1
|
Li K, Tolman N, Segrè AV, Stuart KV, Zeleznik OA, Vallabh NA, Hu K, Zebardast N, Hanyuda A, Raita Y, Montgomery C, Zhang C, Hysi PG, Do R, Khawaja AP, Wiggs JL, Kang JH, John SWM, Pasquale LR. Pyruvate and related energetic metabolites modulate resilience against high genetic risk for glaucoma. eLife 2025; 14:RP105576. [PMID: 40272416 PMCID: PMC12021409 DOI: 10.7554/elife.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites-lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)-linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64-0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Keva Li
- Department of Ophthalmology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Nicholas Tolman
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, and University College London Institute of OphthalmologyLondonUnited Kingdom
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of LiverpoolLiverpoolUnited Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation TrustLiverpoolUnited Kingdom
| | - Kuang Hu
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, and University College London Institute of OphthalmologyLondonUnited Kingdom
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical SchoolBostonUnited States
| | - Akiko Hanyuda
- Department of Ophthalmology, Keio University School of MedicineTokyoJapan
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer CenterTokyoJapan
| | | | - Christa Montgomery
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Chi Zhang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Pirro G Hysi
- Department of Ophthalmology, St Thomas' Hospital, King's College LondonLondonUnited Kingdom
- Department of Twin Research & Genetic Epidemiology, St Thomas' Hospital, King's College LondonLondonUnited Kingdom
| | - Ron Do
- Department of Genetics and Genomics Science, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, and University College London Institute of OphthalmologyLondonUnited Kingdom
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Simon WM John
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | |
Collapse
|
2
|
Chandler LC, Gardner A, Cepko CL. RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2025; 122:e2421978122. [PMID: 40178895 PMCID: PMC12002273 DOI: 10.1073/pnas.2421978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration worldwide. It is characterized by the sequential death of rod and cone photoreceptors, the cells responsible for night and daylight vision, respectively. Although the expression of most RP genes occurs only in rods, there is a secondary degeneration of cones. One possible mechanism of cone death is metabolic dysregulation. Photoreceptors are highly metabolically active, consuming large quantities of glucose and producing substantial amounts of lactate. The retinal pigment epithelium (RPE) mediates the transport of glucose from the blood to photoreceptors and, in turn, removes lactate, which can influence the rate of consumption of glucose by the RPE. One model for metabolic dysregulation in RP suggests that following the death of rods, lactate levels are substantially diminished causing the RPE to withhold glucose, resulting in nutrient deprivation for cones. Here, we present adeno-associated viral vector-mediated delivery of monocarboxylate transporter 2 (MCT2, Slc16a7) into the eye, with expression limited to RPE cells, with the aim of promoting lactate uptake from the blood and encouraging the passage of glucose to cones. We demonstrate prolonged survival and function of cones in rat and mouse RP models, revealing a possible gene-agnostic therapy for preserving vision in RP. We also present the use of fluorescence lifetime imaging-based biosensors for lactate and glucose within the eye. Using this technology, we show changes to lactate and glucose levels within MCT2-expressing RPE, suggesting that cone survival is impacted by changes in RPE metabolism.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Apolonia Gardner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
- Virology Program, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
3
|
Wang Z, Zhao C, Xu S, McCracken S, Apte RS, Williams PR. Energetic diversity in retinal ganglion cells is modulated by neuronal activity and correlates with resilience to degeneration. RESEARCH SQUARE 2025:rs.3.rs-5989609. [PMID: 40162221 PMCID: PMC11952644 DOI: 10.21203/rs.3.rs-5989609/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal function requires high energy expenditure that is likely customized to meet specific signaling demands. However, little is known about diversity of metabolic homeostasis among divergently-functioning types of neurons. To this end, we examined retinal ganglion cells (RGCs), a population of closely related, yet electrophysiologically distinct excitatory projection neurons. Using in vivo 2-photon imaging to measure ATP with single cell resolution, we identified differential homeostatic energy maintenance in the RGC population that correspond to distinct RGC types. In the presence of circuit activity, the most active RGC type (Alpha RGCs), had lower homeostatic ATP levels than other types and exhibited the greatest magnitude of ATP decline when ATP synthesis was inhibited. By simultaneously manipulating circuit activity and mitochondrial function, we found that while oxidative phosphorylation was required to meet ATP demands during circuit activity, it was expendable to maintain resting ATP levels. We also examined ATP signatures associated with survival and injury response after axotomy and report a correlation between low homeostatic ATP and increased survival. In addition, we observed transient ATP increases in RGCs following axon injury. Together, these findings identify diversity of energy handling capabilities of dynamically active neurons with implications for neuronal resilience.
Collapse
Affiliation(s)
- Zelun Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelly Xu
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Philip R. Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, US
| |
Collapse
|
4
|
Mayhew WC, Kaipa BR, Li L, Maddineni P, Sundaresan Y, Clark AF, Zode GS. C/EBP Homologous Protein Expression in Retinal Ganglion Cells Induces Neurodegeneration in Mice. Int J Mol Sci 2025; 26:1858. [PMID: 40076484 PMCID: PMC11899906 DOI: 10.3390/ijms26051858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The progressive loss of retinal ganglion cell (RGC) axons leading to irreversible loss of vision is the pathological hallmark of glaucoma. However, the pathological mechanisms of RGC degeneration are not completely understood. Here, we investigated the role of chronic endoplasmic reticulum (ER) stress in glaucomatous neurodegeneration. To evaluate whether chronic ER stress-induced transcriptional factors, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) are induced in RGCs; we utilized human donor tissue and the microbead occlusion model of glaucoma. Additionally, we performed the intravitreal injection of adeno-associated virus (AAV) 2 to express CHOP selectively in RGCs in C57BL/6 mice and evaluated its effect on RGC function and structure by pattern electroretinogram (PERG) and whole-mount retina staining with the RBPMS antibody. Here, we report that the ATF4-CHOP pathway is activated in the retinas of human glaucoma donor eyes and a mouse model of ocular hypertension. Further, the expression of CHOP in RGCs led to a significant loss of function, as evidenced by reduced PERG. Notably, the expression of CHOP in the retina induced a significant structural loss of RGCs within 15 weeks of injection. Altogether, our studies indicate that the expression of CHOP in RGCs leads to neurodegeneration in mice.
Collapse
Affiliation(s)
- William C. Mayhew
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Balasankara Reddy Kaipa
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Linya Li
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Prabhavathi Maddineni
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Yogapriya Sundaresan
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Abbot F. Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Gulab S. Zode
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| |
Collapse
|
5
|
Zhang S, Xu W, Liu S, Xu F, Chen X, Qin H, Yao K. Anesthetic effects on electrophysiological responses across the visual pathway. Sci Rep 2024; 14:27825. [PMID: 39537872 PMCID: PMC11561267 DOI: 10.1038/s41598-024-79240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Anesthetics are widely used in electrophysiological tests to assess retinal and visual system functions to avoid experimental errors caused by movement and stress in experimental animals. To determine the most suitable anesthetic for visual electrophysiological tests, excluding ketamine and chloral hydrate due to regulatory and side effect concerns, this study investigated the effects of ethyl carbamate (EC), avertin (AR), and pentobarbital sodium (PS) on visual signal conduction in the retina and primary visual cortex. Assessments included flash electroretinogram (FERG), pattern electroretinogram (PERG), pattern visual evoked potentials (PVEP), and flash visual evoked potentials (FVEP), FERG and FVEP were used to evaluate the responses of the retina and visual cortex to flash stimuli, respectively, while PERG and PVEP assessed responses to pattern stimuli. The research showed that AR demonstrates the least disruption to the visual signal pathway, as evidenced by consistently high characteristic peaks in the AR group across various tests. In contrast, mice given EC exhibited the lowest peak values in both FERG and FVEP, while subjects anesthetized with PS showed suppressed oscillatory potentials and PERG responses. Notably, substantial PVEP characteristic peaks were observed only in mice anesthetized with AR. Consequently, among the three anesthetics tested, AR is the most suitable for visual electrophysiological studies.
Collapse
Affiliation(s)
- Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
6
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Williams PA, Casson RJ. Glycolysis and glucose metabolism as a target for bioenergetic and neuronal protection in glaucoma. Neural Regen Res 2024; 19:1637-1638. [PMID: 38103218 PMCID: PMC10960284 DOI: 10.4103/1673-5374.389638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Robert J. Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Yamagishi H, Kirai N, Morita A, Kashihara T, Nakahara T. Role of monocarboxylate transporters in AMPK-mediated protection against excitotoxic injury in the rat retina. Eur J Pharmacol 2024; 970:176510. [PMID: 38493917 DOI: 10.1016/j.ejphar.2024.176510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway protects against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal injury. AMPK activation enhances fatty acid metabolism and ketone body synthesis. Ketone bodies are transported into neurons by monocarboxylate transporters (MCTs) and exert neuroprotective effects. In this study, we examined the distribution and expression levels of MCT1 and MCT2 in the retina and analyzed the effects of pharmacological inhibition of MCTs on the protective effects of metformin and 5-aminoimidazole-4-carboxamide (AICAR), activators of AMPK, against NMDA-induced retinal injury in rats. MCT1 was expressed in the blood vessels, processes of astrocytes and Müller cells, and inner segments of photoreceptors in the rat retina, whereas MCT2 was expressed in neuronal cells in the ganglion cell layer (GCL) and in astrocyte processes. The expression levels of MCT2, but not MCT1, decreased one day after intravitreal injection of NMDA (200 nmol). Intravitreal injection of NMDA decreased the number of cells in the GCL compared to the vehicle seven days after injection. Simultaneous injection of metformin (20 nmol) or AICAR (50 nmol) with NMDA attenuated NMDA-induced cell loss in the GCL, and these protective effects were attenuated by AR-C155858 (1 pmol), an inhibitor of MCTs. AR-C155858 alone had no significant effect on the retinal structure. These results suggest that AMPK-activating compounds protect against NMDA-induced excitotoxic retinal injury via mechanisms involving MCTs in rats. NMDA-induced neurotoxicity may be associated with retinal neurodegenerative changes in glaucoma and diabetic retinopathy. Therefore, AMPK-activating compounds may be effective in managing these retinal diseases.
Collapse
Affiliation(s)
- Honoka Yamagishi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Nozomu Kirai
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
10
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Canovai A, Tribble JR, Jöe M, Westerlund DY, Amato R, Trounce IA, Dal Monte M, Williams PA. Pyrroloquinoline quinone drives ATP synthesis in vitro and in vivo and provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2023; 11:146. [PMID: 37684640 PMCID: PMC10486004 DOI: 10.1186/s40478-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.
Collapse
Affiliation(s)
- Alessio Canovai
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, Pisa, Italy
| | - James R. Tribble
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Y. Westerlund
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Ian A. Trounce
- Department of Surgery, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Ophthalmology, University of Melbourne, Melbourne, VIC Australia
| | | | - Pete A. Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Murai Y, Mori S, Okuda M, Kusuhara S, Kurimoto T, Nakamura M. Effects of Elevated Intraocular Pressure on Retinal Ganglion Cell Density and Expression and Interaction of Retinal Aquaporin 9 and Monocarboxylate Transporters. Ophthalmic Res 2023; 66:1222-1229. [PMID: 37647868 PMCID: PMC10614569 DOI: 10.1159/000533497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Astrocyte-to-neuron lactate shuttle (ANLS) plays an important role in the energy metabolism of neurons, including retinal ganglion cells (RGCs). Aquaporin 9 (AQP9), which is an aquaglyceroporin that can transport lactate, may be involved in ANLS together with monocarboxylate transporters (MCTs) to maintain RGC function and survival. This study aimed to investigate the impact of elevated intraocular pressure (IOP) on AQP9-MCT interaction and RGC survival. METHODS IOP was elevated in Aqp9 knock-out (KO) mice and wild-type (WT) littermates by anterior chamber microbead injection. RGC density was measured by TUBB3 immunostaining on retinal flat mounts. Immunolabeling, immunoblot, and immunoprecipitation were conducted to identify and quantitate expressions of AQP9, MCT1, MCT2, and MCT4 in whole retinas and ganglion cell layer (GCL). RESULTS Aqp9 KO and WT mice had similar RGC density at baseline. Microbead injection increased cumulative IOP by approximately 32% up to 4 weeks, resulting in RGC density loss of 42% and 34% in WT and Aqp9 KO mice, respectively, with no statistical difference. In the retina of WT mice, elevated IOP decreased the amount of AQP9, MCT1, and MCT2 protein and changed the AQP9 immunoreactivity and reduced MCT1 and MCT2 immunoreactivities in GCL. Meanwhile, it decreased MCT1 and increased MCT2 that interact with AQP9, without affecting MCT4 expression. Aqp9 gene deletion increased baseline MCT2 expression in the GCL and counteracted IOP elevation regarding MCT1 and MCT2 expressions. CONCLUSION The compensatory upregulation of MCT1 and MCT2 with Aqp9 gene deletion and ocular hypertension may reflect the need to maintain lactate transport in the retina for RGC survival.
Collapse
Affiliation(s)
- Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mina Okuda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Pappenhagen N, Yin E, Morgan AB, Kiehlbauch CC, Inman DM. Stretch stress propels glutamine dependency and glycolysis in optic nerve head astrocytes. Front Neurosci 2022; 16:957034. [PMID: 35992925 PMCID: PMC9389405 DOI: 10.3389/fnins.2022.957034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness, the most common subtype of which is typified by a chronic increase in intraocular pressure that promotes a stretch injury to the optic nerve head. In rodents, the predominant glial cell in this region is the optic nerve head astrocyte that provides axons with metabolic support, likely by releasing lactate produced through astrocytic glycolysis. Our primary hypothesis is that stretching of the optic nerve head astrocytes alters their metabolic activity, thereby advancing glaucoma-associated degeneration by compromising the metabolic support that the astrocytes provide to the axons in the optic nerve head. Metabolic changes in optic nerve head astrocytes were investigated by subjecting them to 24 h of 12% biaxial stretch at 1 Hz then measuring the cells’ bioenergetics using a Seahorse XFe24 Analyzer. We observed significant glycolytic and respiratory activity differences between control and stretched cells, including greater extracellular acidification and lower ATP-linked respiration, yet higher maximal respiration and spare capacity in stretched optic nerve head astrocytes. We also determined that both control and stretched optic nerve head astrocytes displayed a dependency for glutamine over pyruvate or long-chain fatty acids for fuel. The increased use of glycolysis as indicated by the extracellular acidification rate, concomitant with a dependency on glutamine, suggests the need to replenish NAD + for continued glycolysis and provision of carbon for TCA cycle intermediates. Stretch alters optic nerve astrocyte bioenergetics to support an increased demand for internal and external energy.
Collapse
Affiliation(s)
- Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Eric Yin
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Autumn B. Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Charles C. Kiehlbauch
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- *Correspondence: Denise M. Inman,
| |
Collapse
|
14
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
15
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
16
|
Jassim AH, Fan Y, Pappenhagen N, Nsiah NY, Inman DM. Oxidative Stress and Hypoxia Modify Mitochondrial Homeostasis During Glaucoma. Antioxid Redox Signal 2021; 35:1341-1357. [PMID: 33736457 PMCID: PMC8817702 DOI: 10.1089/ars.2020.8180] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: Cellular response to hypoxia can include transition from respiration to glycolysis via upregulation of glycolytic enzymes and transporters, as well as mitophagy induction to eliminate surplus mitochondria. Our purpose was to evaluate the impact of hypoxia-inducible factor-1α (HIF-1α) stabilization on mitochondrial homeostasis and oxidative stress in a chronic model of glaucoma. Results: Retina and optic nerve (ON) were evaluated from young and aged DBA/2J (D2) glaucoma model mice and the control strain, the DBA/2-Gpnmb+. Hypoxic retinal ganglion cells (RGCs) were observed in young and aged D2 retina, with a significant increase in HIF-1α protein in the aged D2 retina. Reactive oxygen species observed in young D2 retina and ON were followed by significant decreases in antioxidant capacity in aged D2 retina and ON. HIF-1α targets such as neuron-specific glucose transporter-3 and lactate dehydrogenase were decreased or unchanged, respectively, in aged D2 retina despite an increased hypoxia response in RGCs. Mitochondrial mass was decreased in aged D2 retina concomitant with decreased mitochondrially encoded electron transport chain transcripts despite a stable nuclear-encoded TFAM (mitochondrial transcription factor), suggesting a breakdown in the nuclear-mitochondrial communication. Decreased mitophagy-associated proteins p62 and Rheb were observed in aged D2 retina, although p62 was significantly increased in the aged D2 ON. Innovation and Conclusion: The increased reactive oxygen species concomitant with HIF-1α upregulation despite reduced glucose transporters, mis-match of nuclear- and mitochondrial-encoded transcripts, and signs of reduced mitophagy suggest that retinas from D2 mice with chronic intraocular pressure elevation transition to pseudohypoxia without consistent metabolic reprogramming before significant RGC loss. Antioxid. Redox Signal. 35, 1341-1357.
Collapse
Affiliation(s)
- Assraa Hassan Jassim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Yan Fan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Kent State University School of Biomedical Sciences, Kent, Ohio, USA
| | - Nana Yaa Nsiah
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Address correspondence to: Dr. Denise M. Inman, Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
17
|
Khalyfa A, Qiao Z, Raju M, Shyu CR, Coghill L, Ericsson A, Gozal D. Monocarboxylate Transporter-2 Expression Restricts Tumor Growth in a Murine Model of Lung Cancer: A Multi-Omic Analysis. Int J Mol Sci 2021; 22:ijms221910616. [PMID: 34638954 PMCID: PMC8508890 DOI: 10.3390/ijms221910616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages. Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight, and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for GC−MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs) were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct metabolic pathways including the Acetyl-coA metabolic process, activation of immune response, b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
- Correspondence: (A.K.); (D.G.); Tel.: +1-573-884-7685 (A.K. & D.G.)
| | - Zhuanhong Qiao
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Murugesan Raju
- Department of Ophthalmology, School of Medicine, University of Missouri, Mizzou, Columbia, MO 65212, USA; (M.R.); (L.C.)
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 64110, USA;
| | - Lyndon Coghill
- Department of Ophthalmology, School of Medicine, University of Missouri, Mizzou, Columbia, MO 65212, USA; (M.R.); (L.C.)
| | - Aaron Ericsson
- Department of Veterinary Pathobiology and Metagenomics Core, University of Missouri, Columbia, MO 65212, USA;
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
- Correspondence: (A.K.); (D.G.); Tel.: +1-573-884-7685 (A.K. & D.G.)
| |
Collapse
|
18
|
Hurley DJ, Irnaten M, O’Brien C. Metformin and Glaucoma-Review of Anti-Fibrotic Processes and Bioenergetics. Cells 2021; 10:cells10082131. [PMID: 34440899 PMCID: PMC8394782 DOI: 10.3390/cells10082131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. With an aging population, disease incidence will rise with an enormous societal and economic burden. The treatment strategy revolves around targeting intraocular pressure, the principle modifiable risk factor, to slow progression of disease. However, there is a clear unmet clinical need to find a novel therapeutic approach that targets and halts the retinal ganglion cell (RGC) degeneration that occurs with fibrosis. RGCs are highly sensitive to metabolic fluctuations as a result of multiple stressors and thus their viability depends on healthy mitochondrial functioning. Metformin, known for its use in type 2 diabetes, has come to the forefront of medical research in multiple organ systems. Its use was recently associated with a 25% reduced risk of glaucoma in a large population study. Here, we discuss its application to glaucoma therapy, highlighting its effect on fibrotic signalling pathways, mitochondrial bioenergetics and NAD oxidation.
Collapse
Affiliation(s)
- Daire J. Hurley
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
19
|
Donahue RJ, Fehrman RL, Gustafson JR, Nickells RW. BCLX L gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis 2021; 12:781. [PMID: 34376637 PMCID: PMC8355227 DOI: 10.1038/s41419-021-04068-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Axonal degeneration of retinal ganglion cells (RGCs) causes blindness in glaucoma. Currently, there are no therapies that target axons to prevent them from degenerating. Activation of the BAX protein has been shown to be the determining step in the intrinsic apoptotic pathway that causes RGCs to die in glaucoma. A putative role for BAX in axonal degeneration is less well elucidated. BCLXL (BCL2L1) is the primary antagonist of BAX in RGCs. We developed a mCherry-BCLXL fusion protein, which prevented BAX recruitment and activation to the mitochondria in tissue culture cells exposed to staurosporine. This fusion protein was then packaged into adeno-associated virus serotype 2, which was used to transduce RGCs after intravitreal injection and force its overexpression. Transduced RGCs express mCherry-BCLXL throughout their somas and axons along the entire optic tract. In a model of acute optic nerve crush, the transgene prevented the recruitment of a GFP-BAX fusion protein to mitochondria and provided long-term somal protection up to 12 weeks post injury. To test the efficacy in glaucoma, DBA/2J mice were transduced at 5 months of age, just prior to the time they begin to exhibit ocular hypertension. Gene therapy with mCherry-BCLXL did not affect the longitudinal history of intraocular pressure elevation compared to naive mice but did robustly attenuate both RGC soma pathology and axonal degeneration in the optic nerve at both 10.5 and 12 months of age. BCLXL gene therapy is a promising candidate for glaucoma therapy.
Collapse
Affiliation(s)
- Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel L Fehrman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenna R Gustafson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Jassim AH, Inman DM, Mitchell CH. Crosstalk Between Dysfunctional Mitochondria and Inflammation in Glaucomatous Neurodegeneration. Front Pharmacol 2021; 12:699623. [PMID: 34366851 PMCID: PMC8334009 DOI: 10.3389/fphar.2021.699623] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1β release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Claire H. Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Gramlich OW, Godwin CR, Wadkins D, Elwood BW, Kuehn MH. Early Functional Impairment in Experimental Glaucoma Is Accompanied by Disruption of the GABAergic System and Inceptive Neuroinflammation. Int J Mol Sci 2021; 22:7581. [PMID: 34299211 PMCID: PMC8306430 DOI: 10.3390/ijms22147581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | - Cheyanne R. Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
23
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
24
|
Yu X, Zhang R, Wei C, Gao Y, Yu Y, Wang L, Jiang J, Zhang X, Li J, Chen X. MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke. Anim Cells Syst (Seoul) 2021; 25:93-101. [PMID: 34234890 PMCID: PMC8118516 DOI: 10.1080/19768354.2021.1915379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 10/27/2022] Open
Abstract
Monocarboxylate transporter 2 (MCT2) is the predominant monocarboxylate transporter expressed by neurons. MCT2 plays an important role in brain energy metabolism. Stroke survivors are at high risk of cognitive impairment. We reported previously that stroke-induced cognitive impairment was related to impaired energy metabolism. In the present study, we report that cognitive function was impaired after stroke in rats. We found that MCT2 expression, but not that of MCT1 or MCT4, was markedly decreased in the rat hippocampus at 7 and 28 days after transient middle cerebral artery occlusion (tMCAO). Moreover, MCT2 overexpression promoted recovery of cognitive function after stroke. The molecular mechanism underlying these effects may be related to an increase in adenosine monophosphate-activated protein kinase-mediated mitochondrial biogenesis induced by overexpression of MCT2. Our findings suggest that MCT2 activation ameliorates cognitive impairment after stroke.
Collapse
Affiliation(s)
- Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuanyuan Gao
- Department of General Practice, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanhua Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Lin Wang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junying Jiang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Calkins DJ. Adaptive responses to neurodegenerative stress in glaucoma. Prog Retin Eye Res 2021; 84:100953. [PMID: 33640464 DOI: 10.1016/j.preteyeres.2021.100953] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Glaucoma causes loss of vision through degeneration of the retinal ganglion cell (RGC) projection to the brain. The disease is characterized by sensitivity to intraocular pressure (IOP) conveyed at the optic nerve head, through which RGC axons pass unmyelinated to form the optic nerve. From this point, a pathogenic triumvirate comprising inflammatory, oxidative, and metabolic stress influence both proximal structures in the retina and distal structures in the optic projection. This review focuses on metabolic stress and how the optic projection may compensate through novel adaptive mechanisms to protect excitatory signaling to the brain. In the retina and proximal nerve head, the unmyelinated RGC axon segment is energy-inefficient, which leads to increased demand for adenosine-5'-triphosphate (ATP) at the risk of vulnerability to Ca2+-related metabolic and oxidative pressure. This vulnerability may underlie the bidirectional nature of progression. However, recent evidence highlights that the optic projection in glaucoma is not passive but rather demonstrates adaptive processes that may push back against neurodegeneration. In the retina, even as synaptic and dendritic pruning ensues, early progression involves enhanced excitability of RGCs. Enhancement involves depolarization of the resting membrane potential and increased response to light, independent of RGC morphological type. This response is axogenic, arising from increased levels and translocation of voltage-gated sodium channels (NaV) in the unmyelinated segment. During this same early period, large-scale networks of gap-junction coupled astrocytes redistribute metabolic resources to the optic projection stressed by elevated IOP to slow loss of axon function. This redistribution may reflect more local remodeling, as astrocyte processes respond to focal metabolic duress by boosting glycogen turnover in response to axonal activity in an effort to promote survival of the healthiest axons. Both enhanced excitability and metabolic redistribution are transient, indicating that the same adaptive mechanisms that apparently serve to slow progression ultimately may be too expensive for the system to sustain over longer periods.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute, Nashville, TN, USA; Vanderbilt Vision Research Center, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 Medical Center North Nashville, Tennessee, 37232, USA.
| |
Collapse
|
26
|
Tribble JR, Hui F, Jöe M, Bell K, Chrysostomou V, Crowston JG, Williams PA. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells 2021; 10:295. [PMID: 33535578 PMCID: PMC7912764 DOI: 10.3390/cells10020295] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. In glaucoma, a progressive dysfunction and death of retinal ganglion cells occurs, eliminating transfer of visual information to the brain. Currently, the only available therapies target the lowering of intraocular pressure, but many patients continue to lose vision. Emerging pre-clinical and clinical evidence suggests that metabolic deficiencies and defects may play an important role in glaucoma pathophysiology. While pre-clinical studies in animal models have begun to mechanistically uncover these metabolic changes, some existing clinical evidence already points to potential benefits in maintaining metabolic fitness. Modifying diet and exercise can be implemented by patients as an adjunct to intraocular pressure lowering, which may be of therapeutic benefit to retinal ganglion cells in glaucoma.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, VIC 3053, Australia
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| |
Collapse
|
27
|
Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1835470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mary Kelada
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Daniel Hill
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M. Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| |
Collapse
|
28
|
Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M. Aqp9 Gene Deletion Enhances Retinal Ganglion Cell (RGC) Death and Dysfunction Induced by Optic Nerve Crush: Evidence that Aquaporin 9 Acts as an Astrocyte-to-Neuron Lactate Shuttle in Concert with Monocarboxylate Transporters To Support RGC Function and Survival. Mol Neurobiol 2020; 57:4530-4548. [PMID: 32748371 PMCID: PMC7515957 DOI: 10.1007/s12035-020-02030-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Aquaporin 9 (AQP9) is an aquaglyceroporin that can transport lactate. Accumulating evidence suggests that astrocyte-to-neuron lactate shuttle (ANLS) plays a critical role in energy metabolism in neurons, including retinal ganglion cells (RGCs). To test the hypothesis that AQP9, in concert with monocarboxylate transporters (MCTs), participates in ANLS to maintain function and survival of RGCs, Aqp9-null mice and wild-type (WT) littermates were subjected to optic nerve crush (ONC) with or without intravitreal injection of an MCT2 inhibitor. RGC density was similar between the Aqp9-null mice and WT mice without ONC, while ONC resulted in significantly more RGC density reduction in the Aqp9-null mice than in the WT mice at day 7. Positive scotopic threshold response (pSTR) amplitude values were similar between the two groups without ONC, but were significantly more reduced in the Aqp9-null mice than in the WT mice 7days after ONC. MCT2 inhibitor injection accelerated RGC death and pSTR amplitude reduction only in the WT mice with ONC. Immunolabeling revealed that both RGCs and astrocytes expressed AQP9, that ONC predominantly reduced astrocytic AQP9 expression, and that MCTs 1, 2, and 4 were co-localized with AQP9 at the ganglion cell layer. These retinal MCTs were also co-immunoprecipitated with AQP9 in the WT mice. ONC decreased the co-immunoprecipitation of MCTs 1 and 4, but did not impact co-immunoprecipitation of MCT2. Retinal glucose transporter 1 expression was increased in Aqp9-null mice. Aqp9 gene deletion reduced and increased the intraretinal L-lactate and D-glucose concentrations, respectively. Results suggest that AQP9 acts as the ANLS to maintain function and survival of RGCs.
Collapse
Affiliation(s)
- Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akiko Miki
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hidetaka Maeda
- Maeda Eye Clinic, 1-1-1, Uchihonmachi, Chuo-ku, Osaka, 540-0012, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
29
|
State-of-the-Art Technology of Model Organisms for Current Human Medicine. Diagnostics (Basel) 2020; 10:diagnostics10060392. [PMID: 32532032 PMCID: PMC7345323 DOI: 10.3390/diagnostics10060392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1980s, molecular biology has been used to investigate medical field mechanisms that still require the use of crude biological materials in order to achieve their necessary goals. Transcription factor-induced pluripotent stem cells are used in regenerative medicine to screen drugs and to support lost tissues. However, these cells insufficiently reconstruct whole organs and require various intact cells, such as damaged livers and diabetic pancreases. For efficient gene transfer in medical use, virally mediated gene transfers are used, although immunogenic issues are investigated. To obtain efficient detective and diagnostic power in intractable diseases, biological tools such as roundworms and zebrafish have been found to be useful for high-throughput screening (HST) and diagnosis. Taken together, this biological approach will help to fill the gaps between medical needs and novel innovations in the field of medicine.
Collapse
|