; 60:55-62. [DOI: 10.1536/ihj.18-061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pitsini Mongkhonsiri
- Department of Physiology, Faculty of Medicine, Khon Kaen University
- Research Division, Praboromarajchanok Institute for Health Workforce Development, Ministry of Public Health
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University
| | - James Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Sanya Roysommuti
- Research Division, Praboromarajchanok Institute for Health Workforce Development, Ministry of Public Health
| |
Collapse
|
6
|
Pawlowski T, Daroszewski J, Czerwinska A, Rymaszewska J. Reduction of Posttraumatic Stress Disorder (PTSD) Symptoms in PTSD and Major Depressive Disorder Comorbidity After Acute Hypoglycemia-A Case Report. Front Psychiatry 2019; 10:530. [PMID: 31404284 PMCID: PMC6675865 DOI: 10.3389/fpsyt.2019.00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/08/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Approximately half of all patients with posttraumatic stress disorder (PTSD) also suffer from major depressive disorder (MDD). This co-occurrence might lead to an impairment of cognitive functions, worse response to antidepressant medications, and an increased risk of suicide in comparison to patients with PTSD alone. Prognosis for people with PTSD and MDD co-occurrence is poorer than for either one alone; therefore, researchers look for novel, effective treatments. Case Presentation: A patient with MDD with the co-occurrence of PTSD was admitted to the Department of Endocrinology with suspicion of adrenal insufficiency. In order to assess the adrenocorticotropin/cortisol axis, a standard insulin tolerance test was performed. After inducing a hypoglycemic episode with intravenous short-acting insulin, PTSD symptoms were reduced. To the best of our knowledge, this is the first report on the reduction of PTSD symptoms after performing an insulin tolerance test. Conclusion: Reduction of PTSD symptoms in PTSD and MDD comorbidity has been noticed after a hypoglycemic episode. This demonstrates the mutual dependencies between the endocrine and nervous systems, covered extensively by psychoneuroendocrinology.
Collapse
Affiliation(s)
- Tomasz Pawlowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Czerwinska
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
7
|
Song H, Mylvaganam SM, Wang J, Mylvaganam SMK, Wu C, Carlen PL, Eubanks JH, Feng J, Zhang L. Contributions of the Hippocampal CA3 Circuitry to Acute Seizures and Hyperexcitability Responses in Mouse Models of Brain Ischemia. Front Cell Neurosci 2018; 12:278. [PMID: 30210302 PMCID: PMC6123792 DOI: 10.3389/fncel.2018.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO.
Collapse
Affiliation(s)
- Hongmei Song
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | - Justin Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Nedergaard S, Andreasen M. Opposing effects of 2-deoxy-d-glucose on interictal- and ictal-like activity when K+ currents and GABAA receptors are blocked in rat hippocampus in vitro. J Neurophysiol 2018; 119:1912-1923. [DOI: 10.1152/jn.00732.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ketogenic diet (KD), a high-fat, carbohydrate-restricted diet, is used as an alternative treatment for drug-resistant epileptic patients. Evidence suggests that compromised glucose metabolism has a significant role in the anticonvulsant action of the KD; however, it is unclear what part of the glucose metabolism that is important. The present study investigates how selective alterations in glycolysis and oxidative phosphorylation influence epileptiform activity induced by blocking K+ currents and GABAA and NMDA receptors in the hippocampal slice preparation. Blocking glycolysis with the glucose derivative 2-deoxy-d-glucose (2-DG; 10 mM) gave a fast reduction of the frequency of interictal discharge (IED) consistent with findings in other in vitro models. However, this was followed by the induction of seizure-like discharges in area CA1 and CA3. Substituting glucose with sucrose (glucopenia) had effects similar to those of 2-DG, whereas substitution with l-lactate or pyruvate reduced the IED but had a less proconvulsant effect. Blockade of ATP-sensitive K+ channels, glycine or adenosine 1 receptors, or depletion of the endogenous anticonvulsant compound glutathione did not prevent the actions of 2-DG. Baclofen (2 μM) reproduced the effect of 2-DG on IED activity. The proconvulsant effect of 2-DG could be reproduced by blocking the oxidative phosphorylation with the complex I toxin rotenone (4 μM). The data suggest that inhibition of IED, induced by 2-DG and glucopenia, is a direct consequence of impairment of glycolysis, likely exerted via a decreased recurrent excitatory synaptic transmission in area CA3. The accompanying proconvulsant effect is caused by an excitatory mechanism, depending on impairment of oxidative phosphorylation. NEW & NOTEWORTHY This study reveals two opposing effects of 2-deoxy-d-glucose (2-DG) and glucopenia on in vitro epileptiform discharge observed during combined blockade of K+ currents and GABAA receptors. Interictal-like activity is inhibited by a mechanism that selectively depends on impairment of glycolysis and that results from a decrease in the strength of excitatory recurrent synaptic transmission in area CA3. In contrast, 2-DG and glucopenia facilitate ictal-like activity by an excitatory mechanism, depending on impairment of mitochondrial oxidative phosphorylation.
Collapse
|
9
|
Dolce A, Santos P, Chen W, Hoke A, Hartman AL. Different ketogenesis strategies lead to disparate seizure outcomes. Epilepsy Res 2018; 143:90-97. [PMID: 29723773 DOI: 10.1016/j.eplepsyres.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite the introduction of new medicines to treat epilepsy over the last 50 years, the number of patients with poorly-controlled seizures remains unchanged. Metabolism-based therapies are an underutilized treatment option for this population. We hypothesized that two different means of systemic ketosis, the ketogenic diet and intermittent fasting, would differ in their acute seizure test profiles and mitochondrial respiration. METHODS Male NIH Swiss mice (aged 3-4 weeks) were fed for 12-13 days using one of four diet regimens: ketogenic diet (KD), control diet matched to KD for protein content and micronutrients (CD), or CD with intermittent fasting (24 h feed/24 h fast) (CD-IF), tested post-feed or post-fast. Mice were subject to the 6 Hz threshold test or, in separate cohorts, after injection of kainic acid in doses based on their weight (Cohort I) or a uniform dose regardless of weight (Cohort II). Mitochondrial respiration was tested in brain tissue isolated from similarly-fed seizure-naïve mice. RESULTS KD mice were protected against 6 Hz-induced seizures but had more severe seizure scores in the kainic acid test (Cohorts I & II), the opposite of CD-IF mice. No differences were noted in mitochondrial respiration between diet regimens. INTERPRETATION KD and CD-IF do not share identical antiseizure mechanisms. These differences were not explained by differences in mitochondrial respiration. Nevertheless, both KD and CD-IF regimens protected against different types of seizures, suggesting that mechanisms underlying CD-IF seizure protection should be explored further.
Collapse
Affiliation(s)
- Alison Dolce
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Departments of Pediatrics, Neurology & Neurotherapeutics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Polan Santos
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Weiran Chen
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Adam L Hartman
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 2018; 57:205-226. [PMID: 28222502 DOI: 10.3233/jad-160543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Javier Rodríguez-Colorado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| |
Collapse
|
11
|
Romano S, Mitro N, Diviccaro S, Spezzano R, Audano M, Garcia-Segura LM, Caruso D, Melcangi RC. Short-term effects of diabetes on neurosteroidogenesis in the rat hippocampus. J Steroid Biochem Mol Biol 2017; 167:135-143. [PMID: 27890531 DOI: 10.1016/j.jsbmb.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/12/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Diabetes may induce neurophysiological and structural changes in the central nervous system (i.e., diabetic encephalopathy). We here explored whether the levels of neuroactive steroids (i.e., neuroprotective agents) in the hippocampus may be altered by short-term diabetes (i.e., one month). To this aim, by liquid chromatography-tandem mass spectrometry we observed that in the experimental model of the rat raised diabetic by streptozotocin injection, one month of pathology induced changes in the levels of several neuroactive steroids, such as pregnenolone, progesterone and its metabolites (i.e., tetrahydroprogesterone and isopregnanolone) and testosterone and its metabolites (i.e., dihydrotestosterone and 3α-diol). Interestingly these brain changes were not fully reflected by the plasma level changes, suggesting that early phase of diabetes directly affects steroidogenesis and/or steroid metabolism in the hippocampus. These concepts are also supported by the findings that crucial steps of steroidogenic machinery, such as the gene expression of steroidogenic acute regulatory protein (i.e., molecule involved in the translocation of cholesterol into mitochondria) and cytochrome P450 side chain cleavage (i.e., enzyme converting cholesterol into pregnenolone) and 5α-reductase (enzyme converting progesterone and testosterone into their metabolites) are also affected in the hippocampus. In addition, cholesterol homeostasis as well as the functionality of mitochondria, a key organelle in which the limiting step of neuroactive steroid synthesis takes place, are also affected. Data obtained indicate that short-term diabetes alters hippocampal steroidogenic machinery and that these changes are associated with impaired cholesterol homeostasis and mitochondrial dysfunction in the hippocampus, suggesting them as relevant factors for the development of diabetic encephalopathy.
Collapse
Affiliation(s)
- Simone Romano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Spezzano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|