1
|
Kang D, Shin B, Kim G, Hea JH, Sung YH, Rhee K. Roles of Cep215/Cdk5rap2 in establishing testicular architecture for mouse male germ cell development. FASEB J 2024; 38:e70188. [PMID: 39569992 PMCID: PMC11580613 DOI: 10.1096/fj.202401541r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Cep215/Cdk5rap2 is a centrosome protein crucial for directing microtubule organization during cell division and morphology. Cep215 is a causal gene of autosomal recessive primary microcephaly type 3, characterized by a small brain size and a thin cerebral cortex. Despite previous attempts with Cep215 knockout (KO) mice to elucidate its developmental roles, interpreting their phenotypes remained challenging due to potential interference from alternative variants. Here, we generated KO mice completely lacking the Cep215 gene and investigated its specific contributions to male germ cell development. In the absence of Cep215, testis size decreased significantly, accompanied by a reduction in male germ cell numbers. Histological analyses unveiled the arrested development of male germ cells around the zygotene stage of meiosis. Concurrently, the formation of the blood-testis barrier (BTB) was impaired in Cep215 KO testes. These findings suggest that BTB failure contributes, at least partially, to male germ cell defects observed in Cep215 KO mice. We propose that the deletion of Cep215 may disrupt microtubule organization in Sertoli cells with a delay in spermatogonial stem cell mitosis, thereby impeding proper BTB formation.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| | - Byungho Shin
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| | - Gyeong‐Nam Kim
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Ji Hwa Hea
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Young Hoon Sung
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Kunsoo Rhee
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
2
|
Ma D, Lin KY, Suresh D, Lin J, Gujar MR, Aung HY, Tan YS, Gao Y, Vincent AS, Chen T, Wang H. Arl2 GTPase associates with the centrosomal protein Cdk5rap2 to regulate cortical development via microtubule organization. PLoS Biol 2024; 22:e3002751. [PMID: 39137170 PMCID: PMC11321591 DOI: 10.1371/journal.pbio.3002751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.
Collapse
Affiliation(s)
- Dongliang Ma
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Kun-Yang Lin
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Divya Suresh
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Jiaen Lin
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Mahekta R. Gujar
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Htet Yamin Aung
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Ye Sing Tan
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Yang Gao
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Anselm S. Vincent
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Shaanxi, PR China
| | - Hongyan Wang
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
3
|
Li D, Quan Z, Ni J, Li H, Qing H. The many faces of the zinc finger protein 335 in brain development and immune system. Biomed Pharmacother 2023; 165:115257. [PMID: 37541176 DOI: 10.1016/j.biopha.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.
Collapse
Affiliation(s)
- Danyang Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
5
|
Nakamura A, Ikeda M, Kusayanagi S, Hayashi K. An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation. IBRO Neurosci Rep 2022; 13:264-273. [PMID: 36164503 PMCID: PMC9508486 DOI: 10.1016/j.ibneur.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/11/2022] [Indexed: 10/29/2022] Open
Abstract
The centrosome lacks microtubule (MT)-nucleation activity in differentiated neurons. We have previously demonstrated that MTs were nucleated at the cytoplasm of mouse neurons. They are supposed to serve seeds for MTs required for dendrite growth. However, the factors that activate the cytoplasmic γ-tubulin ring complex (γTuRC) are unknown. Here we report an alternative splicing isoform of cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CKD5RAP2) as a candidate for the cytoplasmic γTuRC activator. This isoform lacked exon 17 and was expressed predominantly in the brain and testis. The expression was transient during the development of cortical neurons, which period coincided with the period we reported cytoplasmic MT nucleation. This isoform resulted in a frameshift and generated truncated protein without a centrosomal localization signal. When this isoform was expressed in cells, it localized diffusely in the cytoplasm. It was co-immunoprecipitated with γ-tubulin and MOZART2, suggesting that it can activate cytosolic γTuRCs. After cold-nocodazole depolymerization of MTs and subsequent washout, we observed numerous short MTs in the cytoplasm of cells transfected with the cDNA of this isoform. The isoform-overexpressing cells exhibited an increased amount of MTs and a decreased ratio of acetylated tubulin, suggesting that MT generation and turnover were enhanced by the isoform. Our data suggest the possibility that alternative splicing of CDK5RAP2 induces cytoplasmic nucleation of MTs in developing neurons.
Collapse
Key Words
- CKD5RAP2, cyclin-dependent kinase 5 regulatory subunit-associated protein 2
- CM1, centrosomin motif 1
- Centrosome
- DMEM, Dulbecco’s Modified Eagle’s Medium
- Dendrite growth
- FBS, fetal bovine serum
- HBSS, Hanks' Balanced Salt Solution
- IB, immunoblotting
- IP, immunoprecipitation
- MT, microtubule
- MZT2
- MZT2, MOZART2
- Microcephaly
- NSD, nonsense-mediated mRNA decay
- Neuron differentiation
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- γTuRC
- γTuRC, γ-tubulin ring complex
Collapse
Affiliation(s)
- Akari Nakamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mami Ikeda
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Seina Kusayanagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kensuke Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
6
|
Döhne N, Falck A, Janach GMS, Byvaltcev E, Strauss U. Interferon-γ augments GABA release in the developing neocortex via nitric oxide synthase/soluble guanylate cyclase and constrains network activity. Front Cell Neurosci 2022; 16:913299. [PMID: 36035261 PMCID: PMC9401097 DOI: 10.3389/fncel.2022.913299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.
Collapse
Affiliation(s)
- Noah Döhne
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice Falck
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel M. S. Janach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Egor Byvaltcev
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience, Lobachevsky State, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Cep215 is essential for morphological differentiation of astrocytes. Sci Rep 2020; 10:17000. [PMID: 33046744 PMCID: PMC7550586 DOI: 10.1038/s41598-020-72728-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022] Open
Abstract
Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.
Collapse
|