1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Li J, Sun W, Hu S, Yan X. The Implication of Photodynamic Therapy Applied to the Level of Tumor Resection on Postoperative Cerebral Edema and Intracranial Pressure Changes in Gliomas. Lasers Surg Med 2024; 56:709-722. [PMID: 39256928 DOI: 10.1002/lsm.23837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
AIM The aim of our study was to explore the factors influencing cerebral edema and intracranial pressure in glioblastoma multiforme (GBM) patients who undergo photodynamic therapy (PDT) after resection. APPROACH This was a retrospective controlled study of GBM patients treated with PDT-assisted resections of varying scope from May 2021 to August 2023. The baseline clinical data, cerebral edema volumes, intracranial pressure values, and imaging data of the GBM patients were collected for statistical analysis. RESULTS A total of 56 GBM patients were included. Thirty of the patients underwent gross total resection (GTR), and the other 26 patients underwent subtotal resection (STR). We found that the cerebral edema volume and the mean intracranial pressure in patients who underwent GTR were lower than those in patients who underwent STR. Moreover, univariate analysis showed that the scope of tumor resection was an independent factor affecting cerebral edema and intracranial pressure after PDT. CONCLUSIONS Compared with STR, PDT combined with GTR significantly reduced postoperative brain edema volume and intracranial pressure in GBM patients.
Collapse
Affiliation(s)
- Jingxuan Li
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weijun Sun
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Li Q, Huang L, Ding Y, Sherchan P, Peng W, Zhang JH. Recombinant Slit2 suppresses neuroinflammation and Cdc42-mediated brain infiltration of peripheral immune cells via Robo1-srGAP1 pathway in a rat model of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:249. [PMID: 37899442 PMCID: PMC10613398 DOI: 10.1186/s12974-023-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a devastating neonatal stroke, in which neuroinflammation is a critical pathological contributor. Slit2, a secreted extracellular matrix protein, plays a repulsive role in axon guidance and leukocyte chemotaxis via the roundabout1 (Robo1) receptor. This study aimed to explore effects of recombinant Slit2 on neuroinflammation and the underlying mechanism in a rat model of GMH. METHODS GMH was induced by stereotactically infusing 0.3 U of bacterial collagenase into the germinal matrix of 7-day-old Sprague Dawley rats. Recombinant Slit2 or its vehicle was administered intranasally at 1 h after GMH and daily for 3 consecutive days. A decoy receptor recombinant Robo1 was co-administered with recombinant Slit2 after GMH. Slit2 siRNA, srGAP1 siRNA or the scrambled sequences were administered intracerebroventricularly 24 h before GMH. Neurobehavior, brain water content, Western blotting, immunofluorescence staining and Cdc42 activity assays were performed. RESULTS The endogenous brain Slit2 and Robo1 expressions were increased after GMH. Robo1 was expressed on neuron, astrocytes and infiltrated peripheral immune cells in the brain. Endogenous Slit2 knockdown by Slit2 siRNA exacerbated brain edema and neurological deficits following GMH. Recombinant Slit2 (rSlit2) reduced neurological deficits, proinflammatory cytokines, intercellular adhesion molecules, peripheral immune cell markers, neuronal apoptosis and Cdc42 activity in the brain tissue after GMH. The anti-neuroinflammation effects were reversed by recombinant Robo1 co-administration or srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 reduced neuroinflammation and neuron apoptosis after GMH. Its anti-neuroinflammation effects by suppressing onCdc42-mediated brain peripheral immune cells infiltration was at least in part via Robo1-srGAP1 pathway. These results imply that recombinant Slit2 may have potentials as a therapeutic option for neonatal brain injuries.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
- Women and Children's Hospital of Chongqing Medical University, 120 Longshan Access Rd, Yubei District, Chongqing, 400010, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
4
|
Sun X, Jin X, Liu X, Wang L, Li L, Yang J, Feng H, Lin Z, Zhan C, Zhang W, Gu C, Hu X, Liu X, Cheng G. Microglia play an important role in PRV infection-induced immune responses of the central nervous system. Virol J 2023; 20:151. [PMID: 37452371 PMCID: PMC10349424 DOI: 10.1186/s12985-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pseudorabies virus (PRV) can infect multiple hosts and lead to fatal encephalitis. There is a significant increase in the number of microglia in the brain of animals infected with PRV. However, whether and how microglia contribute to central nervous system damage in PRV infection remain unknown. In the present study, we elucidated that PRV infection can cause more severe inflammatory cell infiltration, thicker and more numerous vessel sleeve walls, and more severe inflammatory responses in the brains of natural hosts (pigs) than in those of nonnatural hosts (mice). In a mice infection model, activated microglia restricted viral replication in the early stage of infection. Acute neuroinflammation caused by microglia hyperactivation at late-stage of infection. Furthermore, in vitro experiments revealed that microglia restricted viral replication and decreased viral infectivity. This may be associated with the phagocytic ability of microglia because we observed a significant increase in the expression of the membrane receptor TREM2 in microglia, which is closely related to phagocytosis, we observed that depletion of microglia exacerbated neurological symptoms, blood-brain barrier breakdown, and peripheral lymphocyte infiltration. Taken together, we revealed the dual role of microglia in protecting the host and neurons from PRV infection.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lumeng Wang
- Henan Shengming Biotechnology Research, Xinxiang, China
| | - Li Li
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengdan Lin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cunlin Zhan
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Cheng X, Ye J, Zhang X, Meng K. Longitudinal Variations of CDC42 in Patients With Acute Ischemic Stroke During 3-Year Period: Correlation With CD4 + T Cells, Disease Severity, and Prognosis. Front Neurol 2022; 13:848933. [PMID: 35547377 PMCID: PMC9081787 DOI: 10.3389/fneur.2022.848933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Cell division cycle 42 (CDC42) modulates CD4+ T-cell differentiation, blood lipids, and neuronal apoptosis and is involved in the pathogenesis of acute ischemic stroke (AIS); however, the clinical role of CDC42 in AIS remains unanswered. This study aimed to evaluate the expression of CDC42 in a 3-year follow-up and its correlation with disease severity, T helper (Th)1/2/17 cells, and the prognosis in patients with AIS. Methods Blood CDC42 was detected in 143 patients with AIS at multiple time points during the 3-year follow-up period and in 70 controls at admission by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, blood Th1, Th2, and Th17 cells and their secreted cytokines (interferon-γ (IFN-γ), interleukin-4 (IL-4), and interleukin-17A (IL-17A)) in patients with AIS were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Results Compared with controls (p < 0.001), CDC42 was reduced in patients with AIS. CDC42 was negatively correlated with the National Institutes of Health Stroke Scale (NIHSS) score (p < 0.001), whereas, in patients with AIS (all p < 0.050), it was positively associated with Th2 cells and IL-4 but negatively correlated with Th17 cells and IL-17A. CDC42 was decreased from admission to 3 days and gradually increased from 3 days to 3 years in patients with AIS (P<0.001). In a 3-year follow-up, 24 patients with AIS recurred and 8 patients died. On the 3rd day, 7th day, 1st month, 3rd month, 6th month, 1st year, 2nd year, and 3rd year, CDC42 was decreased in recurrent patients than that in non-recurrent patients (all p < 0.050). CDC42 at 7 days (p = 0.033) and 3 months (p = 0.023) was declined in reported deceased patients than in survived patients. Conclusion CDC42 is used as a biomarker to constantly monitor disease progression and recurrence risk of patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, China
| | - Xiaolei Zhang
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Meng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B, Chen G. Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull 2022; 183:116-126. [PMID: 35247489 DOI: 10.1016/j.brainresbull.2022.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China; Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhe Ren
- Department of Infectious Diseases, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Min Qian
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Yang H, Zhou S, Lan D, Bin Y, Bao W, Wang M, Huang F, Peng Z. The expression of Slit2 and Robo1 increased during retinoic acid syndrome in acute promyelocytic leukemia and impacted differentiated cell migration. Transl Oncol 2022; 18:101370. [PMID: 35182953 PMCID: PMC8857660 DOI: 10.1016/j.tranon.2022.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The upregulation of Robo1 and Slit2 was first found in APL patients. The positive correlation between Robo1/Slit2 and retinoic acid syndrome was first demonstrated. It was demonstrated for the first time that Slit2 induces the migration of differentiated cells. Slit2 did not inhibit il8-induced differentiated cell migration.
Retinoic acid syndrome (RAS) is a serious complication developed during the induction therapy of acute promyelocytic leukemia (APL). Cytokines and differentiated cells migration play important roles in the development of RAS. Slit guidance ligand 2 (Slit2) and roundabout 1 (Robo1) involve in cell migration. Our study aimed to investigate the expression of Slit2 and Robo1 in APL and check whether they affected promyelocytes migration. 62 cases of newly diagnosed APL patients were involved and received all-trans retinoic acid (ATRA) and arsenic trioxide as induction therapy. Bone marrow cells (BMCs) were obtained on days 0 and 28, and promyelocytes and plasma were collected from day 1 to day 21. The expression of Robo1 in promyelocytes, and that of Slit2 and cytokines, including IL-8,IL-1β and others, in serum were monitored. 20 healthy individuals donated their cells as control. Of the 62 APL patients, 16 (25.81%) patients developed RAS. The expression of Robo1, Slit2 and IL-8 increased significantly with the development of RAS. In the 16 patients with RAS, levels of Slit2, Robo1 and IL-8 were higher during the development of RAS than before or after the RAS (P < 0.05). RhSlit2-N and rhIL-8 induced cells migration, and the migration induced by IL-8 was not inhibited by rhSlit2-N. Elevated Slit2 and Robo1 levels might be useful markers for the diagnosis and treatment of RAS. The levels of Slit2, Robo1 and IL-8 showed a positive correlation with the severity of RAS. Slit2 and IL-8 promoted the migration of differentiated cells.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shengsheng Zhou
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dong Lan
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yehong Bin
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenguang Bao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Man Wang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengxiang Huang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhigang Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
9
|
Gong Y, Wu M, Shen J, Tang J, Li J, Xu J, Dang B, Chen G. Inhibition of the NKCC1/NF-κB Signaling Pathway Decreases Inflammation and Improves Brain Edema and Nerve Cell Apoptosis in an SBI Rat Model. Front Mol Neurosci 2021; 14:641993. [PMID: 33867933 PMCID: PMC8044300 DOI: 10.3389/fnmol.2021.641993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical brain injury (SBI) triggers microglia to release numerous inflammatory factors, leading to brain edema and neurological dysfunction. Reducing neuroinflammation and protecting the blood-brain barrier (BBB) are key factors to improve the neurological function and prognosis after SBI. Na+-K+-Cl– cotransporter 1 (NKCC1) and nuclear factor κB (NF-κB) have been implicated in the secretion of inflammatory cytokines by microglia in brain injury. This study aimed to establish the role of NKCC1 in inducing inflammation in SBI, as well as to determine whether NKCC1 controls the release of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) via phosphorylation of NF-κB in microglia, thus affecting BBB permeability and neuronal cell apoptosis. Male Sprague-Dawley (SD) rats were used to establish an SBI model. This study revealed that compared with the sham group, the expression levels of p-NKCC1, p-p65-NF-κB, and related inflammatory factor proteins in SBI model group significantly increased. After p-NKCC1 was inhibited, p-p65-NF-κB, IL-6, IL-1β, and TNF-α were downregulated, and nerve cell apoptosis and BBB permeability were significantly reduced. These findings suggest that the SBI-induced increase in p-NKCC1 exacerbates neuroinflammation, brain edema, and nerve function injury, which may be mediated by regulating the activity of p65-NF-κB that in turn influences the release of inflammatory factors.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jinchao Shen
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiafeng Tang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jie Li
- Department of Intensive Care Unit, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Development of an Immune-Related Risk Signature in Patients with Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5848493. [PMID: 32884943 PMCID: PMC7455840 DOI: 10.1155/2020/5848493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 02/02/2023]
Abstract
With recent advances in immunooncology and tumor microenvironment, the treatment landscape of bladder urothelial carcinoma has been changing dramatically. We aim to construct an immune gene-related signature which can predict BLCA patients' overall survival. Transcriptomic data of BLCA patients was downloaded from The Cancer Genome Atlas database, and immune-related genes were downloaded from the Immunology Database and Analysis Portal database. Prognostic immune-related genes were identified. We then constructed and validated an immune gene-related signature. Tumor-related transcription factors were downloaded from the Cistrome database, and a network between them and prognostic immune-related genes was generated. Cox's proportional hazards model and the Kaplan–Meier survival analysis were performed to assess our signature's prognostic ability. Relationship between the signature and patients' clinicopathologic features was then explored to validate its clinical value. We further downloaded concentration of six types of immune cells from the Tumor Immune Estimation Resource database to explore immune-related potential mechanisms of the signature.
Collapse
|
11
|
The Activation of Phosphatidylserine/CD36/TGF- β1 Pathway prior to Surgical Brain Injury Attenuates Neuroinflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4921562. [PMID: 32849998 PMCID: PMC7441426 DOI: 10.1155/2020/4921562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays an important pathological role in experimental surgical brain injury (SBI). Apoptotic associated with phosphatidylserine (PS) externalization promotes anti-inflammatory mediator TGF-β1 release. In the present study, we investigated the anti-neuroinflammation effect of PS liposome or isoflurane pretreatment via PS/CD36/TGF-β1 signaling in a rat model of SBI. A total of 120 male Sprague-Dawley rats (weighing 280-330 gms) were used. SBI was induced by partial right frontal lobe corticotomy. Intranasal PS liposome or isoflurane inhalation was administered prior to SBI induction. CD36 small interfering RNA (siRNA) was administered intracerebroventricularly. Recombinant Annexin V protein (rAnnexin V) was delivered intranasally. Post-SBI assessments included neurological tests, brain water content, Western blot, and immunohistochemistry. Endogenous CD36 protein levels but not TGF-β1 was significantly increased within peri-resection brain tissues over 72 h after SBI. SBI rats were associated with increased brain water content surrounding corticotomy and neurological deficits. PS liposome pretreatment significantly reduced brain water content and improved some neurological deficits at 24 hours and 72 hours after SBI. PS liposome increased CD36 and TGF-β1 protein levels, but decreased IL-1β and TNFα protein levels in peri-resection brain tissues at 24 hours after SBI. CD36 siRNA or rAnnexin V partially countered the protective effect of PS liposome. Isoflurane pretreatment produced similar antineuroinflammation and neurological benefits in SBI rats partially by upregulating CD36/Lyn/TGF-β1 signaling. Collectively, our findings suggest that the activation of PS/CD36/TGF-β1 pathway by PS liposome or isoflurane prior to SBI could attenuate neuroinflammation and improve neurological outcomes in rats. PS liposome or isoflurane pretreatment may serve as an effective preventive strategy to minimize the brain injury caused by neurosurgical procedures in patients.
Collapse
|
12
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
13
|
Inhibition of miR-200b-3p alleviates hypoxia-ischemic brain damage via targeting Slit2 in neonatal rats. Biochem Biophys Res Commun 2020; 523:931-938. [PMID: 31964527 DOI: 10.1016/j.bbrc.2020.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Brain damage in premature infants often occurs in very low birth weight infants (VLBW) as a result of hypoxia-ischemia and can lead to cognitive impairment and movement disorders. Many miRNAs have been demonstrated to participate in hypoxia-ischemic brain damage (HIBD). This study was designed to investigate the roles of miR-200b-3p in brain damage of neonatal rats induced by hypoxia-ischemia. METHODS AND RESULTS Three-day-old SD rats were used to establish the model of hypoxia-ischemic brain injury mimicking premature infants. RT-qPCR showed that miR-200b-3p was up-regulated in rat brains at the early stage following hypoxia-ischemic treatment. Bioinformatics analysis identified that Slit2 is a target gene of miR-200b-3p and luciferase reporter gene assay confirmed that miR-200b-3p can interact with and target Slit2 mRNA. Inhibition of miR-200b-3p by antagomir increased Slit2 expression at both the mRNA and protein levels in rat brains. TUNEL assay and transmission electron microscopy (TEM) analysis showed decreased numbers of apoptotic neurons in the hypoxia-ischemia-treated animals as a result of administration of miR-200b-3p antagomir. Administration of miR-200b-3p antagomir attenuated spatial and learning memory loss in the animals induced by hypoxia-ischemia as compared to controls. CONCLUSION Our study has demonstrated that Slit2 is a target gene of miR-200b-3p and that the hypoxia-ischemic brain damage in neonatal rats was alleviated by inhibiting miR-200b-3p via Slit2. miR-200b-3p may be a potential therapeutic target of HIBD for further investigation.
Collapse
|
14
|
Zhao JJ, Liu ZW, Wang B, Huang TQ, Guo D, Zhao YL, Song JN. Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury. Neural Regen Res 2020; 15:667-675. [PMID: 31638090 PMCID: PMC6975145 DOI: 10.4103/1673-5374.266914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke, but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported. A rat model of traumatic brain injury was established by weight-drop method. The tissue plasminogen activator inhibitor neuroserpin (5 μL, 0.25 mg/mL) was injected into the lateral ventricle. Neurological function was assessed by neurological severity score. Neuronal and axonal injuries were assessed by hematoxylin-eosin staining and Bielschowsky silver staining. Protein level of endogenous tissue plasminogen activator was analyzed by western blot assay. Apoptotic marker cleaved caspase-3, neuronal marker neurofilament light chain, astrocyte marker glial fibrillary acidic protein and microglial marker Iba-1 were analyzed by immunohistochemical staining. Apoptotic cell types were detected by immunofluorescence double labeling. Apoptotic cells in the damaged cortex were detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining. Degenerating neurons in the damaged cortex were detected by Fluoro-Jade B staining. Expression of tissue plasminogen activator was increased at 6 hours, and peaked at 3 days after traumatic brain injury. Neuronal apoptosis and axonal injury were detected after traumatic brain injury. Moreover, neuroserpin enhanced neuronal apoptosis, neuronal injury and axonal injury, and activated microglia and astrocytes. Neuroserpin further deteriorated neurobehavioral function in rats with traumatic brain injury. Our findings confirm that inhibition of endogenous tissue plasminogen activator aggravates neuronal apoptosis and axonal injury after traumatic brain injury, and activates microglia and astrocytes. This study was approved by the Biomedical Ethics Committee of Animal Experiments of Shaanxi Province of China in June 2015.
Collapse
Affiliation(s)
- Jun-Jie Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zun-Wei Liu
- Institute of Organ Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University; Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ting-Qin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan Guo
- Department of Science and Technology, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Lin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
15
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
16
|
Jiao Y, Yu Y, Li B, Gu X, Xie K, Wang G, Yu Y. Protective effects of hydrogen‑rich saline against experimental diabetic peripheral neuropathy via activation of the mitochondrial ATP‑sensitive potassium channel channels in rats. Mol Med Rep 2019; 21:282-290. [PMID: 31746358 PMCID: PMC6896311 DOI: 10.3892/mmr.2019.10795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
It has previously been demonstrated that hyperglycemia-induced oxidative stress and inflammation are closely associated with the development of diabetic complications, including diabetic neuropathy. Additionally, mitochondrial ATP-sensitive potassium (Mito-K-ATP) channels play a homeostatic role on blood glucose regulation in organisms. Molecular hydrogen (H2) exhibits anti-inflammatory, anti-antioxidative and anti-apoptotic properties and can be used to treat more than 71 diseases safely. In addition, the diabetes animal models which are set up using streptozotocin (STZ) injection, is a type of high long-term stability, low animal mortality rate and security method. The aim of the current study was to assess the value of hydrogen-rich saline (HS) in diabetic peripheral neuropathy (DPN) treatment and to determine its associated mechanisms in STZ-induced diabetic experimental rats. Additionally, the effects of the Mito-K-ATP channels, oxidative stress, inflammatory cytokines and apoptosis on DPN were also evaluated. From week 5 of STZ injections, HS (2.5, 5 and 10 ml/kg) was injected into the rat abdominal cavity every day for a period of 4 weeks. The results of the current study demonstrated that HS significantly reduced behavioral, biochemical and molecular effects caused by DPN. However, 5-hydroxydecanoate, a selective Mito-K-ATP channels general pathway inhibitor, partially eliminated the therapeutic effect of HS on DPN. These results indicated that the use of HS may be a novel strategy to treat DPN by activating the Mito-K-ATP pathway and reducing oxidative stress, inflammatory cytokines and apoptosis.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bo Li
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiyan Gu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Keliang Xie
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guolin Wang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
17
|
Kaur H, Xu N, Doycheva DM, Malaguit J, Tang J, Zhang JH. Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology 2019; 158:107727. [PMID: 31356825 PMCID: PMC6745244 DOI: 10.1016/j.neuropharm.2019.107727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Apoptosis following hypoxic-ischemic injury to the brain plays a major role in neuronal cell death. The neonatal brain is more susceptible to injury as the cortical neurons are immature and there are lower levels of antioxidants. Slit2, an extracellular matrix protein, has been shown to be neuroprotective in various models of neurological diseases. However, there is no information about the role of Slit2 in neonatal hypoxia-ischemia. In this study, we evaluated the effect of Slit2 and its receptor Robo1 in a rat model with neonatal HIE. 10-day old rat pups were used to create the neonatal HIE model. The right common carotid artery was ligated followed by 2.5 h of hypoxia. Recombinant Slit2 was administered intranasally 1 h post HI, recombinant Robo1 was used as a decoy receptor and administered intranasally 1h before HI and srGAP1-siRNA was administered intracerebroventricularly 24 h before HI. Brain infarct area measurement, short-term and long-term neurological function tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, Nissl staining and TUNEL staining were the assessments done following drug administration. Recombinant Slit2 administration reduced neuronal apoptosis and neurological deficits after neonatal HIE which were reversed by co-administration of recombinant Robo1 and srGAP1-siRNA administration. Recombinant Slit2 showed improved outcomes possibly via the robo1-srGAP1 pathway which mediated the inhibition of RhoA. In this study, the results suggest that Slit2 may help in attenuation of apoptosis and could be a therapeutic agent for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
18
|
Zakhary G, Sherchan P, Li Q, Tang J, Zhang JH. Modification of kynurenine pathway via inhibition of kynurenine hydroxylase attenuates surgical brain injury complications in a male rat model. J Neurosci Res 2019; 98:155-167. [PMID: 31257634 DOI: 10.1002/jnr.24489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 01/31/2023]
Abstract
Neurosurgical procedures result in surgically induced brain injury (SBI) that causes postoperative complications including brain edema and neuronal apoptosis in the surrounding brain tissue. SBI leads to the release of cytokines that indirectly cause the stimulation of kynurenine 3-monooxygenase (KMO) and the release of neurotoxic quinolinic acid (QUIN). This study tested a KMO inhibitor, RO 61-8048, to prevent postoperative brain edema and consequent neuronal apoptosis in an in vivo model of SBI. A rodent model of SBI was utilized which involves partial resection of the right frontal lobe. A total of 127 Sprague-Dawley male rats (weight 275-325 g) were randomly divided into the following groups: Sham surgical group, SBI, SBI + DMSO, SBI + RO 61-8048 (10 mg/kg), SBI + RO 61-8048 (40 mg/kg), and SBI + RO 61-8048 (40 mg/kg) + KAT II inhibitor PF-04859989 (5 mg/kg). RO 61-8048 was administered by intraperitoneal injection after SBI. Postoperative assessment at different time points included brain water content (brain edema), neurological scoring, and western blot. SBI increased brain water content (ipsilateral frontal lobe), decreased neurological function, and increased apoptotic markers compared with sham animals. Treatment with RO 61-8048 (40 mg/kg) reduced brain water content and improved long-term neurological function after SBI. RO 61-8048 increased the expression of kynurenic acid while reducing QUIN and apoptotic markers in the surrounding brain tissue after SBI. These neuroprotective effects were reversed by PF-04859989. This study suggests KMO inhibition via RO 61-8048 as a potential postoperative therapy following neurosurgical procedures.
Collapse
Affiliation(s)
- George Zakhary
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California
| | - Qian Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, Loma Linda University, Loma Linda, California
| |
Collapse
|
19
|
Lee WS, Lee WH, Bae YC, Suk K. Axon Guidance Molecules Guiding Neuroinflammation. Exp Neurobiol 2019; 28:311-319. [PMID: 31308791 PMCID: PMC6614065 DOI: 10.5607/en.2019.28.3.311] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Axon guidance molecules (AGMs), such as Netrins, Semaphorins, and Ephrins, have long been known to regulate axonal growth in the developing nervous system. Interestingly, the chemotactic properties of AGMs are also important in the postnatal period, such as in the regulation of immune and inflammatory responses. In particular, AGMs play pivotal roles in inflammation of the nervous system, by either stimulating or inhibiting inflammatory responses, depending on specific ligand-receptor combinations. Understanding such regulatory functions of AGMs in neuroinflammation may allow finding new molecular targets to treat neurodegenerative diseases, in which neuroinflammation underlies aetiology and progression.
Collapse
Affiliation(s)
- Won Suk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
20
|
Genome-Wide Association Study of Cerebral Microbleeds on MRI. Neurotox Res 2019; 37:146-155. [PMID: 31209788 DOI: 10.1007/s12640-019-00073-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Cerebral microbleeds are the presence of a group of pathological processes affecting the small arteries, arterioles, capillaries, and venules of the brain. Previous studies showed that cerebral microbleeds were associated with higher risk of dementia and stroke. We conducted a genome-wide association study of cerebral microbleeds to identify novel loci associated with the presence and progression of cerebral microbleeds. This study included 454 individuals composed by 176 subjects with cerebral microbleeds and 278 subjects without cerebral microbleeds in a non-Hispanic/Latino white population. Association of genetic variants with the presence and progression of cerebral microbleeds was assessed by logistic regression model. Potential genetic risk variants Apolipoprotein E (ApoE) polymorphisms were independently genotyped and checked the association with the presence and progression of cerebral microbleeds. No single-nucleotide polymorphisms (SNPs) associated with the presence or progression of cerebral microbleeds were identified at genome-wide significant level (P < 1 × 10-8). A total of 19 SNPs were associated with the presence of microbleeds at suggestive level (P < 1 × 10-5). One SNP was associated with lower progression risk for cerebral microbleeds with suggestive evidence (P < 1 × 10-5). ApoE ε4ε4 was independently associated with the presence and progression of cerebral microbleeds (odds ratio = 2.54, 95% confidence interval 1.08-6.00 and odds ratio = 5.1, 95% confidence interval 1.36-19.16). We highlighted 19 novel SNPs associated with the presence of cerebral microbleeds and one novel SNP associated with the progression of cerebral microbleeds for the first time. ApoE ε4ε4 was confirmed independently associated with the presence and progression of cerebral microbleeds.
Collapse
|
21
|
Wu MF, Chuang CY, Lin P, Chen WT, Su SE, Liao CY, Jan MS, Chang JT. Lung Tumorigenesis Alters the Expression of Slit2-exon15 Splicing Variants in Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11020166. [PMID: 30717252 PMCID: PMC6406468 DOI: 10.3390/cancers11020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/02/2022] Open
Abstract
Slit2 expression is downregulated in various cancers, including lung cancer. We identified two Slit2 splicing variants at exon15—Slit2-WT and Slit2-ΔE15. In the RT-PCR analyses, the Slit2-WT isoform was predominantly expressed in all the lung cancer specimens and in their normal lung counterparts, whereas Slit2-ΔE15 was equivalently or predominantly expressed in 41% of the pneumothorax specimens. A kRasG12D transgenic mice system was used to study the effects of tumorigenesis on the expressions of the Slit2-exon15 isoforms. The results revealed that a kRasG12D-induced lung tumor increased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. However, the lung tumors generated via a tail vein injection of lung cancer cells decreased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. Interestingly, the lipopolysaccharide (LPS)-induced lung inflammation also decreased the Slit2-WT/Slit2-ΔE15 ratio. Since Slit2 functions as an anti-inflammatory factor, the expression of Slit2 increases in kRasG12D lungs, which indicates that Slit2 suppresses immunity during tumorigenesis. However, an injection of lung cancer cells via the tail vein and the LPS-induced lung inflammation both decreased the Slit2 expression. The increased Slit2 in the tumor microenvironment was mostly Slit2-WT, which lacks growth inhibitory activity. Thus, the results of our study suggested that the upregulation of Slit2-WT, but not Slit2-ΔE15, in a cancer microenvironment is an important factor in suppressing immunity while not interfering with cancer growth.
Collapse
Affiliation(s)
- Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung 40705 Taiwan.
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Wei-Ting Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shang-Er Su
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ming-Shiou Jan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Jinghua Tsai Chang
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
22
|
Pilling D, Chinea LE, Consalvo KM, Gomer RH. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:239-248. [PMID: 30510066 PMCID: PMC6310129 DOI: 10.4049/jimmunol.1800681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
The movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils. In this report, we show that the ∼140-kDa N-terminal Slit2 fragment (Slit2-N) is a chemoattractant and the ∼110-kDa N-terminal Slit2 fragment (Slit2-S) is a chemorepellent for human neutrophils. The effects of both Slit2 fragments were blocked by Abs to the Slit2 receptor Roundabout homolog 1 or the Slit2 coreceptor Syndecan-4. Slit2-N did not appear to activate Ras but increased phosphatidylinositol 3,4,5-triphosphate levels. Slit2-N-induced chemoattraction was unaffected by Ras inhibitors, reversed by PI3K inhibitors, and blocked by Cdc42 and Rac inhibitors. In contrast, Slit2-S activated Ras but did not increase phosphatidylinositol 3,4,5-triphosphate levels. Slit2-S-induced chemorepulsion was blocked by Ras and Rac inhibitors, not affected by PI3K inhibitors, and reversed by Cdc42 inhibitors. Slit2-N, but not Slit2-S, increased neutrophil adhesion, myosin L chain 2 phosphorylation, and polarized actin formation and single pseudopods at the leading edge of cells. Slit2-S induced multiple pseudopods. These data suggest that Slit2 isoforms use similar receptors but different intracellular signaling pathways and have different effects on the cytoskeleton and pseudopods to induce neutrophil chemoattraction or chemorepulsion.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
23
|
Li G, He X, Li H, Wu Y, Guan Y, Liu S, Jia H, Li Y, Wang L, Huang R, Pei Z, Lan Y, Zhang Y. Overexpression of Slit2 improves function of the paravascular pathway in the aging mouse brain. Int J Mol Med 2018; 42:1935-1944. [PMID: 30085336 PMCID: PMC6108881 DOI: 10.3892/ijmm.2018.3802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with impairment of the paravascular pathway caused by the activation of astrocytes and depolarization of protein aquaporin-4 (AQP4) water channels, resulting in the accumulation of protein waste, including amyloid β (Aβ), in the brain parenchyma. The secreted glycoprotein slit guidance ligand 2 (Slit2) is important in regulating the function of the central nervous system and inflammatory response process. In the present study, 15-month-old Slit2 overexpression transgenic mice (Slit2-Tg mice) and two-photon fluorescence microscopy were used to evaluate the dynamic clearance of the paravascular pathway and the integrity of the blood-brain barrier (BBB). The reactivity of astrocytes, polarity of AQP4 and deposition of Aβ in the brain parenchyma were analyzed by immunofluorescence. A Morris water maze test was used to examine the effect of Slit2 on spatial memory cognition in aging mice. It was found that the overexpression of Slit2 improved the clearance of the paravascular pathway by inhibiting astrocyte activation and maintaining AQP4 polarity on the astrocytic endfeet in Slit2-Tg mice. In addition, Slit2 restored the disruption of the BBB caused by aging. The accumulation of Aβ was significantly reduced in the brain of Slit2-Tg mice. Furthermore, the water maze experiment showed that Slit2 improved spatial memory cognition in the aging mice. These results indicated that Slit2 may have the potential to be used in the prevention and treatment of neurodegenerative diseases in the elderly.
Collapse
Affiliation(s)
- Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Xiaofei He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yu'e Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Huanhuan Jia
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong 510663, P.R. China
| |
Collapse
|
24
|
Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, Huang L, Solaroglu I, Zhang JH. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018; 307:82-89. [PMID: 29883578 DOI: 10.1016/j.expneurol.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. METHODS SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. RESULTS Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. CONCLUSIONS Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5.
Collapse
Affiliation(s)
- Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gokce Yilmaz
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Wingi Man Ho
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, CA 92354, USA
| | - Ihsan Solaroglu
- Koç University, School of Medicine, Department of Neurosurgery, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, CA 92354, USA; Department of Anesthesiology, Loma Linda University, CA 92354, USA.
| |
Collapse
|
25
|
Xiao Y, Li G, Chen Y, Zuo Y, Rashid K, He T, Feng H, Zhang JH, Liu F. Milk Fat Globule-Epidermal Growth Factor-8 Pretreatment Attenuates Apoptosis and Inflammation via the Integrin-β3 Pathway after Surgical Brain Injury in Rats. Front Neurol 2018. [PMID: 29535679 PMCID: PMC5834760 DOI: 10.3389/fneur.2018.00096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iatrogenic brain injury inevitably occurs in neurosurgical operations, leading to brain edema, ischemia, intracranial hematoma, and other postoperative complications, eventually worsening neurological outcomes of patients. If apoptotic cells are not rapidly eliminated by phagocytic engulfment, they may communicate with surrounding cells to undergo secondary necrosis and releasing toxic signals. Recent studies have shown that milk fat globule-epidermal growth factor-8 (MFGE8), which promotes phagocytosis and inhibits inflammation, is an endogenous protective factor in response to brain infarction, Alzheimer’s disease, subarachnoid hemorrhage, and prion disease. In the present study, we sought to investigate the different effects of both pretreated and posttreated recombinant milk fat globule-epidermal growth factor-8 (rhMFGE8) for the surgical brain injury (SBI) rat model and potential involvement of its receptor integrin β3 for apoptosis and neuroinflammation after SBI. One hundred and sixty-seven male rats were employed in the preset study. Experiment 1 was performed to evaluate neurological scores and MFGE8, cleaved caspase-3 (CC3), and interleukine-1 beta (IL-1β) levels at 3, 24, and 120 h after SBI. Experiment 2 was performed to evaluate the effects of rhMFGE8 pretreatment (10 min before SBI) and rhMFGE8 posttreatment (6 h after SBI) on brain edema at 24 and 72 h after SBI. Experiment 3 was performed to evaluate the potential anti-apoptotic and anti-inflammatory effects of rhMFGE8 pretreatment and posttreatment. Experiment 4 sought to investigate the involvement of the integrin-β3 signal in the effects of MFGE8 pretreatment. Our data showed rhMFGE8 pretreatment alleviated neurological deficits and decreased brain water content and apoptotic cells in the SBI model, which exhibited neurological dysfunction, apoptosis, and inflammation. Meanwhile, MFGE8 siRNA, which inhibited endogenous MFGE8 expression, significantly increased IL-1β, TUNEL positive cells, and CC3. Furthermore, knockdown of its receptor integrin β3 by siRNA abolished the effects of rhMFGE8 in the SBI model. In conclusion, we found that rhMFGE8 pretreatment effectively alleviated neurological deficits and decreased brain water content and apoptotic cells in the SBI model through the MFGE8/integrin-β3 pathway, and treatment time was an important factor in achieving curative effects. Therefore, MFGE8 pretreatment may serve as a promising therapeutic strategy for SBI patients.
Collapse
Affiliation(s)
- Yicai Xiao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Gaofeng Li
- Departments of Oncology, Zhuzhou Central Hospital, Hunan, Zhuzhou, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Kauthar Rashid
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Tibiao He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University, Loma Linda, CA, United States
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| |
Collapse
|
26
|
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
Collapse
Affiliation(s)
- Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| |
Collapse
|
27
|
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Sci Rep 2017; 7:5466. [PMID: 28710425 PMCID: PMC5511148 DOI: 10.1038/s41598-017-05770-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 01/30/2023] Open
Abstract
Inflammatory preconditioning is a mechanism in which exposure to small doses of inflammatory stimuli prepares the body against future massive insult by activating endogenous protective responses. Phospholipase A2/5-lipoxygenase/leukotriene-B4 (PLA2/5-LOX/LTB4) axis is an important inflammatory signaling pathway. Naja sputatrix (Malayan spitting cobra) venom contains 15% secretory PLA2 of its dry weight. We investigated if Naja sputatrix venom preconditioning (VPC) reduces surgical brain injury (SBI)-induced neuroinflammation via activating PLA2/5-LOX/LTB4 cascade using a partial frontal lobe resection SBI rat model. Naja sputatrix venom sublethal dose was injected subcutaneously for 3 consecutive days prior to SBI. We observed that VPC reduced brain edema and improved neurological function 24 h and 72 h after SBI. The expression of pro-inflammatory mediators in peri-resection brain tissue was reduced with VPC. Administration of Manoalide, a PLA2 inhibitor or Zileuton, a 5-LOX inhibitor with VPC reversed the protective effects of VPC against neuroinflammation. The current VPC regime induced local skin inflammatory reaction limited to subcutaneous injection site and elicited no other toxic effects. Our findings suggest that VPC reduces neuroinflammation and improves outcomes after SBI by activating PLA2/5-LOX/LTB4 cascade. VPC may be beneficial to reduce post-operative neuroinflammatory complications after brain surgeries.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Physiology, Jinan University School of Medicine, Guangzhou, Guangdong Province, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lei Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Onat Akyol
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA.
| |
Collapse
|
28
|
Yin C, Huang GF, Sun XC, Guo Z, Zhang JH. DLK silencing attenuated neuron apoptosis through JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neurobiol Dis 2017; 103:133-143. [PMID: 28396258 PMCID: PMC5493044 DOI: 10.1016/j.nbd.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Dual leucine zipper kinase (DLK/MA3K12) has been reported involved in apoptosis and neuronal degeneration during neural development and traumatic brain injury. This study was designed to investigate the role of DLK with its adaptor protein JNK interacting protein-3 (JIP3), and its downstream MA2K7/JNK signaling pathway in early brain injury (EBI) after subarachnoid hemorrhage (SAH) in a rat model. DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory. SUBJECTS Two hundred and twenty-three adult male Sprague-Dawley rats weighing 280-320g. INTERVENTIONS SAH was induced by endovascular perforation in rats. The SAH grade, neurological score, and brain water content were measured at 24 and 72h after SAH. Immunofluorescence staining was used to detect the cells that expressed DLK. The terminal deoxynucleotid transferase-deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to detect the neuronal apoptosis. In mechanism research, the expression of DLK, JIP3, phosphorylated-JNK (p-JNK)/JNK, and cleaved caspase-3 (CC-3) were analyzed by western blot at 24h after SAH. The DLK small interfering RNA (siRNA), JIP3 siRNA, MA2K7 siRNA and recombinant DLK protein which injected intracerebroventricularly were given as the interventions. MEASUREMENTS AND MAIN RESULTS The DLK expression was increased in the left cortex neurons and peaked at 24h after SAH. DLK siRNA attenuated brain edema, reduced neuronal apoptosis, and improved the neurobehavioral functions after SAH, but the recombinant DLK protein deteriorated neurobehavioral functions and brain edema. DLK siRNA decreased and recombinant DLK protein increased the expression of MA2K7/p-JNK/CC-3 at 24h after SAH. The JIP3 siRNA reduced the level of JIP3/MA2K7/p-JNK/CC-3, combined DLK siRNA and JIP3 siRNA further decreased the expression of DLK/MA2K7/p-JNK/CC-3, and MA2K7 siRNA lowered the amount of MA2K7/p-JNK/CC-3 at 24h after SAH. CONCLUSIONS As a negative role, DLK was involved in EBI after SAH, possibly mediated by its adaptor protein JIP3 and MA2K7/JNK signaling pathways. To reduce the level of DLK may be a new target as intervention for SAH.
Collapse
Affiliation(s)
- Cheng Yin
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Guang-Fu Huang
- Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John H Zhang
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
29
|
Lin Z, Huang H, Gu Y, Huang K, Hu Y, Ji Z, Wu Y, Wang S, Yang T, Pan S. Glibenclamide ameliorates cerebral edema and improves outcomes in a rat model of status epilepticus. Neuropharmacology 2017; 121:1-11. [PMID: 28412320 DOI: 10.1016/j.neuropharm.2017.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 12/30/2022]
Abstract
Glibenclamide (GBC), a sulfonylurea receptor 1 blocker, emerges recently as a promising neuron protectant in various neurological disorders. This study aimed to determine whether GBC improves survival and neurological outcome of status epilepticus (SE). Male Sprague-Dawley rats successfully undergoing SE for 2.5 h (n = 134) were randomly assigned to GBC or vehicle group. Rats in the GBC group received a loading dose of 10 μg/kg of GBC, followed by 1.2 μg/6 h for 3 days, while same dose of vehicle was used as control. The 28-day survival rate in the GBC group (11/23) was significantly higher than that in the vehicle group (8/36). In addition, the frequency and duration of spontaneous recurrent seizures in SE rats were profoundly reduced by GBC but not by vehicle treatment. Moreover, cognitive impairment was observed in the SE rats at day 28, which was reversed by GBC treatment. Meanwhile, cerebral edema, as well as neuronal loss, was decreased in several brain areas in the GBC group. Additionally, on the molecular basis, the subunits of sulfonylurea receptor 1/transient receptor potential M4 (SUR1-TRPM4) heterodimer were both strongly upregulated after SE but partly suppressed by GBC treatment. Furthermore, gene knockdown of Trpm4 in SE rats reduced BBB disruption and neuronal loss, similar to the inhibitory effects with GBC treatment. Taken together, GBC treatment markedly improved survival and neurologic outcomes after SE. The salutary effects of GBC were correlated to the alleviation of cerebral edema and reduction in neurological injury via down-regulation of SUR1-TRPM4 channel.
Collapse
Affiliation(s)
- Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Yang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. Sci Rep 2017; 7:746. [PMID: 28389649 PMCID: PMC5429690 DOI: 10.1038/s41598-017-00827-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Brain tissue surrounding surgical resection site can be injured inadvertently due to procedures such as incision, retractor stretch, and electrocauterization when performing neurosurgical procedures, which is termed as surgical brain injury (SBI). Blood brain barrier (BBB) disruption due to SBI can exacerbate brain edema in the post-operative period. Previous studies showed that Slit2 exhibited vascular anti-permeability effects outside the brain. However, BBB protective effects of Slit2 following SBI has not been evaluated. The objective of this study was to evaluate whether recombinant Slit2 via its receptor roundabout4 (Robo4) and the adaptor protein, Paxillin were involved in reducing BBB permeability in SBI rat model. Our results showed that endogenous Slit2 increased in the surrounding peri-resection brain tissue post-SBI, Robo4 remained unchanged and Paxillin showed a decreasing trend. Recombinant Slit2 administered 1 h before injury increased BBB junction proteins, reduced BBB permeability, and decreased neurodeficits 24 h post-SBI. Furthermore, recombinant Slit2 administration increased Rac1 activity which was reversed by Robo4 and Paxillin siRNA. Our findings suggest that recombinant Slit2 reduced SBI-induced BBB permeability, possibly by stabilizing BBB tight junction via Robo4 mediated Rac1 activation. Slit2 may be beneficial for BBB protection during elective neurosurgeries.
Collapse
|
31
|
Kim CH, McBride DW, Sherchan P, Person CE, Gren ECK, Kelln W, Lekic T, Hayes WK, Tang J, Zhang JH. Crotalus helleri venom preconditioning reduces postoperative cerebral edema and improves neurological outcomes after surgical brain injury. Neurobiol Dis 2017; 107:66-72. [PMID: 28286182 DOI: 10.1016/j.nbd.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Postoperative cerebral edema is a devastating complication in neurosurgical patients. Loss of blood-brain barrier integrity has been shown to lead to the development of brain edema following neurosurgical procedures. The aim of this study was to evaluate preconditioning with Crotalus helleri venom (Cv-PC) as a potential preventive therapy for reducing postoperative brain edema in the rodent SBI model. C. helleri venom is known to contain phospholipase A2 (PLA2), an enzyme upstream to cyclooxygenase-2 (COX-2) in the inflammatory cascade, acts to increase the production of inflammatory mediators, such as prostaglandins. We hypothesize that Cv-PC will downregulate the response of the COX-2 pathway to injury, thereby reducing the inflammatory response and the development of brain edema after SBI. MATERIALS AND METHODS 75 male Sprague Dawley rats (280-330g) were divided to the following groups-naïve+vehicle, naïve+Cv-PC, sham, vehicle, Cv-PC, Cv-PC+NS398 (COX-2 inhibitor). Vehicle preconditioned and Cv-PC animals received either three daily subcutaneous doses of saline or C. helleri venom at 72h, 48h, and 24h prior to surgery. In Cv-PC+NS398 animals, NS398 was administered intraperitoneally 1h prior to each Cv-PC injection. Sham-operated animals received craniotomy only, whereas SBI animals received a partial right frontal lobectomy. Neurological testing and brain water content were assessed at 24h and 72h after SBI; COX-2 and PGE2 expression was assessed at 24h postoperatively by Western blot and immunohistochemistry, respectively. RESULTS At 24h after SBI, the vehicle-treated animals were observed to have increased brain water content (83.1±0.2%) compared to that of sham animals (80.2±0.1%). The brain water content of vehicle-treated animals at 72h post-SBI was elevated at 83.3±0.2%. Cv-PC-treated animals with doses of 10% LD50 had significantly reduced brain water content of 81.92±0.7% and 81.82±0.3% at 24h and 72h, respectively, after SBI compared to that of vehicle-treated animals, while Cv-PC with 5% LD50 doses showed brain water content that trended lower but did not reach statistical significance. At 24h and 72h post-SBI, Cv-PC-treated animals had significantly higher neurological score than vehicle-treated animals. The COX-2 over-expression characterized in SBI was attenuated in Cv-PC-treated animals; NS398 reversed the protective effect of Cv-PC on COX-2 expression. Cv-PC tempered the over-expression of the inflammatory marker PGE2. CONCLUSION Our findings indicate that Cv-PC may provide a promising therapy for reducing postoperative edema and improving neurological function after neurosurgical procedures.
Collapse
Affiliation(s)
- Cherine H Kim
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carl E Person
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tim Lekic
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
32
|
Involvement of Toll Like Receptor 2 Signaling in Secondary Injury during Experimental Diffuse Axonal Injury in Rats. Mediators Inflamm 2017; 2017:1570917. [PMID: 28293064 PMCID: PMC5331293 DOI: 10.1155/2017/1570917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Treatment of diffuse axonal injury (DAI) remains challenging in clinical practice due to the unclear pathophysiological mechanism. Uncontrolled, excessive inflammation is one of the most recognized mechanisms that contribute to the secondary injury after DAI. Toll like receptor 2 (TLR2) is highlighted for the initiation of a vicious self-propagating inflammatory circle. However, the role and detailed mechanism of TLR2 in secondary injury is yet mostly unknown. In this study, we demonstrated the expression of TLR2 levels in cortex, corpus callosum, and internal capsule and the localization of TLR2 in neurons and glial cells in rat DAI models. Intracerebral knockdown of TLR2 significantly downregulated TLR2 expression, attenuated cortical apoptosis, lessened glial response, and reduced the secondary axonal and neuronal injury in the cortex by inhibiting phosphorylation of mitogen-activated protein kinases (MAPK) including Erk, JNK, and p38, translocation of NF-κB p65 from the cytoplasm to the nucleus, and decreasing levels of proinflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α. On the contrary, administration of TLR2 agonist to DAI rats achieved an opposite effect. Collectively, we demonstrated that TLR2 was involved in mediating secondary injury after DAI by inducing inflammation via the MAPK and NF-κB pathways.
Collapse
|
33
|
Dixon BJ, Chen D, Zhang Y, Flores J, Malaguit J, Nowrangi D, Zhang JH, Tang J. Intranasal Administration of Interferon Beta Attenuates Neuronal Apoptosis via the JAK1/STAT3/BCL-2 Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. ASN Neuro 2016; 8:1759091416670492. [PMID: 27683877 PMCID: PMC5043595 DOI: 10.1177/1759091416670492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an injury that often leads to detrimental neurological deficits. Currently, there are no established therapies for HIE and it is critical to develop treatments that provide protection after HIE. The objective of this study was to investigate the ability of interferon beta (IFNβ) to provide neuroprotection and reduce apoptosis after HIE. Postnatal Day 10 rat pups were subjected to unilateral carotid artery ligation followed by 2.5 hr of exposure to hypoxia (8% O2). Intranasal administration of human recombinant IFNβ occurred 2 hr after HIE and infarct volume, body weight, neurobehavioral tests, histology, immunohistochemistry, brain water content, blood-brain barrier permeability, enzyme-linked immunosorbent assay, and Western blot were all used to evaluate various parameters. The results showed that both IFNβ and the Type 1 interferon receptor expression decreases after HIE. Intranasal administration of human recombinant IFNβ was able to be detected in the central nervous system and was able to reduce brain infarction volumes and improve neurological behavior tests 24 hr after HIE. Western blot analysis also revealed that human recombinant IFNβ treatment stimulated Stat3 and Bcl-2 expression leading to a decrease in cleaved caspase-3 expression after HIE. Positive Fluoro-Jade C staining also demonstrated that IFNβ treatment was able to decrease neuronal apoptosis. Furthermore, the beneficial effects of IFNβ treatment were reversed when a Stat3 inhibitor was applied. Also an intraperitoneal administration of human recombinant IFNβ into the systemic compartment was unable to confer the same protective effects as intranasal IFNβ treatment.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Di Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Yang Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Derek Nowrangi
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA Department of Neurosurgery, Loma Linda University School of Medicine, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
34
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
35
|
Yang W, Liu Y, Liu B, Tan H, Lu H, Wang H, Yan H. Treatment of surgical brain injury by immune tolerance induced by intrathymic and hepatic portal vein injection of brain antigens. Sci Rep 2016; 6:32030. [PMID: 27554621 PMCID: PMC4995514 DOI: 10.1038/srep32030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022] Open
Abstract
Surgical brain injury (SBI) defines complications induced by intracranial surgery, such as cerebral edema and other secondary injuries. In our study, intrathymic and hepatic portal vein injection of allogeneic myelin basic protein (MBP) or autogeneic brain cell suspensions were administered to a standard SBI model. Serum pro-inflammatory IL-2, anti-inflammatory IL-4 concentrations and the CD4+T/CD8+T ratio were measured at 1, 3, 7, 14 and 21 d after surgery to verify the establishment of immune tolerance. Furthermore, we confirmed neuroprotective effects by evaluating neurological scores at 1, 3, 7, 14 and 21 d after SBI. Anti-Fas ligand (FasL) immunohistochemistry and TUNEL assays of brain sections were tested at 21 d after surgery. Intrathymic injections of MBP or autogeneic brain cell suspensions functioned by both suppressing secondary inflammatory reactions and improving prognoses, whereas hepatic portal vein injections of autogeneic brain cell suspensions exerted a better effect than MBP. Intrathymic and hepatic portal vein injections of MBP had equal effects on reducing secondary inflammation and improving prognoses. Otherwise, hepatic portal vein injections of autogeneic brain cell suspensions had better outcomes than intrathymic injections of autogeneic brain cell suspensions. Moreover, the benefit of injecting antigens into the thymus was outweighed by hepatic portal vein injections.
Collapse
Affiliation(s)
- Weijian Yang
- Graduate School of Tianjin Medical University, Tianjin 300070, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Yong Liu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Baolong Liu
- Department of Ultrasonography, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Huajun Tan
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Hao Lu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Hong Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Hua Yan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300060, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300060, China
| |
Collapse
|