1
|
Balachandar A, Phokaewvarangkul O, Fasano A. Closed-loop systems for deep brain stimulation to treat neuropsychiatric disorders. Expert Rev Med Devices 2024; 21:1141-1152. [PMID: 39644189 DOI: 10.1080/17434440.2024.2438309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION A closed-loop or feedback-control system is a process which considers the system's output in order to automatically adjust the input. Compared to a traditional open-loop system, a closed-loop system allows for a higher degree of accuracy with minimal human intervention. Novel methods of closed loop 'adaptive' deep brain stimulation DBS (aDBS) are being developed. AREAS COVERED This review focuses on the current state of aDBS for various neuropsychiatric conditions: common movement disorders such as Parkinson's disease, dystonia, essential tremor, and Tourette syndrome, as well as psychiatric disorders of depression and obsessive-compulsive disorder. Finally, the future directions of closed-loop neuromodulation treatments are also discussed. EXPERT OPINION Recently, aDBS has been shown to offer benefits compared to open-loop DBS. Understanding the biomarkers of pathological states across various disorders is, however, crucial to implementation of aDBS, and improved sensing-capable hardware and advances in machine learning are poised to allow its effective implementation.
Collapse
Affiliation(s)
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|
2
|
Lofredi R, Feldmann LK, Krause P, Scheller U, Neumann WJ, Krauss JK, Saryyeva A, Schneider GH, Faust K, Sander T, Kühn AA. Striato-pallidal oscillatory connectivity correlates with symptom severity in dystonia patients. Nat Commun 2024; 15:8475. [PMID: 39349466 PMCID: PMC11442513 DOI: 10.1038/s41467-024-52814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
Dystonia is a hyperkinetic movement disorder that has been associated with an imbalance towards the direct pathway between striatum and internal pallidum, but the neuronal underpinnings of this abnormal basal ganglia pathway activity remain unknown. Here, we report invasive recordings from ten dystonia patients via deep brain stimulation electrodes that allow for parallel recordings of several basal ganglia nuclei, namely the striatum, external and internal pallidum, that all displayed activity in the low frequency band (3-12 Hz). In addition to a correlation with low-frequency activity in the internal pallidum (R = 0.88, P = 0.001), we demonstrate that dystonic symptoms correlate specifically with low-frequency coupling between striatum and internal pallidum (R = 0.75, P = 0.009). This points towards a pathophysiological role of the direct striato-pallidal pathway in dystonia that is conveyed via coupling in the enhanced low-frequency band. Our study provides a mechanistic insight into the pathophysiology of dystonia by revealing a link between symptom severity and frequency-specific coupling of distinct basal ganglia pathways.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Lucia K Feldmann
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Universität Göttingen, Göttingen, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilmann Sander
- Physikalisch Technische Bundesanstalt, Abbestraße 2, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany.
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Geng X, Quan Z, Zhang R, Zhu G, Nie Y, Wang S, Rolls E, Zhang J, Hu L. Subthalamic and pallidal oscillations and their couplings reflect dystonia severity and improvements by deep brain stimulation. Neurobiol Dis 2024; 199:106581. [PMID: 38936434 DOI: 10.1016/j.nbd.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.
Collapse
Affiliation(s)
- Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Edmund Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Oxford Centre for Computational Neuroscience, University of Oxford, Oxford, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Quan Z, Li Y, Wang S. Multi-timescale neuromodulation strategy for closed-loop deep brain stimulation in Parkinson's disease. J Neural Eng 2024; 21:036006. [PMID: 38653252 DOI: 10.1088/1741-2552/ad4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Objective.Beta triggered closed-loop deep brain stimulation (DBS) shows great potential for improving the efficacy while reducing side effect for Parkinson's disease. However, there remain great challenges due to the dynamics and stochasticity of neural activities. In this study, we aimed to tune the amplitude of beta oscillations with different time scales taking into account influence of inherent variations in the basal ganglia-thalamus-cortical circuit.Approach. A dynamic basal ganglia-thalamus-cortical mean-field model was established to emulate the medication rhythm. Then, a dynamic target model was designed to embody the multi-timescale dynamic of beta power with milliseconds, seconds and minutes. Moreover, we proposed a closed-loop DBS strategy based on a proportional-integral-differential (PID) controller with the dynamic control target. In addition, the bounds of stimulation amplitude increments and different parameters of the dynamic target were considered to meet the clinical constraints. The performance of the proposed closed-loop strategy, including beta power modulation accuracy, mean stimulation amplitude, and stimulation variation were calculated to determine the PID parameters and evaluate neuromodulation performance in the computational dynamic mean-field model.Main results. The Results show that the dynamic basal ganglia-thalamus-cortical mean-field model simulated the medication rhythm with the fasted and the slowest rate. The dynamic control target reflected the temporal variation in beta power from milliseconds to minutes. With the proposed closed-loop strategy, the beta power tracked the dynamic target with a smoother stimulation sequence compared with closed-loop DBS with the constant target. Furthermore, the beta power could be modulated to track the control target under different long-term targets, modulation strengths, and bounds of the stimulation increment.Significance. This work provides a new method of closed-loop DBS for multi-timescale beta power modulation with clinical constraints.
Collapse
Affiliation(s)
- Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, Ministry of Education, People's Republic of China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Shouyan Wang
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, Ministry of Education, People's Republic of China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Ebden M, Elkaim LM, Breitbart S, Yan H, Warsi N, Huynh M, Mithani K, Venetucci Gouveia F, Fasano A, Ibrahim GM, Gorodetsky C. Chronic Pallidal Local Field Potentials Are Associated With Dystonic Symptoms in Children. Neuromodulation 2024; 27:551-556. [PMID: 37768258 DOI: 10.1016/j.neurom.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.
Collapse
Affiliation(s)
- Mark Ebden
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Breitbart
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nebras Warsi
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLoi Huynh
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Zhang HY, Hou TT, Jin ZH, Zhang T, Wang YH, Cheng ZH, Liu YH, Fang JP, Yan HJ, Zhen Y, An X, Du J, Chen KK, Li ZZ, Li Q, Wen QP, Fang BY. Transcranial alternating current stimulation improves quality of life in Parkinson's disease: study protocol for a randomized, double-blind, controlled trial. Trials 2024; 25:200. [PMID: 38509589 PMCID: PMC10953283 DOI: 10.1186/s13063-024-08045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Ting-Ting Hou
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zhao-Hui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Tian Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yi-Heng Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zi-Hao Cheng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yong-Hong Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jin-Ping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Hong-Jiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Zhen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xia An
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jia Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ke-Ke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Zhen-Zhen Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qing Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qi-Ping Wen
- Radiology Department, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China.
| |
Collapse
|
8
|
Ehrlich SK, Battistella G, Simonyan K. Temporal Signature of Task-Specificity in Isolated Focal Laryngeal Dystonia. Mov Disord 2023; 38:1925-1935. [PMID: 37489600 PMCID: PMC10615685 DOI: 10.1002/mds.29557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Laryngeal dystonia (LD) is focal task-specific dystonia, predominantly affecting speech but not whispering or emotional vocalizations. Prior neuroimaging studies identified brain regions forming a dystonic neural network and contributing to LD pathophysiology. However, the underlying temporal dynamics of these alterations and their contribution to the task-specificity of LD remain largely unknown. The objective of the study was to identify the temporal-spatial signature of altered cortical oscillations associated with LD pathophysiology. METHODS We used high-density 128-electrode electroencephalography (EEG) recordings during symptomatic speaking and two asymptomatic tasks, whispering and writing, in 24 LD patients and 22 healthy individuals to investigate the spectral dynamics, spatial localization, and interregional effective connectivity of aberrant cortical oscillations within the dystonic neural network, as well as their relationship with LD symptomatology. RESULTS Symptomatic speaking in LD patients was characterized by significantly increased gamma synchronization in the middle/superior frontal gyri, primary somatosensory cortex, and superior parietal lobule, establishing the altered prefrontal-parietal loop. Hyperfunctional connectivity from the left middle frontal gyrus to the right superior parietal lobule was significantly correlated with the age of onset and the duration of LD symptoms. Asymptomatic whisper in LD patients had not no statistically significant changes in any frequency band, whereas asymptomatic writing was characterized by significantly decreased synchronization of beta-band power localized in the right superior frontal gyrus. CONCLUSION Task-specific oscillatory activity of prefrontal-parietal circuitry is likely one of the underlying mechanisms of aberrant heteromodal integration of information processing and transfer within the neural network leading to dystonic motor output. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefan K. Ehrlich
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Giovanni Battistella
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
- Department of Neurology - Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
9
|
Hernandez-Martin E, Kasiri M, Abe S, MacLean J, Olaya J, Liker M, Chu J, Sanger TD. Globus pallidus internus activity increases during voluntary movement in children with dystonia. iScience 2023; 26:107066. [PMID: 37389183 PMCID: PMC10300218 DOI: 10.1016/j.isci.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The rate model of basal ganglia function predicts that muscle activity in dystonia is due to disinhibition of thalamus resulting from decreased inhibitory input from pallidum. We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing evaluation for deep brain stimulation (DBS) to analyze movement-related activity in different brain regions. The results revealed prominent beta-band frequency peaks in the globus pallidus interna (GPi), ventral oralis anterior/posterior (VoaVop) subnuclei of the thalamus, and subthalamic nucleus (STN) during movement but not at rest. Connectivity analysis indicated stronger coupling between STN-VoaVop and STN-GPi compared to GPi-STN. These findings contradict the hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal patterns of inhibition and disinhibition, rather than reduced GPi activity, contribute to the disorder. Additionally, the study implies that correcting abnormalities in GPi function may explain the effectiveness of DBS targeting the STN and GPi in treating dystonia.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Maral Kasiri
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sumiko Abe
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jennifer MacLean
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Joffre Olaya
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Mark Liker
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Jason Chu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Sanger
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| |
Collapse
|
10
|
Zhang R, Nie Y, Dai W, Wang S, Geng X. Balance between pallidal neural oscillations correlated with dystonic activity and severity. Neurobiol Dis 2023:106178. [PMID: 37268239 DOI: 10.1016/j.nbd.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The balance between neural oscillations provides valuable insights into the organisation of neural oscillations related to brain states, which may play important roles in dystonia. We aim to investigate the relationship of the balance in the globus pallidus internus (GPi) with the dystonic severity under different muscular contraction conditions. METHODS Twenty-one patients with dystonia were recruited. All of them underwent bilateral GPi implantation, and local field potentials (LFPs) from the GPi were recorded via simultaneous surface electromyography. The power spectral ratio between neural oscillations was computed as the measure of neural balance. This ratio was calculated under high and low dystonic muscular contraction conditions, and its correlation with the dystonic severity was assessed using clinical scores. RESULTS The power spectral of the pallidal LFPs peaked in the theta and alpha bands. Within participant comparison showed that the power spectral of the theta oscillations significantly increased during high muscle contraction compared with that during low contraction. The power spectral ratios between the theta and alpha, theta and low beta, and theta and high gamma oscillations were significantly higher during high contraction than during low contraction. The total score and motor score were associated with the power spectral ratio between the low and high beta oscillations, which was correlated with the dystonic severity both during high and low contractions. The power spectral ratios between the low beta and low gamma and between the low beta and high gamma oscillations showed a significantly positive correlation with the total score during both high and low contractions; a correlation with the motor scale score was found only during high contraction. Meanwhile, the power spectral ratio between the theta and alpha oscillations during low contraction showed a significantly negative correlation with the total score. The power spectral ratios between the alpha and high beta, alpha and low gamma, and alpha and high gamma oscillations were significantly correlated with the dystonic severity only during low contraction. CONCLUSION The balance between neural oscillations, as quantified by the power ratio between specific frequency bands, differed between the high and low muscular contraction conditions and was correlated with the dystonic severity. The balance between the low and high beta oscillations was correlated with the dystonic severity during both conditions, making this parameter a new possible biomarker for closed-loop deep brain stimulation in patients with dystonia.
Collapse
Affiliation(s)
- Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wen Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
11
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
12
|
Neumann WJ, Gilron R, Little S, Tinkhauser G. Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation. Mov Disord 2023. [PMID: 37148553 DOI: 10.1002/mds.29415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Li X, Nie Y, Qiu Z, Wang S. Human MECP2 transgenic rats show increased anxiety, severe social deficits, and abnormal prefrontal neural oscillation stability. Biochem Biophys Res Commun 2023; 648:28-35. [PMID: 36724557 DOI: 10.1016/j.bbrc.2023.01.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Methylated CpG binding protein 2 (MeCP2) plays an important role in the development and normal function of the neural system. Abnormally high expression of MECP2 leads to a subtype of autism called MECP2 duplication syndrome and MECP2 is considered one of the key pathogenic genes for autism spectrum disorders. However, the effect of MECP2 overexpression on neural activity is still not fully understood. Thus, transgenic (TG) animals that abnormally overexpress MeCP2 are important disease models in research on neurological function and autism. To create an animal model with a stronger and more stable autism phenotype, this study established a human MECP2 TG rat model and evaluated its movement ability, anxiety, and social behavior through behavioral tests. The results showed that MECP2 TG rats had an abnormally increased anxiety phenotype and social deficits in terms of abnormal social approach and social novelty preference, but no movement disorder. These autism-like behavioral phenotypes suggest that human MECP2 TG rats are suitable models for studying autism as they show more severe social deficit phenotypes and without interference from movement disorders affecting other phenotypes, which is an issue for mouse models with MECP2 duplication. In addition, this study performed preliminary exploration of the influence of the human MECP2 transgene on neural oscillation stability of the medial prefrontal cortex (mPFC), which is an important brain region for social interactions. Oscillation stability in MECP2 TG rats showed abnormal responses to social conditions. Overall, the results of this study provide a new research tool for understanding the mechanism of social impairment and treatment of autism. The results also provide evidence for the influence of MECP2 duplication on mPFC neural activity.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Intelligent Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zilong Qiu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shouyan Wang
- Institute of Intelligent Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Subthalamic beta bursts correlate with dopamine-dependent motor symptoms in 106 Parkinson's patients. NPJ Parkinsons Dis 2023; 9:2. [PMID: 36611027 PMCID: PMC9825387 DOI: 10.1038/s41531-022-00443-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pathologically increased beta power has been described as a biomarker for Parkinson's disease (PD) and related to prolonged bursts of subthalamic beta synchronization. Here, we investigate the association between subthalamic beta dynamics and motor impairment in a cohort of 106 Parkinson's patients in the ON- and OFF-medication state, using two different methods of beta burst determination. We report a frequency-specific correlation of low beta power and burst duration with motor impairment OFF dopaminergic medication. Furthermore, reduction of power and burst duration correlated significantly with symptom alleviation through dopaminergic medication. Importantly, qualitatively similar results were yielded with two different methods of beta burst definition. Our findings validate the robustness of previous results on pathological changes in subcortical oscillations both in the frequency- as well as in the time-domain in the largest cohort of PD patients to date with important implications for next-generation adaptive deep brain stimulation control algorithms.
Collapse
|
15
|
Manzo N, Leodori G, Ruocco G, Belvisi D, Merchant SHI, Fabbrini G, Berardelli A, Conte A. Cortical mechanisms of sensory trick in cervical dystonia. Neuroimage Clin 2023; 37:103348. [PMID: 36791488 PMCID: PMC9950946 DOI: 10.1016/j.nicl.2023.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Patients with cervical dystonia (CD) often show an improvement in dystonic posture after sensory trick (ST), though the mechanisms underlying ST remain unclear. In this study, we aimed to investigate the effects of ST on cortical activity in patients with CD and to explore the contribution of motor and sensory components to ST mechanisms. To this purpose, we studied 15 CD patients with clinically effective ST, 17 without ST, and 14 healthy controls (HCs) who mimicked the ST. We used electroencephalographic (EEG) recordings and electromyography (EMG) data from bilateral sternocleidomastoid (SCM) muscles. We compared ST-related EEG spectral changes from sensorimotor and posterior parietal areas and EMG power changes between groups. To better understand the contribution of motor and sensory components to ST, we tested EEG and EMG correlates of three different conditions mimicking ST, the first without skin touch ("no touch" condition), the second without voluntary movements ("passive" condition), and finally without arm movements ("examiner touch" condition). Results showed ST-related alpha desynchronization in the sensorimotor cortex and theta desynchronization in the sensorimotor and posterior parietal cortex. Both spectral changes were more significant during maneuver execution in CD patients with ST than in CD patients without ST and HCs who mimicked the ST. Differently, the "no touch", "passive", or "examiner touch" conditions did not show significant differences in EEG or EMG changes determined by ST execution/mimicking between CD patients with or without ST. A higher desynchronization within alpha and theta bands in the sensorimotor and posterior parietal areas correlated with a more significant activity decrease in the contralateral SCM muscle, Findings from this study suggest that ST-related changes in the activity of sensorimotor and posterior parietal areas may restore dystonic posture and that both motor and sensory components contribute to the ST effect.
Collapse
Affiliation(s)
- Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Giulia Ruocco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | | | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| |
Collapse
|
16
|
Li X, Nie Y, Niu Q, Guo X, Qiu Z, Wang S. Abnormal Prefrontal Neural Oscillations are Associated with Social Deficits in MECP2 Duplication Syndrome. Neurosci Bull 2022; 38:1598-1602. [PMID: 36319892 PMCID: PMC9722990 DOI: 10.1007/s12264-022-00963-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiao Li
- Institute of Intelligent Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qiyu Niu
- Institute of Intelligent Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Shouyan Wang
- Institute of Intelligent Robotics, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Olson JW, Nakhmani A, Irwin ZT, Edwards LJ, Gonzalez CL, Wade MH, Black SD, Awad MZ, Kuhman DJ, Hurt CP, Guthrie BL, Walker HC. Cortical and Subthalamic Nucleus Spectral Changes During Limb Movements in Parkinson's Disease Patients with and Without Dystonia. Mov Disord 2022; 37:1683-1692. [PMID: 35702056 PMCID: PMC9541849 DOI: 10.1002/mds.29057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery. During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joseph W Olson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arie Nakhmani
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lloyd J Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Melissa H Wade
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Z Awad
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel J Kuhman
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bart L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
19
|
Lofredi R, Kühn AA. Brain oscillatory dysfunctions in dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:249-257. [PMID: 35034739 DOI: 10.1016/b978-0-12-819410-2.00026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dystonia is a hyperkinetic movement disorder associated with loss of inhibition, abnormal plasticity, dysfunctional sensorimotor integration, and brain oscillatory dysfunctions at cortical and subcortical levels of the central nervous system. Hence, dystonia is considered a network disorder that can, in many cases, be efficiently treated by pallidal deep brain stimulation (DBS). Abnormal oscillatory activity has been identified across the motor circuit of patients with dystonia. Increased low frequency (LF) synchronization in the internal pallidum is the most prominent abnormality. LF oscillations have been associated with the severity of dystonic motor symptoms; they are suppressed by DBS and localized to the clinically most effective stimulation site. Although the origin of these pathologic changes in brain activity needs further clarifications, their characterization will help in adjusting DBS parameters for successful clinical outcome.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
21
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson's disease, local field potentials (LFPs) excessively synchronized in the beta band (13-35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13-20 Hz) and high frequency gamma facilitation (35-250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4-13 Hz), beta and gamma (60-90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Yin Z, Zhu G, Zhao B, Bai Y, Jiang Y, Neumann WJ, Kühn AA, Zhang J. Local field potentials in Parkinson's disease: A frequency-based review. Neurobiol Dis 2021; 155:105372. [PMID: 33932557 DOI: 10.1016/j.nbd.2021.105372] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) surgery offers a unique opportunity to record local field potentials (LFPs), the electrophysiological population activity of neurons surrounding the depth electrode in the target area. With direct access to the subcortical activity, LFP research has provided valuable insight into disease mechanisms and cognitive processes and inspired the advent of adaptive DBS for Parkinson's disease (PD). A frequency-based framework is usually employed to interpret the implications of LFP signatures in LFP studies on PD. This approach standardizes the methodology, simplifies the interpretation of LFP patterns, and makes the results comparable across studies. Importantly, previous works have found that activity patterns do not represent disease-specific activity but rather symptom-specific or task-specific neuronal signatures that relate to the current motor, cognitive or emotional state of the patient and the underlying disease. In the present review, we aim to highlight distinguishing features of frequency-specific activities, mainly within the motor domain, recorded from DBS electrodes in patients with PD. Associations of the commonly reported frequency bands (delta, theta, alpha, beta, gamma, and high-frequency oscillations) to motor signs are discussed with respect to band-related phenomena such as individual tremor and high/low beta frequency activity, as well as dynamic transients of beta bursts. We provide an overview on how electrophysiology research in DBS patients has revealed and will continuously reveal new information about pathophysiology, symptoms, and behavior, e.g., when combining deep LFP and surface electrocorticography recordings.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany; Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Unter den Linden 6, 10099 Berlin, Germany; NeuroCure, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
24
|
Ding XF, Gao Y, Zhang H, Zhang Y, Wang SX, Zhao YQ, Wang YZ, Fan M. A novel low-cost electrode for recording the local field potential of freely moving rat's brain. Transl Neurosci 2020; 11:96-104. [PMID: 33312716 PMCID: PMC7705991 DOI: 10.1515/tnsci-2020-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/15/2022] Open
Abstract
Local field potentials (LFPs) are involved in almost all cognitive activities of animals. Several kinds of recording electrodes are used for recording LFPs in freely moving animals, including commercial and homemade electrodes. However, commercial recording electrodes are expensive, and their relatively fixed size often causes a steric hindrance effect, especially when combining deep brain stimulation (DBS) with LFP recording, which may not always satisfy the aim of researchers. Currently, an increasing number of researchers are designing their own recording electrodes to lower research costs. Nevertheless, there is no simple universal method to produce low-cost recording electrodes with a specific size according to the target brain area. Thus, we developed a simple method for quickly producing low-cost multiple-channel recording electrodes. To inspect the effectiveness of our self-designed electrode, LFPs were recorded in a Parkinson’s disease (PD) rat model, and an electrical stimulation electrode was implanted into the subthalamic nucleus to verify the space-saving ability of the self-designed recording electrode. The results showed that <30 min was needed to prepare an electrode and that the electrode materials cost <5 dollars. Further investigations showed that our electrode successfully recorded the beta oscillations (12–40 Hz) in the PD rat model. Thus, this method will greatly reduce the cost of recording electrodes and save time for researchers. Additionally, the small size of the electrode will further facilitate DBS research.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yan Gao
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China.,Institute of Radiation Medicine, Beijing, P. R. China
| | - Hui Zhang
- Department of Neurosurgery, Air Force Medical Center of PLA, Beijing, P. R. China
| | - Yuan Zhang
- Laboratory of Neural Circuit Plasticity, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, P. R. China
| | - Shao-Xia Wang
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yong-Qi Zhao
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yi-Zheng Wang
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Ming Fan
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| |
Collapse
|
25
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
26
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
27
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
28
|
Polanski WH, Zolal A, Sitoci-Ficici KH, Hiepe P, Schackert G, Sobottka SB. Comparison of Automatic Segmentation Algorithms for the Subthalamic Nucleus. Stereotact Funct Neurosurg 2020; 98:256-262. [PMID: 32369819 DOI: 10.1159/000507028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Various automatic segmentation algorithms for the subthalamic nucleus (STN) have been published recently. However, most of the available software tools are not approved for clinical use. OBJECTIVE The aim of this study is to evaluate a clinically available automatic segmentation tool of the navigation planning software Brainlab Elements (BL-E) by comparing the output to manual segmentation and a nonclinically approved research method using the DISTAL atlas (DA) and the Horn electrophysiological atlas (HEA). METHODS Preoperative MRI data of 30 patients with idiopathic Parkinson's disease were used, resulting in 60 STN segmentations. The segmentations were created manually by two clinical experts. Automatic segmentations of the STN were obtained from BL-E and Advanced Normalization Tools using DA and HEA. Differences between manual and automatic segmentations were quantified by Dice and Jaccard coefficient, target overlap, and false negative/positive value (FNV/FPV) measurements. Statistical differences between similarity measures were assessed using the Wilcoxon signed-rank test with continuity correction, and comparison with interrater results was performed using the Mann-Whitney U test. RESULTS For manual segmentation, the mean size of the segmented STN was 133 ± 24 mm3. The mean size of the STN was 121 ± 18 mm3 for BL-E, 162 ± 21 mm3 for DA, and 130 ± 17 mm3 for HEA. The Dice coefficient for the interrater comparison was 0.63 and 0.54 ± 0.12, 0.59 ± 0.13, and 0.52 ± 0.14 for BL-E, DA, and HEA, respectively. Significant differences between similarity measures were found for Dice and Jaccard coefficient, target overlap and FNV between BL-E and DA; and FPV between BL-E and HEA. However, none of the differences were significant compared to interrater variability. The analysis of the center of gravity of the segmentations revealed that the BL-E STN ROI was located more medially, superior and posterior compared to other segmentations. Regarding the target overlap for beta power within the STN ROI included with the HEA, the BL-E segmentation showed a significantly higher value compared to manual segmentation. CONCLUSION Automatic image segmentation by means of the clinically approved software BL-E provides STN segmentations with similar accuracy like research tools, and differences are in the range of observed interrater variability. Further studies are required to investigate the clinical validity, for example, by comparing segmentation results of BL-E with electrophysiological data.
Collapse
Affiliation(s)
- Witold H Polanski
- Department of Neurosurgery, University Hospital Carl-Gustav-Carus, Technical University of Dresden, Dresden, Germany,
| | - Amir Zolal
- Department of Neurosurgery, University Hospital Carl-Gustav-Carus, Technical University of Dresden, Dresden, Germany.,Department of Spine Surgery and Neurotraumatology, SRH Wald-Klinikum Gera, Gera, Germany
| | - Kerim Hakan Sitoci-Ficici
- Department of Neurosurgery, University Hospital Carl-Gustav-Carus, Technical University of Dresden, Dresden, Germany
| | | | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl-Gustav-Carus, Technical University of Dresden, Dresden, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, University Hospital Carl-Gustav-Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
29
|
Zhu GY, Zhang RL, Chen YC, Liu YY, Liu DF, Wang SY, Jiang Y, Zhang JG. Characteristics of globus pallidus internus local field potentials in generalized dystonia patients with TWNK mutation. Clin Neurophysiol 2020; 131:1453-1461. [PMID: 32387964 DOI: 10.1016/j.clinph.2020.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We focused on a rare gene mutation causing dystonia in two siblings who received globus pallidus internus deep brain stimulation (GPi-DBS). The aim was to characterize the relationship between neuronal activity patterns and clinical syndromes. METHODS Whole exome sequencing was applied to identify the TWNK (previous symbol C10orf2) mutation; Two siblings with TWNK mutation presented as generalized dystonia with rigidity and bradykinesia; four other sporadic generalized dystonia patients underwent GPi-DBS and local field potentials (LFPs) were recorded. Oscillatory activities were illustrated with power spectra and temporal dynamics measured by the Lempel-Ziv complexity (LZC). RESULTS Normalized power spectra of GPi LFPs differed between patients with TWNK mutation and dystonia over the low beta bands. Patients with TWNK mutation had higher low beta power (15-27 Hz, unpaired t-test, corrected P < 0.0022) and lower LZC (15-27 Hz, unpaired t-test, P < 0.01) than other patients with generalized dystonia. On the other hand, the TWNK mutation patients showed decreased low frequency and beta oscillation in the GPi after DBS, as well as improved movement performance. CONCLUSION The LFPs were different in TWNK mutation dystonia siblings than other patients with generalized dystonia, which indicate the abnormal LFPs were related to symptoms rather than specific disease. In addition, the inhibited effect on oscillations also provided a potential evidence for DBS treatment on rare movement disorders. SIGNIFICANCE This study could potentially aid in the future development of adaptive DBS via rare disease LFPs comparison.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Weber I, Florin E, von Papen M, Visser-Vandewalle V, Timmermann L. Characterization of information processing in the subthalamic area of Parkinson’s patients. Neuroimage 2020; 209:116518. [DOI: 10.1016/j.neuroimage.2020.116518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
|
31
|
Parkinsonian Beta Dynamics during Rest and Movement in the Dorsal Pallidum and Subthalamic Nucleus. J Neurosci 2020; 40:2859-2867. [PMID: 32107277 DOI: 10.1523/jneurosci.2113-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease (PD), pathologically high levels of beta activity (12-30 Hz) reflect specific symptomatology and normalize with pharmacological or surgical intervention. Although beta characterization in the subthalamic nucleus (STN) of PD patients undergoing deep brain stimulation (DBS) has now been translated into adaptive DBS paradigms, a limited number of studies have characterized beta power in the globus pallidus internus (GPi), an equally effective DBS target. Our objective was to compare beta power in the STN and GPi during rest and movement in people with PD undergoing DBS. Thirty-seven human female and male participants completed a simple behavioral experiment consisting of periods of rest and button presses, leading to local field potential recordings from 19 (15 participants) STN and 26 (22 participants) GPi nuclei. We examined overall beta power as well as beta time-domain dynamics (i.e., beta bursts). We found higher beta power during rest and movement in the GPi, which also had more beta desynchronization during movement. Beta power was positively associated with bradykinesia and rigidity severity; however, these clinical associations were present only in the GPi cohort. With regards to beta dynamics, bursts were similar in duration and frequency in the GPi and STN, but GPi bursts were stronger and correlated to bradykinesia-rigidity severity. Beta dynamics therefore differ across basal ganglia nuclei. Relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.SIGNIFICANCE STATEMENT It is known that subthalamic nucleus (STN) beta activity is linked to symptom severity in Parkinson's disease (PD), but few studies have characterized beta activity in the globus pallidus internus (GPi), another effective target for deep brain stimulation (DBS). We compared beta power in the STN and GPi during rest and movement in 37 people with PD undergoing DBS. We found that beta dynamics differed across basal ganglia nuclei. Our results show that, relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.
Collapse
|
32
|
Zhu GY, Geng XY, Zhang RL, Chen YC, Liu YY, Wang SY, Zhang JG. Deep brain stimulation modulates pallidal and subthalamic neural oscillations in Tourette's syndrome. Brain Behav 2019; 9:e01450. [PMID: 31647199 PMCID: PMC6908859 DOI: 10.1002/brb3.1450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Previous studies found subthalamic nucleus deep brain stimulation (STN-DBS) has clinical effect on Parkinson's disease, dystonia, and obsessive compulsive disorder. It is noteworthy that only a few studies report the STN-DBS for Tourette's syndrome (TS). Globus pallidus interna (GPi)-DBS is the one of the most common targets for TS. So, this paper aims to investigate the neural oscillations in STN and GPi as well as the DBS effect between these two targets in same patients. METHODS The local field potentials (LFPs) were simultaneously recorded from the bilateral GPi and STN in four patients with TS. The LFPs were decomposed into neural oscillations, and the frequency and time-frequency characteristics of the neural oscillations were analyzed across the conditions of resting, poststimulation, and movement. RESULTS No difference of resting LFP was found between the two targets. The poststimulation period spectral power revealed the high beta and gamma oscillations were recovered after GPi-DBS but remained attenuated after STN-DBS. The STN beta oscillation has fewer changes during tics than voluntary movement, and the gamma oscillation was elevated when the tics appeared. CONCLUSION The high beta and gamma oscillations in GPi restored after GPi-DBS, but not STN-DBS. High beta and gamma oscillations may have physiological function in resisting tics in TS. The cortex compensation effect might be interfered by the STN-DBS due to the influence on the hyper-direct pathway but not GPi-DBS.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-Yi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM, van Egmond ME, van Dijk JMC, Tijssen MAJ. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 2019; 45:E3. [PMID: 30064317 DOI: 10.3171/2018.5.focus18155] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of abnormal neural oscillations within the cortico-basal ganglia-thalamo-cortical (CBGTC) network has emerged as one of the current principal theories to explain the pathophysiology of movement disorders. In theory, these oscillations can be used as biomarkers and thereby serve as a feedback signal to control the delivery of deep brain stimulation (DBS). This new form of DBS, dependent on different characteristics of pathological oscillations, is called adaptive DBS (aDBS), and it has already been applied in patients with Parkinson's disease. In this review, the authors summarize the scientific research to date on pathological oscillations in dystonia and address potential biomarkers that might be used as a feedback signal for controlling aDBS in patients with dystonia.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Departments of1Neurosurgery and.,2Neurology, University Medical Center Groningen, University of Groningen
| | - Martijn Beudel
- 2Neurology, University Medical Center Groningen, University of Groningen.,3Department of Neurology, Isala Klinieken, Zwolle, The Netherlands; and
| | - Simon Little
- 4Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jonathan van Zijl
- 2Neurology, University Medical Center Groningen, University of Groningen
| | - Jan Willem Elting
- 2Neurology, University Medical Center Groningen, University of Groningen
| | | | | | | | - Marina A J Tijssen
- 2Neurology, University Medical Center Groningen, University of Groningen
| |
Collapse
|
34
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
35
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
36
|
Direct comparison of oscillatory activity in the motor system of Parkinson’s disease and dystonia: A review of the literature and meta-analysis. Clin Neurophysiol 2019; 130:917-924. [DOI: 10.1016/j.clinph.2019.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/29/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
|
37
|
Cao C, Huang P, Wang T, Zhan S, Liu W, Pan Y, Wu Y, Li H, Sun B, Li D, Litvak V. Cortico-subthalamic Coherence in a Patient With Dystonia Induced by Chorea-Acanthocytosis: A Case Report. Front Hum Neurosci 2019; 13:163. [PMID: 31191273 PMCID: PMC6548057 DOI: 10.3389/fnhum.2019.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 02/01/2023] Open
Abstract
The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatment in Parkinson's disease (PD) but much less frequently targeted for other disorders. Here we report the results of simultaneous local field potential (LFP) recordings and magnetoencephalography (MEG) in a single patient who was implanted bilaterally in the STN for the treatment of dystonia induced by chorea-acanthocytosis. Consistent with the previous results in PD, the dystonia patient showed significant subthalamo-cortical coherence in the high beta band (28-35 Hz) on both sides localized to the mesial sensorimotor areas. In addition, on the right side, significant coherence was found in the theta-alpha band (4-12 Hz) that localized to the medial prefrontal cortex with the peak in the anterior cingulate gyrus. Comparison of STN power spectra with a previously reported PD cohort showed increased power in the theta and alpha bands and decreased power in the low beta band in dystonia which is consistent with most of the previous studies. The present report extends the range of disorders for which cortico-subthalamic oscillatory connectivity has been characterized. Our results strengthen the evidence that at least some of the subthalamo-cortical oscillatory coherent networks are a feature of the healthy brain, although we do not rule out that coherence magnitude could be affected by disease.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Peng Huang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Tao Wang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shikun Zhan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Liu
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yixin Pan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
38
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Lofredi R, Neumann W, Brücke C, Huebl J, Krauss JK, Schneider G, Kühn AA. Pallidal beta bursts in Parkinson's disease and dystonia. Mov Disord 2018; 34:420-424. [DOI: 10.1002/mds.27524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité–Universitätsmedizin Berlin Berlin Germany
| | - Wolf‐Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité–Universitätsmedizin Berlin Berlin Germany
| | - Christof Brücke
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité–Universitätsmedizin Berlin Berlin Germany
| | - Julius Huebl
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité–Universitätsmedizin Berlin Berlin Germany
| | | | | | - Andrea A. Kühn
- Movement Disorders and Neuromodulation Unit, Department of NeurologyCharité–Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
40
|
Zhu G, Geng X, Tan Z, Chen Y, Zhang R, Wang X, Aziz T, Wang S, Zhang J. Characteristics of Globus Pallidus Internus Local Field Potentials in Hyperkinetic Disease. Front Neurol 2018; 9:934. [PMID: 30455666 PMCID: PMC6230660 DOI: 10.3389/fneur.2018.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Dystonia and Huntington's disease (HD) are both hyperkinetic movement disorders but exhibit distinct clinical characteristics. Aberrant output from the globus pallidus internus (GPi) is involved in the pathophysiology of both HD and dystonia, and deep brain stimulation (DBS) of the GPi shows good clinical efficacy in both disorders. The electrode externalized period provides an opportunity to record local field potentials (LFPs) from the GPi to examine if activity patterns differ between hyperkinetic disorders and are associated with specific clinical characteristics. Methods: LFPs were recorded from 7 chorea-dominant HD and nine cervical dystonia patients. Differences in oscillatory activities were compared by power spectrum and Lempel-Ziv complexity (LZC). The discrepancy band power ratio was used to control for the influence of absolute power differences between groups. We further identified discrepant frequency bands and frequency band ratios for each subject and examined the correlations with clinical scores. Results: Dystonia patients exhibited greater low frequency power (6–14 Hz) while HD patients demonstrated greater high-beta and low-gamma power (26–43 Hz) (p < 0.0298, corrected). United Huntington Disease Rating Scale chorea sub-score was positively correlated with 26–43 Hz frequency band power and negatively correlated with the 6–14 Hz/26–43 Hz band power ratio. Conclusion: Dystonia and HD are characterized by distinct oscillatory activity patterns, which may relate to distinct clinical characteristics. Specifically, chorea may be related to elevated high-beta and low-gamma band power, while dystonia may be related to elevated low frequency band power. These LFPs may be useful biomarkers for adaptive DBS to treat hyperkinetic diseases.
Collapse
Affiliation(s)
- Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zheng Tan
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tipu Aziz
- Medical Sciences Division, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Burciu RG, Vaillancourt DE. Imaging of Motor Cortex Physiology in Parkinson's Disease. Mov Disord 2018; 33:1688-1699. [PMID: 30280416 PMCID: PMC6261674 DOI: 10.1002/mds.102] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
There is abundant evidence that the pathophysiology of Parkinson's disease (PD) is not confined to the nigrostriatal dopaminergic pathway but propagates along the cortico‐basal ganglia‐thalamo‐cortical neural network. A critical node in this functional circuit impacted by PD is the primary motor cortex (M1), which plays a key role in generating neural impulses that regulate movements. The past several decades have lay witness to numerous in vivo neuroimaging techniques that provide a window into the function and structure of M1. A consistent observation from numerous studies is that during voluntary movement, but also at rest, the functional activity of M1 is altered in PD relative to healthy individuals, and it relates to many of the motor signs. Although this abnormal functional activity can be partially restored with acute dopaminergic medication, it continues to deteriorate with disease progression and may predate structural degeneration of M1. The current review discusses the evidence that M1 is fundamental to the pathophysiology of PD, as measured by neuroimaging techniques such as positron emission tomography, single‐photon emission computed tomography, electroencephalography, magnetoencephalography, and functional and structural MRI. Although novel treatments that target the cortex will not cure PD, they could significantly slow down and alter the progressive course of the disease and thus improve clinical care for this degenerative disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Department of Neurology, University of Florida, Gainesville, Florida, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A, Bordelon Y, Hu X, Pouratian N. Pallidal stimulation in Parkinson disease differentially modulates local and network β activity. J Neural Eng 2018; 15:056016. [PMID: 29972146 PMCID: PMC6125208 DOI: 10.1088/1741-2552/aad0fb] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets. OBJECTIVES We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex. APPROACH We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open. MAIN RESULTS DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p < 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex. SIGNIFICANCE We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit.
Collapse
Affiliation(s)
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, RI, USA
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Andrew O’Keeffe
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Piña-Fuentes D, van Zijl JC, van Dijk JMC, Little S, Tinkhauser G, Oterdoom DLM, Tijssen MAJ, Beudel M. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus. Neurobiol Dis 2018; 121:47-57. [PMID: 30227227 DOI: 10.1016/j.nbd.2018.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Adaptive deep brain stimulation (aDBS) has been applied in Parkinson's disease (PD), based on the presence of brief high-amplitude beta (13-35 Hz) oscillation bursts in the subthalamic nucleus (STN), which correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4-12 Hz) in the internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and dystonia patients. OBJECTIVE AND METHODS We aimed to describe the bursting behaviour of LF and beta oscillations in a cohort of five GPi-DBS PD patients and compare their amplitude and length with those of a cohort of seven GPi-DBS dystonia, and six STN-DBS PD patients (n electrodes = 34). Furthermore, we used the information obtained to set up aDBS and test it in the GPi of both a dystonia and a PD patient (n = 2), using either LF (dystonia) or beta oscillations (PD) as feedback signals. RESULTS LF and beta oscillations in the dystonic and parkinsonian GPi occur as phasic, short-lived bursts, similarly to the parkinsonian STN. The amplitude profile of such bursts, however, differed significantly. Dystonia showed higher LF burst amplitudes, while PD presented higher beta burst amplitudes. Burst characteristics in the parkinsonian GPi and STN were similar. Furthermore, aDBS applied in the GPi was feasible and well tolerated in both diseases. CONCLUSION Pallidal LF and beta burst amplitudes have different characteristics in PD and dystonia. The presence of increased burst amplitudes could be employed as feedback for GPi-aDBS.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan C van Zijl
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Simon Little
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Gerd Tinkhauser
- Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn Beudel
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Isala Clinics, Zwolle, The Netherlands.
| |
Collapse
|
44
|
Neumann WJ, Schroll H, de Almeida Marcelino AL, Horn A, Ewert S, Irmen F, Krause P, Schneider GH, Hamker F, Kühn AA. Functional segregation of basal ganglia pathways in Parkinson’s disease. Brain 2018; 141:2655-2669. [DOI: 10.1093/brain/awy206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Henning Schroll
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Luisa de Almeida Marcelino
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Siobhan Ewert
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Irmen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Fred Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Degenerative Diseases, Berlin, Germany
| |
Collapse
|
45
|
Pallidal Deep-Brain Stimulation Disrupts Pallidal Beta Oscillations and Coherence with Primary Motor Cortex in Parkinson's Disease. J Neurosci 2018; 38:4556-4568. [PMID: 29661966 DOI: 10.1523/jneurosci.0431-18.2018] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023] Open
Abstract
In Parkinson's disease (PD), subthalamic nucleus beta band oscillations are decreased by therapeutic deep-brain stimulation (DBS) and this has been proposed as important to the mechanism of therapy. The globus pallidus is a common alternative target for PD with similar motor benefits as subthalamic DBS, but effects of pallidal stimulation in PD are not well studied, and effects of pallidal DBS on cortical function in PD are unknown. Here, in 20 PD and 14 isolated dystonia human patients of both genders undergoing pallidal DBS lead implantation, we recorded local field potentials from the globus pallidus and in a subset of these, recorded simultaneous sensorimotor cortex ECoG potentials. PD patients had elevated resting pallidal low beta band (13-20 Hz) power compared with dystonia patients, whereas dystonia patients had elevated resting pallidal theta band (4-8 Hz) power compared with PD. We show that this results in disease-specific patterns of interaction between the pallidum and motor cortex: PD patients demonstrated relatively elevated phase coherence with the motor cortex in the beta band and this was reduced by therapeutic pallidal DBS. Dystonia patients had greater theta band phase coherence. Our results support the hypothesis that specific motor phenomenology observed in movement disorders are associated with elevated network oscillations in specific frequency bands, and that DBS in movement disorders acts in general by disrupting elevated synchronization between basal ganglia output and motor cortex.SIGNIFICANCE STATEMENT Perturbations in synchronized oscillatory activity in brain networks are increasingly recognized as important features in movement disorders. The globus pallidus is a commonly used target for deep-brain stimulation (DBS) in Parkinson's disease (PD), however, the effects of pallidal DBS on basal ganglia and cortical oscillations are unknown. Using invasive intraoperative recordings in patients with PD and isolated dystonia, we found disease-specific patterns of elevated oscillatory synchronization within the pallidum and in coherence between pallidum and motor cortex. Therapeutic pallidal DBS in PD suppresses these elevated synchronizations, reducing the influence of diseased basal ganglia on cortical physiology. We propose a general mechanism for DBS therapy in movement disorders: functional disconnection of basal ganglia output and motor cortex by coherence suppression.
Collapse
|
46
|
Luo H, Huang Y, Du X, Zhang Y, Green AL, Aziz TZ, Wang S. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain. Front Neurosci 2018; 12:237. [PMID: 29695951 PMCID: PMC5904287 DOI: 10.3389/fnins.2018.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/26/2018] [Indexed: 11/24/2022] Open
Abstract
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.
Collapse
Affiliation(s)
- Huichun Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- University of Science and Technology of China, Hefei, China
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yongzhi Huang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Xueying Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yunpeng Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Neumann W, Horn A, Ewert S, Huebl J, Brücke C, Slentz C, Schneider G, Kühn AA. A localized pallidal physiomarker in cervical dystonia. Ann Neurol 2017; 82:912-924. [DOI: 10.1002/ana.25095] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Wolf‐Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Siobhan Ewert
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Julius Huebl
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Christof Brücke
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Colleen Slentz
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Gerd‐Helge Schneider
- Department of Neurosurgery, Campus Charite MittéCharité–Universitätsmedizin Berlin
| | - Andrea A. Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charite MittéCharité–Universitätsmedizin Berlin
- Berlin School of Mind and BrainCharité–Universitätsmedizin Berlin
- NeuroCureCharité–Universitätsmedizin BerlinBerlin Germany
| |
Collapse
|
48
|
Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front Neurosci 2017; 11:564. [PMID: 29066947 PMCID: PMC5641319 DOI: 10.3389/fnins.2017.00564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.
Collapse
Affiliation(s)
- Kimberly B. Hoang
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Isaac R. Cassar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren M. Grill
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| |
Collapse
|
49
|
Horn A, Neumann W, Degen K, Schneider G, Kühn AA. Toward an electrophysiological "sweet spot" for deep brain stimulation in the subthalamic nucleus. Hum Brain Mapp 2017; 38:3377-3390. [PMID: 28390148 PMCID: PMC6867148 DOI: 10.1002/hbm.23594] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Enhanced beta-band activity recorded in patients suffering from Parkinson's Disease (PD) has been described as a potential physiomarker for disease severity. Beta power is suppressed by Levodopa intake and STN deep brain stimulation (DBS) and correlates with disease severity across patients. The aim of the present study was to explore the promising signature of the physiomarker in the spatial domain. Based on local field potential data acquired from 54 patients undergoing STN-DBS, power values within alpha, beta, low beta, and high beta bands were calculated. Values were projected into common stereotactic space after DBS lead localization. Recorded beta power values were significantly higher at posterior and dorsal lead positions, as well as in active compared with inactive pairs. The peak of activity in the beta band was situated within the sensorimotor functional zone of the nucleus. In contrast, higher alpha activity was found in a more ventromedial region, potentially corresponding to associative or premotor functional zones of the STN. Beta- and alpha-power peaks were then used as seeds in a fiber tracking experiment. Here, the beta-site received more input from primary motor cortex whereas the alpha-site was more strongly connected to premotor and prefrontal areas. The results summarize predominant spatial locations of frequency signatures recorded in STN-DBS patients in a probabilistic fashion. The site of predominant beta-activity may serve as an electrophysiologically determined target for optimal outcome in STN-DBS for PD in the future. Hum Brain Mapp 38:3377-3390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andreas Horn
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
- Berenson‐Allen Center for Noninvasive Brain StimulationDepartment of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusetts
| | - Wolf‐Julian Neumann
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
| | - Katharina Degen
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
| | | | - Andrea A. Kühn
- Department of NeurologyMovement Disorders and Neuromodulation Unit, Charité – University MedicineBerlinD‐10117Germany
- NeuroCure – Cluster of ExcellenceBerlinD‐10117Germany
- Berlin School of Mind and BrainBerlinD‐10117Germany
- Deutsches Zentrum für Neurodegenerative ErkrankungenBerlinD‐10117Germany
| |
Collapse
|