1
|
Martínez-Drudis L, Bérard M, Musiol D, Rivest S, Oueslati A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease. Heliyon 2024; 10:e39571. [PMID: 39498012 PMCID: PMC11532864 DOI: 10.1016/j.heliyon.2024.e39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Morgan Bérard
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dylan Musiol
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Serge Rivest
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
2
|
Cheng J, Wu L, Chen X, Li S, Xu Z, Sun R, Huang Y, Wang P, Ouyang J, Pei P, Yang H, Wang G, Zhen X, Zheng LT. Polo-like kinase 2 promotes microglial activation via regulation of the HSP90α/IKKβ pathway. Cell Rep 2024; 43:114827. [PMID: 39383034 DOI: 10.1016/j.celrep.2024.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
Polo-like kinase 2 (PLK2) is a serine/threonine protein kinase associated with the regulation of synaptic plasticity and centriole duplication. We identify PLK2 as a crucial early-response gene in lipopolysaccharide (LPS)-stimulated microglial cells. Knockdown or inhibition of PLK2 remarkably attenuates LPS-induced expression of proinflammatory factors in microglial cells by suppressing the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ)-nuclear factor (NF)-κB signaling pathway. We identify heat shock protein 90 alpha (HSP90α), a regulator of IKKβ activity, as a novel PLK2 substrate. Knockdown or pharmacological inhibition of HSP90α abolishes PLK2-mediated activation of NF-κB transcriptional activity and microglial inflammatory activation. Furthermore, phosphoproteomic analysis pinpoints Ser252 and Ser263 on HSP90α as novel phosphorylation targets of PLK2. Lastly, conditional knockout of PLK2 in microglial cells dramatically ameliorates neuroinflammation and subsequent dopaminergic neuron loss in an intracranial LPS-induced mouse Parkinson's disease (PD) model. The present study reveals that PLK2 promotes microglial activation through the phosphorylation of HSP90α and subsequent activation of the IKKβ-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junjie Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaowan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhirou Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Renjuan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiwei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiawei Ouyang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Panpan Pei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Long-Tai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
4
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
5
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
6
|
Elfarrash S, Jensen NM, Ferreira N, Schmidt SI, Gregersen E, Vestergaard MV, Nabavi S, Meyer M, Jensen PH. Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS One 2021; 16:e0252635. [PMID: 34613964 PMCID: PMC8494365 DOI: 10.1371/journal.pone.0252635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.
Collapse
Affiliation(s)
- Sara Elfarrash
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- MERC–Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- * E-mail: (SE); (PHJ)
| | - Nanna Møller Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sissel Ida Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Vibeke Vestergaard
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, BRIDGE–Brain Research Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail: (SE); (PHJ)
| |
Collapse
|
7
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|
8
|
Ferreira N, Gonçalves NP, Jan A, Jensen NM, van der Laan A, Mohseni S, Vægter CB, Jensen PH. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun 2021; 9:31. [PMID: 33632316 PMCID: PMC7905893 DOI: 10.1186/s40478-021-01131-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
Pain is a common non-motor symptom of Parkinson’s disease (PD), with current limited knowledge of its pathophysiology. Here, we show that peripheral inoculation of mouse alpha-synuclein (α-Syn) pre-formed fibrils, in a transgenic mouse model of PD, elicited retrograde trans-synaptic spreading of α-Syn pathology (pSer129) across sensory neurons and dorsal nerve roots, reaching central pain processing regions, including the spinal dorsal horn and the projections of the anterolateral system in the central nervous system (CNS). Pathological peripheral to CNS propagation of α-Syn aggregates along interconnected neuronal populations within sensory afferents, was concomitant with impaired nociceptive response, reflected by mechanical allodynia, reduced nerve conduction velocities (sensory and motor) and degeneration of small- and medium-sized myelinated fibers. Our findings show a link between the transneuronal propagation of α-Syn pathology with sensory neuron dysfunction and neuropathic impairment, suggesting promising avenues of investigation into the mechanisms underlying pain in PD.
Collapse
|
9
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Weston LJ, Stackhouse TL, Spinelli KJ, Boutros SW, Rose EP, Osterberg VR, Luk KC, Raber J, Weissman TA, Unni VK. Genetic deletion of Polo-like kinase 2 reduces alpha-synuclein serine-129 phosphorylation in presynaptic terminals but not Lewy bodies. J Biol Chem 2021; 296:100273. [PMID: 33428941 PMCID: PMC7948797 DOI: 10.1016/j.jbc.2021.100273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of alpha-synuclein at serine-129 is an important marker of pathologically relevant, aggregated forms of the protein in several important human diseases, including Parkinson's disease, Dementia with Lewy bodies, and Multiple system atrophy. Although several kinases have been shown to be capable of phosphorylating alpha-synuclein in various model systems, the identity of the kinase that phosphorylates alpha-synuclein in the Lewy body remains unknown. One member of the Polo-like kinase family, PLK2, is a strong candidate for being the Lewy body kinase. To examine this possibility, we have used a combination of approaches, including biochemical, immunohistochemical, and in vivo multiphoton imaging techniques to study the consequences of PLK2 genetic deletion on alpha-synuclein phosphorylation in both the presynaptic terminal and preformed fibril-induced Lewy body pathology in mouse cortex. We find that PLK2 deletion reduces presynaptic terminal alpha-synuclein serine-129 phosphorylation, but has no effect on Lewy body phosphorylation levels. Serine-129 mutation to the phosphomimetic alanine or the unphosphorylatable analog aspartate does not change the rate of cell death of Lewy inclusion-bearing neurons in our in vivo multiphoton imaging paradigm, but PLK2 deletion does slow the rate of neuronal death. Our data indicate that inhibition of PLK2 represents a promising avenue for developing new therapeutics, but that the mechanism of neuroprotection by PLK2 inhibition is not likely due to reducing alpha-synuclein serine-129 phosphorylation and that the true Lewy body kinase still awaits discovery.
Collapse
Affiliation(s)
- Leah J Weston
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Teresa L Stackhouse
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kateri J Spinelli
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney W Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Elizabeth P Rose
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Valerie R Osterberg
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Vivek K Unni
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
11
|
Reimer L, Betzer C, Kofoed RH, Volbracht C, Fog K, Kurhade C, Nilsson E, Överby AK, Jensen PH. PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation. Brain Pathol 2020; 31:103-119. [PMID: 32716602 PMCID: PMC8018097 DOI: 10.1111/bpa.12883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
Deposition of extensively hyperphosphorylated tau in specific brain cells is a clear pathological hallmark in Alzheimer's disease and a number of other neurodegenerative disorders, collectively termed the tauopathies. Furthermore, hyperphosphorylation of tau prevents it from fulfilling its physiological role as a microtubule‐stabilizing protein and leaves it increasingly vulnerable to self‐assembly, suggestive of a central underlying role of hyperphosphorylation as a contributing factor in the etiology of these diseases. Via in vitro phosphorylation and regulation of kinase activity within cells and acute brain tissue, we reveal that the inflammation associated kinase, protein kinase R (PKR), directly phosphorylates numerous abnormal and disease‐modifying residues within tau including Thr181, Ser199/202, Thr231, Ser262, Ser396, Ser404 and Ser409. Similar to disease processes, these PKR‐mediated phosphorylations actively displace tau from microtubules in cells. In addition, PKR overexpression and knockdown, respectively, increase and decrease tau protein and mRNA levels in cells. This regulation occurs independent of noncoding transcriptional elements, suggesting an underlying mechanism involving intra‐exonic regulation of the tau‐encoding microtubule‐associated protein tau (MAPT) gene. Finally, acute encephalopathy in wild type mice, induced by intracranial Langat virus infection, results in robust inflammation and PKR upregulation accompanied by abnormally phosphorylated full‐length‐ and truncated tau. These findings indicate that PKR, independent of other kinases and upon acute brain inflammation, is capable of triggering pathological modulation of tau, which, in turn, might form the initial pathologic seed in several tauopathies such as Alzheimer's disease and Chronic traumatic encephalopathy where inflammation is severe.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Kofoed RH, Betzer C, Ferreira N, Jensen PH. Glycogen synthase kinase 3 β activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of α-synuclein. Neurobiol Dis 2019; 136:104720. [PMID: 31881263 DOI: 10.1016/j.nbd.2019.104720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a currently incurable disease and the number of patients is expected to increase due to the extended human lifespan. α-Synuclein is a pathological hallmark of PD and variations and triplications of the gene encoding α-synuclein are strongly correlated with the risk of developing PD. Decreasing α-synuclein is therefore a promising therapeutic strategy for the treatment of PD. We have previously demonstrated that Polo-like kinase 2 (PLK-2) regulates α-synuclein protein levels by modulating the expression of α-synuclein mRNA. In this study, we further expand the knowledge on this pathway and show that it depends on down-stream modulation of Glycogen-synthase kinase 3 β (GSK-3β). We show that PLK-2 inhibition only increases α-synuclein levels in the presence of active GSK-3β in both cell lines and primary neuronal cultures. Furthermore, direct inhibition of GSK-3β decreases α-synuclein protein and mRNA levels in our cell model and overexpression of Leucine-rich repeat kinase 2, known to activate GSK-3β, increases α-synuclein levels. Finally, we show an increase in endogenous α-synuclein in primary neurons when increasing GSK-3β activity. Our findings demonstrate a not previously described role of endogenous GSK-3β activity in the PLK-2 mediated regulation of α-synuclein levels. This finding opens up the possibility of GSK-3β as a novel target for decreasing α-synuclein levels by the use of small molecule compounds, hereby serving as a disease modulating strategy.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Poul Henning Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| |
Collapse
|
13
|
Source of Dietary Fat in Pig Diet Affects Adipose Expression of Genes Related to Cancer, Cardiovascular, and Neurodegenerative Diseases. Genes (Basel) 2019; 10:genes10120948. [PMID: 31756991 PMCID: PMC6947373 DOI: 10.3390/genes10120948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
It has been known for many years that excessive consumption of saturated fats has proatherogenic properties, contrary to unsaturated fats. However, the molecular mechanism covering these effects is not fully understood. In this paper, we aimed to identify differentially expressed genes (DEGs) using RNA-sequencing, following feeding pigs with different sources of fat. After comparison of adipose samples from three dietary groups (rapeseed oil (n = 6), beef tallow (n = 5), coconut oil (n = 5)), we identified 29 DEGs (adjusted p-value < 0.05, fold change > 1.3) between beef tallow and rapeseed oil and 2 genes between coconut oil and rapeseed oil groups. No differentially expressed genes were observed between coconut oil and beef tallow groups. Almost all 29 DEGs between rapeseed oil and beef tallow groups are connected to neurodegenerative, cardiovascular diseases, or cancer (e.g., PLAU, CYBB, NCF2, ZNF217, CHAC1, CTCFL). Functional analysis of these genes revealed that they are associated with fluid shear stress response, complement and coagulation cascade, ROS signaling, neurogenesis, and regulation of protein binding and protein catabolic processes. Furthermore, gene set enrichment analysis (GSEA) of the whole datasets from all three comparisons suggests that both beef tallow and coconut oil may trigger changes in the expression level of genes crucial in the pathogenesis of civilization diseases.
Collapse
|
14
|
Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease. Aging (Albany NY) 2019; 11:9424-9441. [PMID: 31697645 PMCID: PMC6874433 DOI: 10.18632/aging.102394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.
Collapse
|
15
|
Cariulo C, Martufi P, Verani M, Azzollini L, Bruni G, Weiss A, Deguire SM, Lashuel HA, Scaricamazza E, Sancesario GM, Schirinzi T, Mercuri NB, Sancesario G, Caricasole A, Petricca L. Phospho-S129 Alpha-Synuclein Is Present in Human Plasma but Not in Cerebrospinal Fluid as Determined by an Ultrasensitive Immunoassay. Front Neurosci 2019; 13:889. [PMID: 31507364 PMCID: PMC6714598 DOI: 10.3389/fnins.2019.00889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation and aggregation of misfolded alpha-synuclein is believed to be a cause of Parkinson’s disease (PD). Phosphorylation of alpha-synuclein at S129 is known to be associated with the pathological misfolding process, but efforts to investigate the relevance of this post-translational modification for pathology have been frustrated by difficulties in detecting and quantifying it in relevant samples. We report novel, ultrasensitive immunoassays based on single-molecule counting technology, useful for detecting alpha-synuclein and its S129 phosphorylated form in clinical samples in the low pg/ml range. Using human CSF and plasma samples, we find levels of alpha-synuclein comparable to those previously reported. However, while alpha-synuclein phosphorylated on S129 could easily be detected in human plasma, where its detection is extremely sensitive to protein phosphatases, its levels in CSF were undetectable, with a possible influence of a matrix effect. In plasma samples from a small test cohort comprising 5 PD individuals and five age-matched control individuals we find that pS129 alpha-synuclein levels are increased in PD plasma samples, in line with previous reports. We conclude that pS129 alpha-synuclein is not detectable in CSF and recommend the addition of phosphatase inhibitors to plasma samples at the time of collection. Moreover, the findings obtained on the small cohort of clinical plasma samples point to plasma pS129 alpha-synuclein levels as a candidate diagnostic biomarker in PD.
Collapse
Affiliation(s)
| | - Paola Martufi
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| | | | | | | | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eugenia Scaricamazza
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Lara Petricca
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| |
Collapse
|
16
|
Stefanis L, Emmanouilidou E, Pantazopoulou M, Kirik D, Vekrellis K, Tofaris GK. How is alpha-synuclein cleared from the cell? J Neurochem 2019; 150:577-590. [PMID: 31069800 DOI: 10.1111/jnc.14704] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
The levels and conformers of alpha-synuclein are critical in the pathogenesis of Parkinson's Disease and related synucleinopathies. Homeostatic mechanisms in protein degradation and secretion have been identified as regulators of alpha-synuclein at different stages of its intracellular trafficking and transcellular propagation. Here we review pathways involved in the removal of various forms of alpha-synuclein from both the intracellular and extracellular environment. Proteasomes and lysosomes are likely to play complementary roles in the removal of intracellular alpha-synuclein species, in a manner that depends on alpha-synuclein post-translational modifications. Extracellular alpha-synuclein is cleared by extracellular proteolytic enzymes, or taken up by neighboring cells, especially microglia and astrocytes, and degraded within lysosomes. Exosomes, on the other hand, represent a vehicle for egress of excess burden of the intracellular protein, potentially contributing to the transfer of alpha-synuclein between cells. Dysfunction in any one of these clearance mechanisms, or a combination thereof, may be involved in the initiation or progression of Parkinson's disease, whereas targeting these pathways may offer an opportunity for therapeutic intervention. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | - Deniz Kirik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Kofoed RH, Betzer C, Lykke-Andersen S, Molska E, Jensen PH. Investigation of RNA Synthesis Using 5-Bromouridine Labelling and Immunoprecipitation. J Vis Exp 2018. [PMID: 29782024 DOI: 10.3791/57056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When steady state RNA levels are compared between two conditions, it is not possible to distinguish whether changes are caused by alterations in production or degradation of RNA. This protocol describes a method for measurement of RNA production, using 5-Bromouridine labelling of RNA followed by immunoprecipitation, which enables investigation of RNA synthesized within a short timeframe (e.g., 1 h). The advantage of 5-Bromouridine-labelling and immunoprecipitation over the use of toxic transcriptional inhibitors, such as α-amanitin and actinomycin D, is that there are no or very low effects on cell viability during short-term use. However, because 5-Bromouridine-immunoprecipitation only captures RNA produced within the short labelling time, slowly produced as well as rapidly degraded RNA can be difficult to measure by this method. The 5-Bromouridine-labelled RNA captured by 5-Bromouridine-immunoprecipitation can be analyzed by reverse transcription, quantitative polymerase chain reaction, and next generation sequencing. All types of RNA can be investigated, and the method is not limited to measuring mRNA as is presented in this example.
Collapse
Affiliation(s)
- Rikke H Kofoed
- DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Aarhus University;
| | - Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Aarhus University
| | | | - Ewa Molska
- Dept. of Molecular Biology and Genetics, Aarhus University
| | - Poul H Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Aarhus University;
| |
Collapse
|