1
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and correction of protein conformational disease in iPSC-derived neurons through personalized base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102441. [PMID: 39877004 PMCID: PMC11773622 DOI: 10.1016/j.omtn.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1, the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy that may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Colin T. Konishi
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Nancy Mulaiese
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Tanvi Butola
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qinkun Zhang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Dana Kagan
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Mariel Pressler
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Brooke G. Dirvin
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Chengzu Long
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| |
Collapse
|
2
|
Ademuwagun IA, Adam Y, Rotimi SO, Syrbe S, Radtke M, Hentschel J, Lemke JR, Adebiyi E. Exome sequencing in Nigerian children with early-onset epilepsy syndromes. Epilepsia Open 2025; 10:222-232. [PMID: 39570184 PMCID: PMC11803284 DOI: 10.1002/epi4.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE Nigeria, along with other Sub-Saharan African countries, bears the highest burden of epilepsy worldwide. This high prevalence is attributed to a combination of factors, including a significant incidence of infectious diseases, perinatal complications, and genetic etiologies. Genetic testing is rarely available and is not typically included in the routine diagnostic work-up for individuals with infantile and childhood epilepsy syndromes in these regions. Exome sequencing (ES) offers a diagnostic yield of 24%-62%, but these figures primarily reflect data from high-income countries (HICs) and may not be applicable to low- and middle-income countries (LMICs). In this study, we employed ES to investigate the genetic basis of early-onset epilepsy in 22 affected children from Nigeria. METHODS The study involved sampling of patients diagnosed with early-onset epilepsy syndromes at the Lagos State University Teaching Hospital (LASUTH) Neurology clinic. Venous blood samples were collected, and genomic DNA was isolated and purified. Molecular analysis included DNA fragmentation, ligation, target enrichment, library preparation, and whole-exome sequencing. Computational analysis involved variant calling, curation, and classification using specialized tools and databases. RESULTS Pathogenic variants were identified in 6 out of 22 individuals, equaling a diagnostic yield of 27.3% and comprising variants in BPTF, NAA15, SCN1A, TUBA1A and twice in CACNA1A. SIGNIFICANCE In this study, we present the first exome study on early-onset epilepsy syndromes from West Africa, facilitated by a Nigerian-German research collaboration. Our findings reveal a genetic diagnostic yield comparable to that of HICs. The integration of genomic medicine into epilepsy management in Nigeria holds promising prospects for improving patient care and reducing mortality rates. PLAIN LANGUAGE SUMMARY This study represents the first published exome findings in Nigerian children with early-onset epilepsy, revealing a genetic diagnosis in 27% of cases. Pathogenic variants were identified in five genes amongst 6 of 22 patients, underscoring the potential of genetic testing to enhance epilepsy management in developing nations like Nigeria.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research (CUBRe)Covenant UniversityOtaOgun StateNigeria
- Biochemistry DepartmentCovenant UniversityOtaOgun StateNigeria
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe)Covenant UniversityOtaOgun StateNigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research (CUBRe)Covenant UniversityOtaOgun StateNigeria
- Biochemistry DepartmentCovenant UniversityOtaOgun StateNigeria
- Covenant Applied Informatics and Communications African Center of Excellence (CApIC‐ACE)Covenant UniversityOtaOgun StateNigeria
| | - Steffen Syrbe
- Heidelberg UniversityMedical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Department 1, Division of Pediatric EpileptologyHeidelbergGermany
| | - Maximilian Radtke
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Julia Hentschel
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Johannes R. Lemke
- Institute of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
- Center for Rare DiseasesUniversity of Leipzig Medical CenterLeipzigGermany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe)Covenant UniversityOtaOgun StateNigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ)HeidelbergGermany
- African Center of Excellence in Bioinformatics & Data Intensive ScienceMakerere UniversityKampalaUganda
| |
Collapse
|
3
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
4
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and Correction of Protein Conformational Disease in iPSC-derived Neurons through Personalized Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576134. [PMID: 38293034 PMCID: PMC10827171 DOI: 10.1101/2024.01.17.576134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1 , the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy which may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
|
5
|
Que Z, Olivero-Acosta MI, Robinson M, Chen I, Zhang J, Wettschurack K, Wu J, Xiao T, Otterbacher CM, Shankar V, Harlow H, Hong S, Zirkle B, Wang M, Cui N, Mandal P, Chen X, Deming B, Halurkar M, Zhao Y, Rochet JC, Xu R, Brewster AL, Wu LJ, Yuan C, Skarnes WC, Yang Y. Human iPSC-derived microglia sense and dampen hyperexcitability of cortical neurons carrying the epilepsy-associated SCN2A-L1342P mutation. J Neurosci 2024; 45:e2027232024. [PMID: 39557580 PMCID: PMC11735681 DOI: 10.1523/jneurosci.2027-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Neuronal hyperexcitability is a hallmark of epilepsy. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interact with human neurons to regulate hyperexcitability mediated by an epilepsy-causing genetic mutation found in patients is unknown. The SCN2A gene is responsible for encoding the voltage-gated sodium channel Nav1.2, one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation leads to hyperexcitability in a male donor (KOLF2.1) hiPSC-derived cortical neuron model. Microglia originate from a different lineage (yolk sac) and are not naturally present in hiPSCs-derived neuronal cultures. To study how microglia respond to neurons carrying a disease-causing mutation and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display increased branch length and enhanced process-specific calcium signal when co-cultured with Nav1.2-L1342P neurons. Moreover, the presence of microglia significantly lowered the repetitive action potential firing and current density of sodium channels in neurons carrying the mutation. Additionally, we showed that co-culturing with microglia led to a reduction in sodium channel expression within the axon initial segment of Nav1.2-L1342P neurons. Furthermore, we demonstrated that Nav1.2-L1342P neurons release a higher amount of glutamate compared to control neurons. Our work thus reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation.Significance Statement Seizure studies in mouse models have highlighted the role of microglia in modulating neuronal activity, particularly in the promotion or suppression of seizures. However, a gap persists in comprehending the influence of human microglia on intrinsically hyperexcitable neurons carrying epilepsy-associated pathogenic mutations. This research addresses this gap by investigating human microglia and their impact on neuronal functions. Our findings demonstrate that microglia exhibit dynamic morphological alterations and calcium fluctuations in the presence of neurons carrying an epilepsy-associated SCN2A mutation. Furthermore, microglia suppressed the excitability of hyperexcitable neurons, suggesting a potential beneficial role. This study underscores the role of microglia in the regulation of abnormal neuronal activity, providing insights into therapeutic strategies for neurological conditions associated with hyperexcitability.
Collapse
Affiliation(s)
- Zhefu Que
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Maria I. Olivero-Acosta
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Morgan Robinson
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Ian Chen
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jingliang Zhang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Kyle Wettschurack
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jiaxiang Wu
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Tiange Xiao
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Conrad Max Otterbacher
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Vinayak Shankar
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Hope Harlow
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Seoyong Hong
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Benjamin Zirkle
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Muhan Wang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Ningren Cui
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Purba Mandal
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Xiaoling Chen
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Brody Deming
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Manasi Halurkar
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Yuanrui Zhao
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Ranjie Xu
- Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75205
| | - Long-jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
| | - Chongli Yuan
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - William C. Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Yang Yang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
6
|
Dong R, Jin R, Zhang H, Zhang H, Xue M, Li Y, Zhang K, Lv Y, Li X, Liu Y, Gai Z. Genotypic and phenotypic characteristics of sodium channel-associated epilepsy in Chinese population. J Hum Genet 2024; 69:441-453. [PMID: 38880818 DOI: 10.1038/s10038-024-01257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
Variants in voltage-gated sodium channel (VGSC) genes are implicated in seizures, epilepsy, and neurodevelopmental disorders, constituting a significant aspect of hereditary epilepsy in the Chinese population. Through retrospective analysis utilizing next-generation sequencing (NGS), we examined the genotypes and phenotypes of VGSC-related epilepsy cases from a cohort of 691 epilepsy subjects. Our findings revealed that 5.1% of subjects harbored VGSC variants, specifically 22 with SCN1A, 9 with SCN2A, 1 with SCN8A, and 3 with SCN1B variants; no SCN3A variants were detected. Among these, 14 variants were previously reported, while 21 were newly identified. SCN1A variant carriers predominantly presented with Dravet Syndrome (DS) and Genetic Epilepsy with Febrile Seizures Plus (GEFS + ), featuring a heightened sensitivity to fever-induced seizures. Statistically significant disparities emerged between the SCN1A-DS and SCN1A-GEFS+ groups concerning seizure onset and genetic diagnosis age, incidence of status epilepticus, mental retardation, anti-seizure medication (ASM) responsiveness, and familial history. Notably, subjects with SCN1A variants affecting the protein's pore region experienced more frequent cluster seizures. All SCN2A variants were of de novo origin, and 88.9% of individuals with SCN2A variations exhibited cluster seizures. This research reveals a significant association between variations in VGSC-related genes and the clinical phenotype diversity of epilepsy subjects in China, emphasizing the pivotal role of NGS screening in establishing accurate disease diagnoses and guiding the selection of ASM.
Collapse
Affiliation(s)
- Rui Dong
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Ruifeng Jin
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
- Department of neurology, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Hongwei Zhang
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
- Department of neurology, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Min Xue
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Yue Li
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Kaihui Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Xiaoying Li
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
- Neonatology department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
| | - Zhongtao Gai
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| |
Collapse
|
7
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
8
|
Chi W, Kiskinis E. Integrative analysis of epilepsy-associated genes reveals expression-phenotype correlations. Sci Rep 2024; 14:3587. [PMID: 38351047 PMCID: PMC10864290 DOI: 10.1038/s41598-024-53494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epilepsy is a highly prevalent neurological disorder characterized by recurrent seizures. Patients exhibit broad genetic, molecular, and clinical diversity involving mild to severe comorbidities. The factors that contribute to this phenotypic diversity remain unclear. Here we used publicly available datasets to systematically interrogate the expression pattern of 230 epilepsy-associated genes across human tissues, developmental stages, and central nervous system (CNS) cellular subtypes. We grouped genes based on their curated phenotypes into 3 broad classes: core epilepsy genes (CEG), where seizures are the dominant phenotype, developmental and epileptic encephalopathy genes (DEEG) that are associated with developmental and epileptic encephalopathy, and seizure-related genes (SRG), which are characterized by the presence of seizures and gross brain malformations. We find that compared to the other two groups of genes, DEEGs are highly expressed within the adult CNS, exhibit the highest and most dynamic expression in various brain regions across development, and are significantly enriched in GABAergic neurons. Our analysis provides an overview of the expression pattern of epilepsy-associated genes with spatiotemporal resolution and establishes a broad expression-phenotype correlation in epilepsy.
Collapse
Affiliation(s)
- Wanhao Chi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
10
|
Doorn N. Unraveling Dravet Syndrome: Exploring the complex effects of sodium channel mutations on neuronal networks. Sci Prog 2024; 107:368504231225076. [PMID: 38373395 PMCID: PMC10878221 DOI: 10.1177/00368504231225076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Dravet Syndrome (DS) is a severe developmental epileptic encephalopathy with frequent intractable seizures accompanied by cognitive impairment, often caused by pathogenic variants in SCN1A encoding sodium channel NaV1.1. Recent research utilizing in vitro patient-derived neuronal networks and accompanying in silico models uncovered that not just sodium-but also potassium-and synaptic currents were impaired in DS networks. Here, we explore the implications of these findings for three questions that remain elusive in DS: How do sodium channel impairments result in epilepsy? How can identical variants lead to varying phenotypes? What mechanisms underlie the developmental delay in DS patients? We speculate that impaired potassium currents might be a secondary effect to NaV1.1 mutations and could result in hyperexcitable neurons and epileptic networks. Moreover, we reason that homeostatic plasticity is actively engaged in DS networks, possibly affecting the phenotype and impairing learning and development when driven to extremes.
Collapse
Affiliation(s)
- Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
11
|
van Hugte EJH, Lewerissa EI, Wu KM, Scheefhals N, Parodi G, van Voorst TW, Puvogel S, Kogo N, Keller JM, Frega M, Schubert D, Schelhaas HJ, Verhoeven J, Majoie M, van Bokhoven H, Nadif Kasri N. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain 2023; 146:5153-5167. [PMID: 37467479 PMCID: PMC10689919 DOI: 10.1093/brain/awad245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.
Collapse
Affiliation(s)
- Eline J H van Hugte
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Elly I Lewerissa
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Ka Man Wu
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Nicky Scheefhals
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Giulia Parodi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 GE Genova, Italy
| | - Torben W van Voorst
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Sofia Puvogel
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Naoki Kogo
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Helenius J Schelhaas
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| | - Judith Verhoeven
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Marian Majoie
- Department of Epileptology, ACE Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Miguel Sanz C, Martinez Navarro M, Caballero Diaz D, Sanchez-Elexpuru G, Di Donato V. Toward the use of novel alternative methods in epilepsy modeling and drug discovery. Front Neurol 2023; 14:1213969. [PMID: 37719765 PMCID: PMC10501616 DOI: 10.3389/fneur.2023.1213969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy is a chronic brain disease and, considering the amount of people affected of all ages worldwide, one of the most common neurological disorders. Over 20 novel antiseizure medications (ASMs) have been released since 1993, yet despite substantial advancements in our understanding of the molecular mechanisms behind epileptogenesis, over one-third of patients continue to be resistant to available therapies. This is partially explained by the fact that the majority of existing medicines only address seizure suppression rather than underlying processes. Understanding the origin of this neurological illness requires conducting human neurological and genetic studies. However, the limitation of sample sizes, ethical concerns, and the requirement for appropriate controls (many patients have already had anti-epileptic medication exposure) in human clinical trials underscore the requirement for supplemental models. So far, mammalian models of epilepsy have helped to shed light on the underlying causes of the condition, but the high costs related to breeding of the animals, low throughput, and regulatory restrictions on their research limit their usefulness in drug screening. Here, we present an overview of the state of art in epilepsy modeling describing gold standard animal models used up to date and review the possible alternatives for this research field. Our focus will be mainly on ex vivo, in vitro, and in vivo larval zebrafish models contributing to the 3R in epilepsy modeling and drug screening. We provide a description of pharmacological and genetic methods currently available but also on the possibilities offered by the continued development in gene editing methodologies, especially CRISPR/Cas9-based, for high-throughput disease modeling and anti-epileptic drugs testing.
Collapse
|
13
|
Doorn N, van Hugte EJH, Ciptasari U, Mordelt A, Meijer HGE, Schubert D, Frega M, Nadif Kasri N, van Putten MJAM. An in silico and in vitro human neuronal network model reveals cellular mechanisms beyond Na V1.1 underlying Dravet syndrome. Stem Cell Reports 2023; 18:1686-1700. [PMID: 37419110 PMCID: PMC10444571 DOI: 10.1016/j.stemcr.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.
Collapse
Affiliation(s)
- Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands.
| | - Eline J H van Hugte
- Department of Neurology, Academic Center for Epileptology Kempenhaeghe, 5591 VE Heeze, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics, University of Twente, 7522 NB Enschede, the Netherlands
| | - Dirk Schubert
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands; Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, 7512 KZ Enschede, the Netherlands
| |
Collapse
|
14
|
The Generation of Human iPSC Lines from Three Individuals with Dravet Syndrome and Characterization of Neural Differentiation Markers in iPSC-Derived Ventral Forebrain Organoid Model. Cells 2023; 12:cells12020339. [PMID: 36672274 PMCID: PMC9856691 DOI: 10.3390/cells12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Dravet syndrome (DRVT) is a rare form of neurodevelopmental disorder with a high risk of sudden unexpected death in epilepsy (SUDEP), caused mainly (>80% cases) by mutations in the SCN1A gene, coding the Nav1.1 protein (alfa-subunit of voltage-sensitive sodium channel). Mutations in SCN1A are linked to heterogenous epileptic phenotypes of various types, severity, and patient prognosis. Here we generated iPSC lines from fibroblasts obtained from three individuals affected with DRVT carrying distinct mutations in the SCN1A gene (nonsense mutation p.Ser1516*, missense mutation p.Arg1596His, and splicing mutation c.2589+2dupT). The iPSC lines, generated with the non-integrative approach, retained the distinct SCN1A gene mutation of the donor fibroblasts and were characterized by confirming the expression of the pluripotency markers, the three-germ layer differentiation potential, the absence of exogenous vector expression, and a normal karyotype. The generated iPSC lines were used to establish ventral forebrain organoids, the most affected type of neurons in the pathology of DRVT. The DRVT organoid model will provide an additional resource for deciphering the pathology behind Nav1.1 haploinsufficiency and drug screening to remediate the functional deficits associated with the disease.
Collapse
|
15
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
16
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
17
|
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022; 43:392-405. [PMID: 35427475 PMCID: PMC9119009 DOI: 10.1016/j.tips.2022.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jordyn Eisenberg
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mennat Gharib
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Weng OY, Li Y, Wang LY. Modeling Epilepsy Using Human Induced Pluripotent Stem Cells-Derived Neuronal Cultures Carrying Mutations in Ion Channels and the Mechanistic Target of Rapamycin Pathway. Front Mol Neurosci 2022; 15:810081. [PMID: 35359577 PMCID: PMC8960276 DOI: 10.3389/fnmol.2022.810081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is a neurological disorder that affects over 65 million people globally. It is characterized by periods of seizure activity of the brain as a result of excitation and inhibition (E/I) imbalance, which is regarded as the core underpinning of epileptic activity. Both gain- and loss-of-function (GOF and LOF) mutations of ion channels, synaptic proteins and signaling molecules along the mechanistic target of rapamycin (mTOR) pathway have been linked to this imbalance. The pathogenesis of epilepsy often has its roots in the early stage of brain development. It remains a major challenge to extrapolate the findings from many animal models carrying these GOF or LOF mutations to the understanding of disease mechanisms in the developing human brain. Recent advent of the human pluripotent stem cells (hPSCs) technology opens up a new avenue to recapitulate patient conditions and to identify druggable molecular targets. In the following review, we discuss the progress, challenges and prospects of employing hPSCs-derived neural cultures to study epilepsy. We propose a tentative working model to conceptualize the possible impact of these GOF and LOF mutations in ion channels and mTOR signaling molecules on the morphological and functional remodeling of intrinsic excitability, synaptic transmission and circuits, ultimately E/I imbalance and behavioral phenotypes in epilepsy.
Collapse
Affiliation(s)
- Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Yun Li,
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lu-Yang Wang,
| |
Collapse
|
19
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Layer N, Sonnenberg L, Pardo González E, Benda J, Hedrich UBS, Lerche H, Koch H, Wuttke TV. Dravet Variant SCN1A A1783V Impairs Interneuron Firing Predominantly by Altered Channel Activation. Front Cell Neurosci 2021; 15:754530. [PMID: 34776868 PMCID: PMC8581729 DOI: 10.3389/fncel.2021.754530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.(Ala1783Val) missense variant has become available. In this study, we provided an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Based on these data, simulated interneuron (IN) firing properties in a conductance-based single-compartment model suggested surprisingly similar firing deficits for NaV1.1A1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaV1.1A1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.Ala1783V in vitro confirmed a predicted IN firing deficit and revealed an accompanying reduction of interneuronal input resistance while demonstrating normal excitability of pyramidal neurons. Altered input resistance was fed back into the model for further refinement. Taken together these data demonstrate that primary loss of function (LOF) gating properties accompanied by altered membrane characteristics may match effects of full haploinsufficiency on the neuronal level despite maintaining physiological peak current density, thereby causing DS.
Collapse
Affiliation(s)
- Nikolas Layer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Institute for Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Emilio Pardo González
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute for Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Eberhard Karls Universitat, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Epileptology, Neurology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Seizure Phenotype and Underlying Cellular Defects in Drosophila Knock-In Models of DS (R1648C) and GEFS+ (R1648H) SCN1A Epilepsy. eNeuro 2021; 8:ENEURO.0002-21.2021. [PMID: 34475263 PMCID: PMC8454921 DOI: 10.1523/eneuro.0002-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the voltage-gated sodium channel gene SCN1A are associated with human epilepsy disorders, but how most of these mutations alter channel properties and result in seizures is unknown. This study focuses on two different mutations occurring at one position within SCN1A. R1648C (R-C) is associated with the severe disorder Dravet syndrome, and R1648H (R-H), with the milder disorder GEFS+. To explore how these different mutations contribute to distinct seizure disorders, Drosophila lines with the R-C or R-H mutation, or R1648R (R-R) control substitution in the fly sodium channel gene para were generated by CRISPR-Cas9 gene editing. The R-C and R-H mutations are homozygous lethal. Animals heterozygous for R-C or R-H mutations displayed reduced life spans and spontaneous and temperature-induced seizures not observed in R-R controls. Electrophysiological recordings from adult GABAergic neurons in R-C and R-H mutants revealed the appearance of sustained neuronal depolarizations and altered firing frequency that were exacerbated at elevated temperature. The only significant change observed in underlying sodium currents in both R-C and R-H mutants was a hyperpolarized deactivation threshold at room and elevated temperature compared with R-R controls. Since this change is constitutive, it is likely to interact with heat-induced changes in other cellular properties to result in the heat-induced increase in sustained depolarizations and seizure activity. Further, the similarity of the behavioral and cellular phenotypes in the R-C and R-H fly lines, suggests that disease symptoms of different severity associated with these mutations in humans could be due in large part to differences in genetic background.
Collapse
|
22
|
Khorkova O, Hsiao J, Wahlestedt C. Nucleic Acid-Based Therapeutics in Orphan Neurological Disorders: Recent Developments. Front Mol Biosci 2021; 8:643681. [PMID: 33996898 PMCID: PMC8115123 DOI: 10.3389/fmolb.2021.643681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
The possibility of rational design and the resulting faster and more cost-efficient development cycles of nucleic acid–based therapeutics (NBTs), such as antisense oligonucleotides, siRNAs, and gene therapy vectors, have fueled increased activity in developing therapies for orphan diseases. Despite the difficulty of delivering NBTs beyond the blood–brain barrier, neurological diseases are significantly represented among the first targets for NBTs. As orphan disease NBTs are now entering the clinical stage, substantial efforts are required to develop the scientific background and infrastructure for NBT design and mechanistic studies, genetic testing, understanding natural history of orphan disorders, data sharing, NBT manufacturing, and regulatory support. The outcomes of these efforts will also benefit patients with “common” diseases by improving diagnostics, developing the widely applicable NBT technology platforms, and promoting deeper understanding of biological mechanisms that underlie disease pathogenesis. Furthermore, with successes in genetic research, a growing proportion of “common” disease cases can now be attributed to mutations in particular genes, essentially extending the orphan disease field. Together, the developments occurring in orphan diseases are building the foundation for the future of personalized medicine. In this review, we will focus on recent achievements in developing therapies for orphan neurological disorders.
Collapse
Affiliation(s)
| | | | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
Interneuron Dysfunction in a New Mouse Model of SCN1A GEFS. eNeuro 2021; 8:ENEURO.0394-20.2021. [PMID: 33658306 PMCID: PMC8174035 DOI: 10.1523/eneuro.0394-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within SCN1A result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a Drosophila knock-in model. To examine the behavioral and cellular effects of this mutation in mammals, we introduced the equivalent KT mutation into the mouse (Mus musculus) Scn1a (Scn1aKT) gene using CRISPR/Cas9 and generated mutant lines in two widely used genetic backgrounds: C57BL/6NJ and 129X1/SvJ. In both backgrounds, mice homozygous for the KT mutation had spontaneous seizures and died by postnatal day (P)23. There was no difference in mortality of heterozygous KT mice compared with wild-type littermates up to six months old. Heterozygous mutants exhibited heat-induced seizures at ∼42°C, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices at permissive temperatures, current-clamp recordings revealed a significantly depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin (PV)-expressing inhibitory CA1 interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. These results suggest that a constitutive decrease in inhibitory interneuron excitability contributes to the seizure phenotype in the mouse model.
Collapse
|
24
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol Psychiatry 2021; 26:7498-7508. [PMID: 34535765 PMCID: PMC8873005 DOI: 10.1038/s41380-021-01281-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Collapse
|
26
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
27
|
Sisodiya SM. Precision medicine and therapies of the future. Epilepsia 2020; 62 Suppl 2:S90-S105. [PMID: 32776321 PMCID: PMC8432144 DOI: 10.1111/epi.16539] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Precision medicine in the epilepsies has gathered much attention, especially with gene discovery pushing forward new understanding of disease biology. Several targeted treatments are emerging, some with considerable sophistication and individual‐level tailoring. There have been rare achievements in improving short‐term outcomes in a few very select patients with epilepsy. The prospects for further targeted, repurposed, or novel treatments seem promising. Along with much‐needed success, difficulties are also arising. Precision treatments do not always work, and sometimes are inaccessible or do not yet exist. Failures of precision medicine may not find their way to broader scrutiny. Precision medicine is not a new concept: It has been boosted by genetics and is often focused on genetically determined epilepsies, typically considered to be driven in an individual by a single genetic variant. Often the mechanisms generating the full clinical phenotype from such a perceived single cause are incompletely understood. The impact of additional genetic variation and other factors that might influence the clinical presentation represent complexities that are not usually considered. Precision success and precision failure are usually equally incompletely explained. There is a need for more comprehensive evaluation and a more rigorous framework, bringing together information that is both necessary and sufficient to explain clinical presentation and clinical responses to precision treatment in a precision approach that considers the full picture not only of the effects of a single variant, but also of its genomic and other measurable environment, within the context of the whole person. As we may be on the brink of a treatment revolution, progress must be considered and reasoned: One possible framework is proposed for the evaluation of precision treatments.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|