1
|
Chalkley MBL, Guerin LN, Iyer T, Mallahan S, Nelson S, Sahin M, Hodges E, Ess KC, Ihrie RA. Human TSC2 mutant cells exhibit aberrations in early neurodevelopment accompanied by changes in the DNA Methylome. Hum Mol Genet 2025; 34:684-698. [PMID: 39877967 PMCID: PMC11973902 DOI: 10.1093/hmg/ddae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether phenotypes are also present in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.
Collapse
Affiliation(s)
- Mary-Bronwen L Chalkley
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Tenhir Iyer
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
| | - Samantha Mallahan
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Sydney Nelson
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, United States of America
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Kevin C Ess
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
- Department of Pediatrics - Neurology, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, Colorado, 80045, United States of America
| | - Rebecca A Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN, 37232, USA
- Department of Pediatrics - Neurology, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, Colorado, 80045, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
| |
Collapse
|
2
|
Carrozzi M, Morelli ME, Cirino M, Maestro A, Paternuosto G, Benericetti G, Bennati G, Bin M, Flamigni A, Pigato F, Maximova N, Barbi E, Zanon D. Oral ATP treatment in alternating hemiplegia of childhood: a case report and review. Front Med (Lausanne) 2025; 11:1433217. [PMID: 39839618 PMCID: PMC11747781 DOI: 10.3389/fmed.2024.1433217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurological disorder that usually manifests before 18 months of age and is characterized by recurrent, alternating episodes of hemiparesis with variable frequency and can last from a few minutes to several days. We present a case of AHC in a little girl carrying a sporadic mutation in the ATP1A3 gene (p.Glu815Lys) refractory to flunarizine and non-compliant to topiramate due to adverse effects treated with oral compound of adenosine-5'-triphosphate (ATP) capsules. Outcome was evaluated through the follow-up and side effects and safety were monitored regularly. Compounded drug showed effectiveness and safety. Indeed, during the four-year follow-up, with the dose of adenosine-5'-triphosphate gradually increasing up to 21 mg/kg, the patient showed a substantial benefit in controlling the frequency and duration of hemiplegic episodes and an improvement in neurological deterioration.
Collapse
Affiliation(s)
- Marco Carrozzi
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Maria Elisa Morelli
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Mario Cirino
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Gilda Paternuosto
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Giulia Benericetti
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Giada Bennati
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Maura Bin
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Anna Flamigni
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Federico Pigato
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Natalia Maximova
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| | - Egidio Barbi
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Davide Zanon
- Institute for Maternal and Child Health Burlo Garofolo (IRCCS), Trieste, Italy
| |
Collapse
|
3
|
Chalkley MBL, Guerin LN, Iyer T, Mallahan S, Nelson S, Sahin M, Hodges E, Ess KC, Ihrie RA. Human TSC2 Mutant Cells Exhibit Aberrations in Early Neurodevelopment Accompanied by Changes in the DNA Methylome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597443. [PMID: 38895266 PMCID: PMC11185654 DOI: 10.1101/2024.06.04.597443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.
Collapse
Affiliation(s)
- Mary-Bronwen L. Chalkley
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lindsey N. Guerin
- Department of Biochemistry, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tenhir Iyer
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Samantha Mallahan
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sydney Nelson
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emily Hodges
- Department of Biochemistry, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin C. Ess
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Rebecca A. Ihrie
- Department of Cell & Developmental Biology, School of Medicine Basic Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. Rescue of impaired blood-brain barrier in tuberous sclerosis complex patient derived neurovascular unit. J Neurodev Disord 2024; 16:27. [PMID: 38783199 PMCID: PMC11112784 DOI: 10.1186/s11689-024-09543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). METHODS We generated TSC disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. RESULTS Using microphysiological systems, we demonstrate that a BBB generated from TSC2 heterozygous mutant cells shows increased permeability. This can be rescued by wild type astrocytes or by treatment with rapamycin, an mTOR kinase inhibitor. CONCLUSION Our results demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of cell lineages contributing to TSC pathogenesis and informs future therapeutics.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Shannon L Faley
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Monika Judge
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Patricia Ward
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
| | - Rebecca A Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, USA
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, USA
| | - Robert Carson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Laura Armstrong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Mustafa Sahin
- Rosamund Stone Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Kevin C Ess
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
6
|
Brown JA, Faley SL, Judge M, Ward P, Ihrie RA, Carson R, Armstrong L, Sahin M, Wikswo JP, Ess KC, Neely MD. Rescue of Impaired Blood-Brain Barrier in Tuberous Sclerosis Complex Patient Derived Neurovascular Unit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571738. [PMID: 38168450 PMCID: PMC10760190 DOI: 10.1101/2023.12.15.571738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Shannon L Faley
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Monika Judge
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Patricia Ward
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
| | - Rebecca A Ihrie
- Dept. of Cell & Developmental Biology, Vanderbilt University
- Neurological Surgery, Vanderbilt University Medical Center
| | - Robert Carson
- Dept. of Pediatrics, Vanderbilt University Medical Center
| | | | - Mustafa Sahin
- Rosamund Stone Translational Neuroscience Center, Dept. of Neurology, Boston Children's Hospital, Harvard Medical School
| | - John P Wikswo
- Dept. of Physics and Astronomy, Vanderbilt University
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University
- Dept. of Biomedical Engineering, Vanderbilt University
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University
| | - Kevin C Ess
- Neurological Surgery, Vanderbilt University Medical Center
- Dept. of Pediatrics, Vanderbilt University Medical Center
| | - M Diana Neely
- Dept. of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
7
|
Geben LC, Brockman AA, Chalkley MBL, Sweet SR, Gallagher JE, Scheuing AL, Simerly RB, Ess KC, Irish JM, Ihrie RA. Dephosphorylation of 4EBP1/2 Induces Prenatal Neural Stem Cell Quiescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528513. [PMID: 36824760 PMCID: PMC9948964 DOI: 10.1101/2023.02.14.528513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A limiting factor in the regenerative capacity of the adult brain is the abundance and proliferative ability of neural stem cells (NSCs). Adult NSCs are derived from a subpopulation of embryonic NSCs that temporarily enter quiescence during mid-gestation and remain quiescent until postnatal reactivation. Here we present evidence that the mechanistic/mammalian target of rapamycin (mTOR) pathway regulates quiescence entry in embryonic NSCs of the developing forebrain. Throughout embryogenesis, two downstream effectors of mTOR, p-4EBP1/2 T37/46 and p-S6 S240/244, were mutually exclusive in NSCs, rarely occurring in the same cell. While 4EBP1/2 was phosphorylated in stem cells undergoing mitosis at the ventricular surface, S6 was phosphorylated in more differentiated cells migrating away from the ventricle. Phosphorylation of 4EBP1/2, but not S6, was responsive to quiescence induction in cultured embryonic NSCs. Further, inhibition of p-4EBP1/2, but not p-S6, was sufficient to induce quiescence. Collectively, this work offers new insight into the regulation of quiescence entry in embryonic NSCs and, thereby, correct patterning of the adult brain. These data suggest unique biological functions of specific posttranslational modifications and indicate that the preferential inhibition of such modifications may be a useful therapeutic approach in neurodevelopmental diseases where NSC numbers, proliferation, and differentiation are altered.
Collapse
Affiliation(s)
- Laura C. Geben
- Program in Pharmacology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Asa A. Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Serena R. Sweet
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Julia E. Gallagher
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexandra L. Scheuing
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| | - Kevin C. Ess
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| |
Collapse
|
8
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
10
|
Guo H, Liu L, Nishiga M, Cong L, Wu JC. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet 2021; 37:1109-1123. [PMID: 34509299 DOI: 10.1016/j.tig.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Bhardwaj NK, Gowda VK, Sardesai AV. Alternating Hemiplegia of Childhood: A Series of Genetically Confirmed Four Cases from Southern India with Review of Published Literature. J Pediatr Genet 2021; 10:111-115. [PMID: 33996181 PMCID: PMC8110357 DOI: 10.1055/s-0040-1714702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare autosomal dominant neurodevelopmental disorder with mutation on ATP1A3 gene. Delay in diagnosis and inappropriate diagnosis are common. In this article, we described four genetically confirmed AHC patients to provide an improved understanding of the disorder. First symptom in two patients was seizures and in other two patients was abnormal eye deviation. All had onset of plegic attacks within the first 18 months of their life. Tone abnormalities and movement disorders were present in all patients. Electroencephalogram was abnormal in two patients and all had normal magnetic resonance imaging of the brain. Response to treatment of plegic attacks was poor and also epilepsy was drug resistant. All cases had significant development delay and disability as of last follow-up. Although there is no effective treatment so far, early diagnosis is required to avoid unnecessary treatment.
Collapse
Affiliation(s)
- Naveen Kumar Bhardwaj
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Ashwin Vivek Sardesai
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| |
Collapse
|