1
|
Kong S, Jia X, Liang X, Chen Y, Liang J, Zhang Y, Wu N, Su S, Chen T, He X, Yin J, Han S, Liu W, Fan Y, Xu J, Peng B. Febrile temperature-regulated TRPV1 in CD4 + T cells mediates neuroinflammation in complex febrile seizures. J Neuroinflammation 2025; 22:103. [PMID: 40197540 PMCID: PMC11977886 DOI: 10.1186/s12974-025-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Febrile seizures (FS) are the most prevalent convulsive disorder in children characterized by a high recurrence rate. However, the interaction between adaptive and innate immunity in the recurrence of FS remains poorly understood, and the molecular pathways involved are unclear. The objective of this study is to elucidate the role of Th17 cells in seizure susceptibility following complex febrile seizures (CFS), and to explore the regulatory mechanisms underlying Th17 cell differentiation and function under hyperthermic conditions through transient receptor potential vanilloid 1 (TRPV1). METHODS RNA sequencing was employed to validate the seizure susceptibility following CFS and to explore the potential mechanisms by which high temperature contributes to Th17 cell differentiation. Neuronal excitability and damage were examined using Multi-electrode array (MEA) analysis and Nissl staining. Flow cytometry, chromatin immunoprecipitation (ChIP) analysis, and immunofluorescence (IF) were applied to examine how TRPV1 facilitates Th17 cell differentiation. RESULTS Our study demonstrates that proinflammatory Th17 cells exhibit enhanced differentiation in a CFS mouse model and exacerbate blood-brain barrier (BBB) disruption. After infiltrating the central nervous system (CNS), Th17 cells promote neuroinflammation by activating microglia via IL-17A. Mechanistically, TRPV1 is critical for Th17 cell differentiation and function. Activated by febrile temperature both in vivo and in vitro, TRPV1 facilitates calcium ion influx, leading to the nuclear localization of nuclear factor of activated T cell 2 and 4 (NFAT2/4) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Knockdown of TRPV1 attenuates Th17 cell differentiation and CNS infiltration, thereby protecting the BBB and reducing seizure susceptibility following CFS. CONCLUSION These results highlight the critical interplay between adaptive and innate immunity in CFS. The TRPV1/NFATs/STAT3 signaling pathway regulates Th17 cell differentiation and function under febrile conditions, revealing a promising therapeutic target for intervention.
Collapse
Affiliation(s)
- Shuo Kong
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xianglei Jia
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Chen
- Department of Genetics, Shandong Second Medical University, Weifang, 261053, China
| | - Jingyi Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ningyang Wu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Su
- Epilepsy Center, Jinan Children's Hospital, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Taoxiang Chen
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiaohua He
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Yin
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Han
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Wanhong Liu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuanteng Fan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jian Xu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
- Clinical Laboratory, Weifang Maternal and Child Health Hospital, 407 Qingnian Road, Weifang, 261011, Shandong, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
2
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|
3
|
Wolf DC, Desgent S, Sanon NT, Chen JS, Elkaim LM, Bosoi CM, Awad PN, Simard A, Salam MT, Bilodeau GA, Duss S, Sawan M, Lewis EC, Weil AG. Sex differences in the developing brain impact stress-induced epileptogenicity following hyperthermia-induced seizures. Neurobiol Dis 2021; 161:105546. [PMID: 34742878 DOI: 10.1016/j.nbd.2021.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Febrile seizures (FS) are common, affecting 2-5% of children between the ages of 3 months and 6 years. Complex FS occur in 10% of patients with FS and are strongly associated with mesial temporal lobe epilepsy. Current research suggests that predisposing factors, such as genetic and anatomic abnormalities, may be necessary for complex FS to translate to mesial temporal lobe epilepsy. Sex hormones are known to influence seizure susceptibility and epileptogenesis, but whether sex-specific effects of early life stress play a role in epileptogenesis is unclear. Here, we investigate sex differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis following chronic stress and the underlying contributions of gonadal hormones to the susceptibility of hyperthermia-induced seizures (HS) in rat pups. Chronic stress consisted of daily injections of 40 mg/kg of corticosterone (CORT) subcutaneously from postnatal day (P) 1 to P9 in male and female rat pups followed by HS at P10. Body mass, plasma CORT levels, temperature threshold to HS, seizure characteristics, and electroencephalographic in vivo recordings were compared between CORT- and vehicle (VEH)-injected littermates during and after HS at P10. In juvenile rats (P18-P22), in vitro CA1 pyramidal cell recordings were recorded in males to investigate excitatory and inhibitory neuronal circuits. Results show that daily CORT injections increased basal plasma CORT levels before HS and significantly reduced weight gain and body temperature threshold of HS in both males and females. CORT also significantly lowered the generalized convulsions (GC) latency while increasing recovery time and the number of electrographic seizures (>10s), which had longer duration. Furthermore, sex-specific differences were found in response to chronic CORT injections. Compared to females, male pups had increased basal plasma CORT levels after HS, longer recovery time and a higher number of electrographic seizures (>10s), which also had longer duration. Sex-specific differences were also found at baseline conditions with lower latency to generalized convulsions and longer duration of electrographic seizures in males but not in females. In juvenile male rats, the amplitude of evoked excitatory postsynaptic potentials, as well as the amplitude of inhibitory postsynaptic currents, were significantly greater in CORT rats when compared to VEH littermates. These findings not only validate CORT injections as a stress model, but also show a sex difference in baseline conditions as well as a response to chronic CORT and an impact on seizure susceptibility, supporting a potential link between sustained early-life stress and complex FS. Overall, these effects also indicate a putatively less severe phenotype in female than male pups. Ultimately, studies investigating the biological underpinnings of sex differences as a determining factor in mental and neurologic problems are necessary to develop better diagnostic, preventative, and therapeutic approaches for all patients regardless of their sex.
Collapse
Affiliation(s)
- Daniele C Wolf
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada.
| | - Sébastien Desgent
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada
| | - Nathalie T Sanon
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lior M Elkaim
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ciprian M Bosoi
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Patricia N Awad
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Alexe Simard
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Muhammad T Salam
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | - Guillaume-Alexandre Bilodeau
- LITIV Lab., Département de génie informatique et génie logiciel, Polytechnique Montréal, Montréal, Québec, Canada
| | - Sandra Duss
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Mohamad Sawan
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | | | - Alexander G Weil
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada; Neurosurgery Service, Department of Surgery, Université de Montréal, Québec, Canada
| |
Collapse
|
4
|
Smalley JL, Kontou G, Choi C, Ren Q, Albrecht D, Abiraman K, Santos MAR, Bope CE, Deeb TZ, Davies PA, Brandon NJ, Moss SJ. Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Front Mol Neurosci 2020; 13:563091. [PMID: 33192291 PMCID: PMC7643010 DOI: 10.3389/fnmol.2020.563091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Georgina Kontou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - David Albrecht
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | | | - Christopher E Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Nicholas J Brandon
- AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Guo Y, Chen Y, Yang M, Xu X, Lin Z, Ma J, Chen H, Hu Y, Ma Y, Wang X, Tian X. A Rare KIF1A Missense Mutation Enhances Synaptic Function and Increases Seizure Activity. Front Genet 2020; 11:61. [PMID: 32174959 PMCID: PMC7056823 DOI: 10.3389/fgene.2020.00061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Although genetic factors are considered a main etiology of epilepsy, the causes of genetic epilepsy in the majority of epilepsy patients remain unknown. Kinesin family member 1A (KIF1A), a neuron-specific motor protein that moves along with microtubules, is responsible for the transport of membranous organelles and synaptic vesicles. Variants of KIF1A have recently been associated with hereditary spastic paraplegia (HSP), hereditary sensory and autonomic neuropathy type 2 (HSANII), and intellectual disability. However, mutations in KIF1A have not been detected in patients with epilepsy. In our study, we conducted customized sequencing of epilepsy-related genes of a family with six patients with generalized epilepsy over three generations and identified a rare heterozygous mutation (c.1190C > A, p. Ala397Asp) in KIF1A. Whole-cell recordings from primary cultured neurons revealed that the mutant KIF1A increases the excitatory synaptic transmission but not the intrinsic excitability of neurons, and phenotype testing in zebrafish showed that this rare mutation results in epileptic seizure-like activity. These results provide new evidence demonstrating that KIF1A dysfunction is involved in epileptogenesis.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Zijun Lin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Junhong Ma
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Hongnian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yida Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
6
|
Liu R, Wang J, Liang S, Zhang G, Yang X. Role of NKCC1 and KCC2 in Epilepsy: From Expression to Function. Front Neurol 2020; 10:1407. [PMID: 32010056 PMCID: PMC6978738 DOI: 10.3389/fneur.2019.01407] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023] Open
Abstract
As a main inhibitory neurotransmitter in the central nervous system, γ-aminobutyric acid (GABA) activates chloride-permeable GABAa receptors (GABAa Rs) and induces chloride ion (Cl−) flow, which relies on the intracellular chloride concentration ([Cl−]i) of the postsynaptic neuron. The Na-K-2Cl cotransporter isoform 1 (NKCC1) and the K-Cl cotransporter isoform 2 (KCC2) are two main cation-chloride cotransporters (CCCs) that have been implicated in human epilepsy. NKCC1 and KCC2 reset [Cl−]i by accumulating and extruding Cl−, respectively. Previous studies have shown that the profile of NKCC1 and KCC2 in neonatal neurons may reappear in mature neurons under some pathophysiological conditions, such as epilepsy. Although increasing studies focusing on the expression of NKCC1 and KCC2 have suggested that impaired chloride plasticity may be closely related to epilepsy, additional neuroelectrophysiological research aimed at studying the functions of NKCC1 and KCC2 are needed to understand the exact mechanism by which they induce epileptogenesis. In this review, we aim to briefly summarize the current researches surrounding the expression and function of NKCC1 and KCC2 in epileptogenesis and its implications on the treatment of epilepsy. We will also explore the potential for NKCC1 and KCC2 to be therapeutic targets for the development of novel antiepileptic drugs.
Collapse
Affiliation(s)
- Ru Liu
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Junling Wang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shuli Liang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
7
|
Zhang HH, Meng SQ, Guo XY, Zhang JL, Zhang W, Chen YY, Lu L, Yang JL, Xue YX. Traumatic Stress Produces Delayed Alterations of Synaptic Plasticity in Basolateral Amygdala. Front Psychol 2019; 10:2394. [PMID: 31708835 PMCID: PMC6824323 DOI: 10.3389/fpsyg.2019.02394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute traumatic event exposure is a direct cause of post-traumatic stress disorder (PTSD). Amygdala is suggested to be associated with the development of PTSD. In our previous findings, different activation patterns of GABAergic neurons and glutamatergic neurons in early or late stages after stress were found. However, the neural plastic mechanism underlying the role of basolateral amygdala (BLA) in post-traumatic stress disorder remains unclear. Therefore, this study mainly aimed at investigating time-dependent morphologic and electrophysiological changes in BLA during the development of PTSD. We used single prolonged stress (SPS) procedure to establish PTSD model of rats. The rats showed no alterations in anxiety behavior as well as in dendritic spine density or synaptic transmission in BLA 1 day after SPS. However, 10 days after SPS, rats showed enhancement of anxiety behavior, and spine density and frequency of miniature excitatory and inhibitory postsynaptic currents in BLA. Our results suggested that after traumatic stress, BLA displayed delayed increase in both spinogenesis and synaptic transmission, which seemed to facilitate the development of PTSD.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xin-Yi Guo
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Liang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy and Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| | - Wen Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
8
|
Kipnis PA, Sullivan BJ, Kadam SD. Sex-Dependent Signaling Pathways Underlying Seizure Susceptibility and the Role of Chloride Cotransporters. Cells 2019; 8:448. [PMID: 31085988 PMCID: PMC6562404 DOI: 10.3390/cells8050448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Seizure incidence, severity, and antiseizure medication (ASM) efficacy varies between males and females. Differences in sex-dependent signaling pathways that determine network excitability may be responsible. The identification and validation of sex-dependent molecular mechanisms that influence seizure susceptibility is an emerging focus of neuroscience research. The electroneutral cation-chloride cotransporters (CCCs) of the SLC12A gene family utilize Na+-K+-ATPase generated electrochemical gradients to transport chloride into or out of neurons. CCCs regulate neuronal chloride gradients, cell volume, and have a strong influence over the electrical response to the inhibitory neurotransmitter GABA. Acquired or genetic causes of CCCs dysfunction have been linked to seizures during early postnatal development, epileptogenesis, and refractoriness to ASMs. A growing number of studies suggest that the developmental expression of CCCs, such as KCC2, is sex-dependent. This review will summarize the reports of sexual dimorphism in epileptology while focusing on the role of chloride cotransporters and their associated modulators that can influence seizure susceptibility.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Nakamura K, Moorhouse AJ, Cheung DL, Eto K, Takeda I, Rozenbroek PW, Nabekura J. Overexpression of neuronal K +-Cl - co-transporter enhances dendritic spine plasticity and motor learning. J Physiol Sci 2019; 69:453-463. [PMID: 30758780 PMCID: PMC10717839 DOI: 10.1007/s12576-018-00654-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
The neuronal K+-Cl- cotransporter KCC2 maintains a low intracellular Cl- concentration and facilitates hyperpolarizing GABAA receptor responses. KCC2 also plays a separate role in stabilizing and enhancing dendritic spines in the developing nervous system. Using a conditional transgenic mouse strategy, we examined whether overexpression of KCC2 enhances dendritic spines in the adult nervous system and characterized the effects on spine dynamics in the motor cortex in vivo during rotarod training. Mice overexpressing KCC2 showed significantly increased spine density in the apical dendrites of layer V pyramidal neurons, measured in vivo using two-photon imaging. During modest accelerated rotarod training, mice overexpressing KCC2 displayed enhanced spine formation rates, greater balancing skill at higher rotarod speeds and a faster rate of learning in this ability. Our results demonstrate that KCC2 enhances spine density and dynamics in the adult nervous system and suggest that KCC2 may play a role in experience-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Kayo Nakamura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan
| | - Andrew John Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Dennis Lawrence Cheung
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Kei Eto
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Ikuko Takeda
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Paul Wiers Rozenbroek
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan.
| |
Collapse
|
10
|
Wang Y, Wang Y, Chen Z. Double-edged GABAergic synaptic transmission in seizures: The importance of chloride plasticity. Brain Res 2018; 1701:126-136. [PMID: 30201259 DOI: 10.1016/j.brainres.2018.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
GABAergic synaptic inhibition, which is a critical regulator of neuronal excitability, is closely involved in epilepsy. Interestingly, fast GABAergic transmission mediated by Cl- permeable GABAA receptors can bi-directionally exert both seizure-suppressing and seizure-promoting actions. Accumulating evidence suggests that chloride plasticity, the driving force of GABAA receptor-mediated synaptic transmission, contributes to the double-edged role of GABAergic synapses in seizures. Large amounts of Cl- influx can overwhelm Cl- extrusion during seizures not only in healthy tissue in a short-term "activity-dependent" manner, but also in chronic epilepsy in a long-term, irreversible "pathology-dependent" manner related to the dysfunction of two chloride transporters: the chloride importer NKCC1 and the chloride exporter KCC2. In this review, we address the importance of chloride plasticity for the "activity-dependent" and "pathology-dependent" mechanisms underlying epileptic events and provide possible directions for further research, which may be clinically important for the design of GABAergic synapse-targeted precise therapeutic interventions for epilepsy.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Awad PN, Amegandjin CA, Szczurkowska J, Carriço JN, Fernandes do Nascimento AS, Baho E, Chattopadhyaya B, Cancedda L, Carmant L, Di Cristo G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb Cortex 2018; 28:4049-4062. [PMID: 30169756 PMCID: PMC6188549 DOI: 10.1093/cercor/bhy198] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.
Collapse
Affiliation(s)
- Patricia Nora Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Clara Akofa Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Joanna Szczurkowska
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Laura Cancedda
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
- Telethon Dulbecco Institute, Italy
| | - Lionel Carmant
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
12
|
Amadeo A, Coatti A, Aracri P, Ascagni M, Iannantuoni D, Modena D, Carraresi L, Brusco S, Meneghini S, Arcangeli A, Pasini ME, Becchetti A. Postnatal Changes in K +/Cl - Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 2018; 386:91-107. [PMID: 29949744 DOI: 10.1016/j.neuroscience.2018.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
Collapse
Affiliation(s)
- Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Aurora Coatti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Miriam Ascagni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Davide Iannantuoni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Debora Modena
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Laura Carraresi
- Dival Toscana Srl, Via Madonna del Piano, 6 - 50019 Sesto Fiorentino, Firenze, Italy.
| | - Simone Brusco
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Firenze, Italy.
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
13
|
Di Cristo G, Awad PN, Hamidi S, Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog Neurobiol 2018; 162:1-16. [DOI: 10.1016/j.pneurobio.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
14
|
Abstract
K+-Cl- co-transporter 2 (KCC2/SLC12A5) is a neuronal specific cation chloride co-transporter which is active under isotonic conditions, and thus a key regulator of intracellular Cl- levels. It also has an ion transporter-independent structural role in modulating the maturation and regulation of excitatory glutamatergic synapses. KCC2 levels are developmentally regulated, and a postnatal upregulation of KCC2 generates a low intracellular chloride concentration that allows the neurotransmitters γ-aminobutyric acid (GABA) and glycine to exert inhibitory neurotransmission through its Cl- permeating channel. Functional expression of KCC2 at the neuronal cell surface is necessary for its activity, and impairment in KCC2 cell surface transport and/or internalization may underlie a range of neuropathological conditions. Although recent advances have shed light on a range of cellular mechanisms regulating KCC2 activity, little is known about its membrane trafficking itinerary and regulatory proteins. In this review, known membrane trafficking signals, pathways and mechanisms pertaining to KCC2's functional surface expression are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University Health System , Singapore.,b NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| |
Collapse
|