1
|
Ge W, Wang Z, Zhong X, Chen Y, Tang X, Zheng S, Xu X, Wang K. PLK2 inhibited oxidative stress and ameliorated hepatic ischemia-reperfusion injury through phosphorylating GSK3β. J Gastroenterol Hepatol 2025; 40:304-314. [PMID: 39563073 DOI: 10.1111/jgh.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND AND AIM Hepatic ischemia-reperfusion (I/R) injury is the primary cause of liver dysfunction and liver failure, commonly occurring in liver transplantation, hepatectomy, and hemorrhagic shock. Polo-like kinase 2 (PLK2), a pivotal regulator of centriole duplication, plays a crucial role in cell proliferation and injury repair. However, the function of PLK2 in hepatic I/R remains unclear. METHODS The effect of PLK2 was investigated in the mouse hepatic I/R model and the hepatocyte hypoxia-reoxygenation (H/R) model. Liver injury was assessed by serum transaminase and hematoxylin and eosin staining. Cell apoptosis was analyzed using TUNEL analysis and immunoblotting. Inflammatory factors were evaluated by reverse transcription-quantitative polymerase chain reaction. Mice or cultured cells during the I/R or H/R were treated by overexpressing PLK2. ROS fluorescence staining was used to assess oxidative stress injury. RESULTS PLK2 was upregulated after hepatic I/R injury. Overexpressed PLK2 significantly improved liver enzyme levels and alleviated liver histological injury. Moreover, PLK2 decreased hepatocyte apoptosis and inhibited the expression of inflammatory factors in liver. Mechanistically, PLK2 increased the phosphorylation of GSK3β and enhanced expression of the antioxidant enzyme HO-1, leading to less ROS production. Inhibition of the HO-1 aggravated ROS generation and abolished the protective effect of PLK2. CONCLUSION Overall, these findings revealed that PLK2 enhanced HO-1 expression and reduced oxidative stress damage in hepatic I/R injury, and this protective effect related to GSK3β activity.
Collapse
Affiliation(s)
- Wenwen Ge
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xinyang Zhong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Tang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Xiao Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Carneros E, Berenguer E, Pérez-Pérez Y, Pandey S, Welsch R, Palme K, Gil C, Martínez A, Testillano PS. Small molecule inhibitors of human LRRK2 enhance in vitro embryogenesis and microcallus formation for plant regeneration of crop and model species. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154334. [PMID: 39288631 DOI: 10.1016/j.jplph.2024.154334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
In vitro plant embryogenesis and microcallus formation are systems which are required for plant regeneration, a process during which cell reprogramming and proliferation are critical. These systems offer many advantages in breeding programmes, such as doubled-haploid production, clonal propagation of selected genotypes, and recovery of successfully gene-edited or transformed plants. However, the low proportion of reprogrammed cells in many plant species makes these processes highly inefficient. Here we report a new strategy to improve in vitro plant cell reprogramming using small molecule inhibitors of mammalian leucine rich repeat kinase 2 (LRRK2), which are used in pharmaceutical applications for cell reprogramming, but never used in plants before. LRRK2 inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of oilseed rape and barley, and somatic embryogenesis in cork oak. These inhibitors also promoted plant cell reprogramming and proliferation in Arabidopsis protoplast cultures. The benzothiazole derivative JZ1.24, a representative compound of the tested molecules, modified the expression of the brassinosteroid (BR)-related genes BIN2, CPD, and BAS1, correlating with an activation of BR signaling. Additionally, the LRRK2 inhibitor JZ1.24 induced the expression of the embryogenesis marker gene SERK1-like. The results suggest that the use of small molecules from the pharmaceutical field could be extended to promote in vitro reprogramming of plant cells towards embryogenesis or microcallus formation in a wider range of plant species and in vitro systems. This technological innovation would help to develop new strategies to improve the efficiency of in vitro plant regeneration, a major bottleneck in plant breeding.
Collapse
Affiliation(s)
- Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Eduardo Berenguer
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Plant Reproduction and Development Laboratory, ENS de Lyon, CNRS, INRAE, UCBL, F-69342, Lyon, France
| | - Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Saurabh Pandey
- BIOSS, Center for Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Ralf Welsch
- BIOSS, Center for Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany; Screensys GmbH, Engesserstrasse 4a, 79108, Freiburg im Breisgau, Germany
| | - Klaus Palme
- Screensys GmbH, Engesserstrasse 4a, 79108, Freiburg im Breisgau, Germany
| | - Carmen Gil
- Translational Medicinal and Biological Chemistry Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martínez
- Translational Medicinal and Biological Chemistry Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Yang YL, Lin TK, Huang YH. MiR-29a efficiently suppresses the generation of reactive oxygen species and α-synuclein in a cellular model of Parkinson's disease by potentially targeting GSK-3β. Eur J Pharmacol 2024; 974:176615. [PMID: 38685306 DOI: 10.1016/j.ejphar.2024.176615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10-5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3β, phosphorylated GSK-3β, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3' untranslated region (3'UTR) of GSK-3β, leading to its repression. Our findings demonstrated miR-29a's neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
4
|
Parmasad JLA, Ricke KM, Nguyen B, Stykel MG, Buchner-Duby B, Bruce A, Geertsma HM, Lian E, Lengacher NA, Callaghan SM, Joselin A, Tomlinson JJ, Schlossmacher MG, Stanford WL, Ma J, Brundin P, Ryan SD, Rousseaux MWC. Genetic and pharmacological reduction of CDK14 mitigates synucleinopathy. Cell Death Dis 2024; 15:246. [PMID: 38575601 PMCID: PMC10994937 DOI: 10.1038/s41419-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Collapse
Affiliation(s)
- Jean-Louis A Parmasad
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Amanda Bruce
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eric Lian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie A Lengacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alvin Joselin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William L Stanford
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jiyan Ma
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Wu X, Yuan R, Xu Y, Wang K, Yuan H, Meng T, Hu F. Functionalized lipid nanoparticles modulate the blood-brain barrier and eliminate α-synuclein to repair dopamine neurons. Asian J Pharm Sci 2024; 19:100904. [PMID: 38601010 PMCID: PMC11004078 DOI: 10.1016/j.ajps.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/16/2024] [Accepted: 02/17/2024] [Indexed: 04/12/2024] Open
Abstract
The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3β expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3β pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200000, China
| | - Renxiang Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Yichong Xu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
6
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
7
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
8
|
Wei X, Wu J, Li J, Yang Q. PLK2 targets GSK3β to protect against cisplatin-induced acute kidney injury. Exp Cell Res 2022; 417:113181. [PMID: 35523306 DOI: 10.1016/j.yexcr.2022.113181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Cisplatin-induced acute kidney injury (AKI), which is accompanied by a rapid decline in renal function and a high risk of death, is a complex critical illness with no effective or specific treatment. Polo-like kinase 2 (PLK2), a serine/threonine kinase, is involved in the progression of multiple diseases, including cancers, cardiac fibrosis, diabetic nephropathy, etc. Here, by integrating two Gene Expression Omnibus (GEO) datasets of cisplatin-induced AKI animal models, we identified PLK2 as a significantly up-regulated gene in AKI renal tissues, which was then verified in different AKI animal models and cell models. Suppressing PLK2 using siRNAs or inhibitors could enhance cisplatin-induced AKI by inducing severe apoptosis and oxidative stress damage, while enforced PLK2 expression could prevent renal dysfunction induced by cisplatin. We further discovered that PLK2 might phosphorylate glycogen synthase kinase 3β (GSK3β) in the pathogenesis of AKI. In conclusion, our results show that PLK2 play a protective role in cisplatin-induced AKI and may be a new protective target of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Xiaona Wei
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Pan HY, Valapala M. Regulation of Autophagy by the Glycogen Synthase Kinase-3 (GSK-3) Signaling Pathway. Int J Mol Sci 2022; 23:1709. [PMID: 35163631 PMCID: PMC8836041 DOI: 10.3390/ijms23031709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital cellular mechanism that benefits cellular maintenance and survival during cell stress. It can eliminate damaged or long-lived organelles and improperly folded proteins to maintain cellular homeostasis, development, and differentiation. Impaired autophagy is associated with several diseases such as cancer, neurodegenerative diseases, and age-related macular degeneration (AMD). Several signaling pathways are associated with the regulation of the autophagy pathway. The glycogen synthase kinase-3 signaling pathway was reported to regulate the autophagy pathway. In this review, we will discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy. Autophagy and lysosomal function are regulated by transcription factor EB (TFEB). GSK-3 was shown to be involved in the regulation of TFEB nuclear expression in an mTORC1-dependent manner. In addition to mTORC1, GSK-3β also regulates TFEB via the protein kinase C (PKC) and the eukaryotic translation initiation factor 4A-3 (eIF4A3) signaling pathways. In addition to TFEB, we will also discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy by modulating other signaling molecules and autophagy inducers including, mTORC1, AKT and ULK1. In summary, this review provides a comprehensive understanding of the role of the GSK-3 signaling pathway in the regulation of autophagy.
Collapse
Affiliation(s)
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
10
|
Ferreira N, Gonçalves NP, Jan A, Jensen NM, van der Laan A, Mohseni S, Vægter CB, Jensen PH. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun 2021; 9:31. [PMID: 33632316 PMCID: PMC7905893 DOI: 10.1186/s40478-021-01131-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
Pain is a common non-motor symptom of Parkinson’s disease (PD), with current limited knowledge of its pathophysiology. Here, we show that peripheral inoculation of mouse alpha-synuclein (α-Syn) pre-formed fibrils, in a transgenic mouse model of PD, elicited retrograde trans-synaptic spreading of α-Syn pathology (pSer129) across sensory neurons and dorsal nerve roots, reaching central pain processing regions, including the spinal dorsal horn and the projections of the anterolateral system in the central nervous system (CNS). Pathological peripheral to CNS propagation of α-Syn aggregates along interconnected neuronal populations within sensory afferents, was concomitant with impaired nociceptive response, reflected by mechanical allodynia, reduced nerve conduction velocities (sensory and motor) and degeneration of small- and medium-sized myelinated fibers. Our findings show a link between the transneuronal propagation of α-Syn pathology with sensory neuron dysfunction and neuropathic impairment, suggesting promising avenues of investigation into the mechanisms underlying pain in PD.
Collapse
|
11
|
Iannuzzi F, Frisardi V, Annunziato L, Matrone C. Might Fibroblasts from Patients with Alzheimer's Disease Reflect the Brain Pathology? A Focus on the Increased Phosphorylation of Amyloid Precursor Protein Tyr 682 Residue. Brain Sci 2021; 11:103. [PMID: 33466666 PMCID: PMC7828817 DOI: 10.3390/brainsci11010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no cure and no effective diagnostic criteria. The greatest challenge in effectively treating AD is identifying biomarkers specific for each patient when neurodegenerative processes have not yet begun, an outcome that would allow the design of a personalised therapeutic approach for each patient and the monitoring of the therapeutic response during the treatment. We found that the excessive phosphorylation of the amyloid precursor protein (APP) Tyr682 residue on the APP 682YENPTY687 motif precedes amyloid β accumulation and leads to neuronal degeneration in AD neurons. We proved that Fyn tyrosine kinase elicits APP phosphorylation on Tyr682 residue, and we reported increased levels of APP Tyr682 and Fyn overactivation in AD neurons. Here, we want to contemplate the possibility of using fibroblasts as tools to assess APP Tyr682 phosphorylation in AD patients, thus making the changes in APP Tyr682 phosphorylation levels a potential diagnostic strategy to detect early pathological alterations present in the peripheral cells of AD patients' AD brains.
Collapse
Affiliation(s)
- Filomena Iannuzzi
- Department of Biomedicine, University of Aarhus, Bartholins Allé, 8000 Aarhus, Denmark;
| | - Vincenza Frisardi
- Geriatric and Neuro Rehabilitation Department, Clinical Center for Nutrition in the Elderly, AUSL-IRCCS Reggio Emilia, Giovanni Amendola Street, 42122 Reggio Emilia, Italy;
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Gianturco, 80131 Naples, Italy;
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson's disease model. Neurosci Lett 2020; 740:135426. [PMID: 33075420 DOI: 10.1016/j.neulet.2020.135426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The depletion of dopamine in the striatum region and Lewy bodies are the hallmark characteristics of Parkinson's disease. The pathology also includes the upregulation of various Parkinson's disease (PARK) genes and kinases. Two such kinases, LRRK2 and GSK-3β have been directly implicated in the formation of tau and alpha-synuclein proteins, causing PD. Hesperidin (HES) is a flavanone glycoside that has multiple therapeutic benefits including neuroprotective effects. In this study, we examined the neuroprotective effects of HES against 6-hydroxydopamine (6-OHDA) induced-neurotoxicity in the in-vitro and in-vivo model. Hesperidin significantly protected the SH-SY5Y cells' stress against 6-OHDA induced toxicity by downregulating biomarkers of oxidative stress. Furthermore, HES downregulated the kinases lrrk2 and gsk3β along with casp3, casp9, and polg in the zebrafish model. The treatment with HES also improved the locomotor pattern of zebrafish that was affected by 6-OHDA. This study suggests that hesperidin could be a drug of choice in targeting kinases against a 6-OHDA model of PD.
Collapse
Affiliation(s)
- Swathi Kesh
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Kalaiarasi Sivaji
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Anandan Balakrishnan
- Department of Genetics, Dr. ALM PGIBMS Campus, University of Madras, Taramani, Chennai, Tamil Nadu, India.
| |
Collapse
|