1
|
Nam E, Lin Y, Park J, Do H, Han J, Jeong B, Park S, Lee DY, Kim M, Han J, Baik M, Lee Y, Lim MH. APP-C31: An Intracellular Promoter of Both Metal-Free and Metal-Bound Amyloid-β 40 Aggregation and Toxicity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307182. [PMID: 37949680 PMCID: PMC10811509 DOI: 10.1002/advs.202307182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Intracellular C-terminal cleavage of the amyloid precursor protein (APP) is elevated in the brains of Alzheimer's disease (AD) patients and produces a peptide labeled APP-C31 that is suspected to be involved in the pathology of AD. But details about the role of APP-C31 in the development of the disease are not known. Here, this work reports that APP-C31 directly interacts with the N-terminal and self-recognition regions of amyloid-β40 (Aβ40 ) to form transient adducts, which facilitates the aggregation of both metal-free and metal-bound Aβ40 peptides and aggravates their toxicity. Specifically, APP-C31 increases the perinuclear and intranuclear generation of large Aβ40 deposits and, consequently, damages the nucleus leading to apoptosis. The Aβ40 -induced degeneration of neurites and inflammation are also intensified by APP-C31 in human neurons and murine brains. This study demonstrates a new function of APP-C31 as an intracellular promoter of Aβ40 amyloidogenesis in both metal-free and metal-present environments, and may offer an interesting alternative target for developing treatments for AD that have not been considered thus far.
Collapse
Affiliation(s)
- Eunju Nam
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
| | - Jiyong Park
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Hyunsu Do
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Jiyeon Han
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Bohyeon Jeong
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Subin Park
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of BiochemistryDepartment of Medical ScienceChungnam National University School of MedicineDaejeon35015Republic of Korea
| | - Da Yong Lee
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Mingeun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Mu‐Hyun Baik
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Young‐Ho Lee
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
- Bio‐Analytical ScienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeon34134Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggi17546Republic of Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversityMiyagi980‐8578Japan
| | - Mi Hee Lim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
2
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
3
|
Huan Y, Wei J, Zhou J, Liu M, Yang J, Gao Y. Label-Free Liquid Chromatography-Mass Spectrometry Proteomic Analysis of the Urinary Proteome for Measuring the Escitalopram Treatment Response From Major Depressive Disorder. Front Psychiatry 2021; 12:700149. [PMID: 34658947 PMCID: PMC8514635 DOI: 10.3389/fpsyt.2021.700149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder that can cause substantial impairments in quality of life. Clinical treatment is usually built on a trial-and-error method, which lasts ~12 weeks to evaluate whether the treatment is efficient, thereby leading to some inefficient treatment measures. Therefore, we intended to identify early candidate urine biomarkers to predict efficient treatment response in MDD patients. In this study, urine samples were collected twice from 19 respondent and 10 non-respondent MDD patients receiving 0-, 2-, and 12-week treatments with escitalopram. Differential urinary proteins were subsequently analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Our two pilot tests suggested that the urine proteome reflects changes associated with major depressive disorder at the early stage of treatment measures. On week 2, 20 differential proteins were identified in the response group compared with week 0, with 14 of these proteins being associated with the mechanisms of MDD. In the non-response group, 60 differential proteins were identified at week 2, with 28 of these proteins being associated with the mechanisms of MDD. In addition, differential urinary proteins at week 2 between the response and non-response groups can be clearly distinguished by using orthogonal projection on latent structure-discriminant analysis (OPLS-DA). Our small pilot tests indicated that the urine proteome can reflect early effects of escitalopram therapy between the response and non-response groups since at week 2, which may provide potential early candidate urine biomarkers to predict efficient treatment measures in MDD patients.
Collapse
Affiliation(s)
- Yuhang Huan
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Trillaud-Doppia E, Boehm J. The Amyloid Precursor Protein Intracellular Domain Is an Effector Molecule of Metaplasticity. Biol Psychiatry 2018; 83:406-415. [PMID: 28168961 DOI: 10.1016/j.biopsych.2016.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Human studies and mouse models of Alzheimer's disease suggest that the amyloid precursor protein (APP) can cause changes in synaptic plasticity and is contributing to the memory deficits seen in Alzheimer's disease. While most of these studies attribute these changes to the APP cleavage product Aβ, in recent years it became apparent that the APP intracellular domain (APP-ICD) might play a role in regulating synaptic plasticity. METHODS To separate the effects of APP-ICD on synaptic plasticity from Aβ-dependent effects, we created a chimeric APP in which the Aβ domain is exchanged for its homologous domain from the amyloid precursor-like protein 2. RESULTS We show that the expression of this chimeric APP has no effect on basal synaptic transmission or synaptic plasticity. However, a synaptic priming protocol, which in control cells has no effect on synaptic plasticity, leads to a complete block of subsequent long-term potentiation induction and a facilitation of long-term depression induction in neurons expressing chimeric APP. We show that the underlying mechanism for this effect on metaplasticity is caused by caspase cleavage of the APP-ICD and involves activation of ryanodine receptors. Our results shed light on the controversially discussed role of APP-ICD in regulating transcription. Because of the short timespan between synaptic priming and the effect on synaptic plasticity, it is unlikely that APP-ICD-dependent transcription is an underlying mechanism for the regulation of metaplasticity during this time period. CONCLUSIONS Our finding that the APP-ICD affects metaplasticity provides new insights into the altered regulation of synaptic plasticity during Alzheimer's disease.
Collapse
Affiliation(s)
- Emilie Trillaud-Doppia
- Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Jannic Boehm
- Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Gupta V, Gupta VB, Chitranshi N, Gangoda S, Vander Wall R, Abbasi M, Golzan M, Dheer Y, Shah T, Avolio A, Chung R, Martins R, Graham S. One protein, multiple pathologies: multifaceted involvement of amyloid β in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci 2016; 73:4279-4297. [PMID: 27333888 PMCID: PMC11108534 DOI: 10.1007/s00018-016-2295-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/18/2023]
Abstract
Accumulation of amyloid β (Aβ) and its aggregates in the ageing central nervous system is regarded synonymous to Alzheimer's disease (AD) pathology. Despite unquestionable advances in mechanistic and diagnostic aspects of the disease understanding, the primary cause of Aβ accumulation as well as its in vivo roles remains elusive; nonetheless, the majority of the efforts to address pathological mechanisms for therapeutic development are focused towards moderating Aβ accumulation in the brain. More recently, Aβ deposition has been identified in the eye and is linked with distinct age-related diseases including age-related macular degeneration, glaucoma as well as AD. Awareness of the Aβ accumulation in these markedly different degenerative disorders has led to an increasing body of work exploring overlapping mechanisms, a prospective biomarker role for Aβ and the potential to use retina as a model for brain related neurodegenerative disorders. Here, we present an integrated view of current understanding of the retinal Aβ deposition discussing the accumulation mechanisms, anticipated impacts and outlining ameliorative approaches that can be extrapolated to the retina for potential therapeutic benefits. Further longitudinal investigations in humans and animal models will determine retinal Aβ association as a potential pathognomonic, diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sumudu Gangoda
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mojtaba Golzan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Tejal Shah
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Alberto Avolio
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ralph Martins
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Stuart Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Save Sight Institute, Sydney University, Sydney, Australia
| |
Collapse
|