1
|
Adediran E, Vijayanand S, Kale A, Gulani M, Wong JC, Escayg A, Murnane KS, D’Souza MJ. Microfluidics-Assisted Formulation of Polymeric Oxytocin Nanoparticles for Targeted Brain Delivery. Pharmaceutics 2025; 17:452. [PMID: 40284447 PMCID: PMC12030403 DOI: 10.3390/pharmaceutics17040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The neuropeptide oxytocin has been identified as a potential therapeutic molecule. However, the therapeutic potential of this molecule is limited due to the challenges faced in oxytocin delivery to the brain. Scientific innovation has led to the breakthrough discovery of many modalities to encapsulate molecules for targeted drug delivery, which can enhance oxytocin delivery to the brain. This research aimed to explore a microfluidics-based system that optimizes the formulation of cross-linked bovine serum albumin (BSA) nanoparticles encapsulating oxytocin. Methods: First, the formulation parameters were optimized using a design of experiments (DOE) by evaluating the effect of flow rate, polymer concentration, and the binary solvent mixture polarity on the nanoparticle size. Drug encapsulation efficiency, release, and kinetics profile were characterized. These oxytocin nanoparticles were conjugated to rabies virus glycoprotein (RVG), a brain-targeting ligand, and the conjugation efficiency was determined. Results: The sizes of the nanoparticles were between 50 nm and 75 nm with a <0.4 polydispersity index. The encapsulation efficiency was >80%. Approximately 58% of oxytocin was released from the nanoparticles within the first six hours, showing an initial burst that is ideal for seizure control and thereafter exhibiting the Korsmeyer-Peppas release kinetics. Conclusions: For the first time, we demonstrated the microfluidics method of formulating nanoparticles with particle size of less than 100 nm, with improved encapsulation efficiency and optimal release profile for oxytocin brain delivery.
Collapse
Affiliation(s)
- Emmanuel Adediran
- Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (S.V.); (A.K.); (M.G.)
| | - Sharon Vijayanand
- Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (S.V.); (A.K.); (M.G.)
| | - Akanksha Kale
- Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (S.V.); (A.K.); (M.G.)
| | - Mahek Gulani
- Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (S.V.); (A.K.); (M.G.)
| | - Jennifer C. Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (J.C.W.); (A.E.)
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (J.C.W.); (A.E.)
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Martin J. D’Souza
- Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (S.V.); (A.K.); (M.G.)
| |
Collapse
|
2
|
Xing C, Yu X. Oxytocin and autism: Insights from clinical trials and animal models. Curr Opin Neurobiol 2025; 92:103015. [PMID: 40157057 DOI: 10.1016/j.conb.2025.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Autism spectrum disorder is a highly heritable and heterogeneous neurodevelopmental disorder, characterized by impaired social interactions and repetitive behaviors. Despite its complex etiology, increasing evidence has linked autism to the oxytocin system. The oxytocin peptide has long been known as the "social hormone," and has been shown to increase attention to social cues, elevate salience of socially relevant stimuli, and increase learning and reward in social situations. Reduced oxytocin levels and mutations in the oxytocin system have been reported in autism patients, while exogenously delivered oxytocin has been shown to alleviate social interaction deficits in both patients and animal models. Here, we summarize the results of recent clinical trials using oxytocin nasal spray to treat individuals with autism, as well as studies of autism animal models with oxytocin system deficits, and the rescue of their social behavior deficits by oxytocin. Finally, we discuss factors influencing clinical outcomes and reflect on future directions.
Collapse
Affiliation(s)
- Chuan Xing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Diaz-Peregrino R, San-Juan D, Patiño-Ramirez C, Sandoval-Luna LV, Arritola-Uriarte A. Nanocarriers-based therapeutic strategy for drug-resistant epilepsy: A systematic review. Int J Pharm 2025; 668:124986. [PMID: 39580104 DOI: 10.1016/j.ijpharm.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Nanocarriers have been proposed as a solution for drug-resistant epilepsy. METHODS A systematic review of animal and in vitro studies was conducted to evaluate the efficacy, toxicity, and biological properties of nanocarriers. Searches were performed in PubMed/Medline and Scopus from March 2023 to March 2024. RESULTS Eighteen studies were identified: 2 in vitro, 9 in vivo, and 7 combined. While epilepsy models and seizure control assessments were consistent, there was variability in evaluating the potential toxicity of nanocarriers. Only one study did not show a reduction in brain inflammation, seizures, and cell loss. Nanocarrier toxicity was evaluated just in six studies, all of which indicated low toxicity both in vitro and in vivo. CONCLUSIONS Nanocarriers with antiseizure drugs manage seizures, inflammation, oxidative stress, and behavior impairment in drug-resistant epilepsy. Furthermore, nanocarriers are a safe option for delivering antiseizure drugs, though more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Roberto Diaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Patiño-Ramirez
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Lenin V Sandoval-Luna
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | |
Collapse
|
4
|
Wong JC, Escayg A. Carvedilol increases seizure resistance in a mouse model of SCN8A-derived epilepsy. Front Pharmacol 2024; 15:1397225. [PMID: 38895634 PMCID: PMC11184058 DOI: 10.3389/fphar.2024.1397225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with mutations that alter the function of the sodium channel SCN8A present with a range of clinical features, including mild to severe seizures, developmental delay, intellectual disability, autism, feeding dysfunction, motor impairment, and hypotonia. In an effort to identify compounds that could be potentially beneficial in SCN8A-associated epilepsy, Atkin et al. conducted an in vitro screen which resulted in the identification of 90 compounds that effectively reduced sodium influx into the cells expressing the human SCN8A R1872Q mutation. The top compounds that emerged from this screen included amitriptyline, carvedilol, and nilvadipine. In the current study, we evaluated the ability of these three compounds to increase resistance to 6 Hz or pentylenetetrazole (PTZ)-induced seizures in wild-type CF1 mice and in a mouse line expressing the human SCN8A R1620L mutation. We also evaluated the effects of fenfluramine administration, which was recently associated with a 60%-90% decrease in seizure frequency in three patients with SCN8A-associated epilepsy. While amitriptyline, carvedilol, and fenfluramine provided robust protection against induced seizures in CF1 mice, only carvedilol was able to significantly increase resistance to 6 Hz- and PTZ-induced seizures in RL/+ mutants. These results provide support for further evaluation of carvedilol as a potential treatment for patients with SCN8A mutations.
Collapse
Affiliation(s)
- Jennifer C. Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
5
|
Arora S, Bajaj T, Kumar J, Goyal M, Singh A, Singh C. Recent Advances in Delivery of Peptide and Protein Therapeutics to the Brain. J Pharmacol Exp Ther 2024; 388:54-66. [PMID: 37977811 DOI: 10.1124/jpet.123.001690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The classes of neuropharmaceuticals known as proteins and peptides serve as diagnostic tools and are involved in specific communication in the peripheral and central nervous systems. However, due to tight junctions resembling epithelial cells found in the blood-brain barrier (BBB) in vivo, they are typically excluded from transport from the blood to the brain. The drugs having molecular weight of less than 400 Dalton are able to cross the BBB via lipid-mediated free diffusion. However, large molecule therapeutics are devoid of these characteristics. As an alternative, these substances may be carried via chimeric peptide drug delivery systems, and assist in transcytosis through BBB with the aid of linker strategies. With their recent developments, several forms of nanoparticles, including poly (ethylene glycol)-poly(ε-caprolactone) copolymers, nanogels, liposomes, nanostructured lipid carriers, poly (D, L-lactide-co-glycolide) nanoparticles, chitosan, and solid lipid nanoparticles, have also been considered for their therapeutic applications. Moreover, the necessity for physiologic optimization of current drug delivery methods and their carriers to deliver therapeutic doses of medication into the brain for the treatment of various neurologic illnesses has also been emphasized. Therapeutic use of proteins and peptides has no neuroprotective impact in the absence of all these methods. Each tactic, however, has unique drawbacks and considerations. In this review, we discuss different drug delivery methods for therapeutic distribution of pharmaceuticals, primarily neuroproteins and neuropeptides, through endothelial capillaries via blood-brain barrier. Finally, we have also discussed the challenges and future perspective of protein and peptide therapeutics delivery to the brain. SIGNIFICANCE STATEMENT: Very few reports on the delivery of therapeutic protein and peptide nanoformulations are available in the literature. Herein, we attempted to discuss these nanoformulations of protein and peptide therapeutics used to treat brain diseases.
Collapse
Affiliation(s)
- Sanchit Arora
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Tania Bajaj
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Jayant Kumar
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Manoj Goyal
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Arti Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Charan Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| |
Collapse
|
6
|
Shiu FH, Wong JC, Bhattacharya D, Kuranaga Y, Parag RR, Alsharif HA, Bhatnagar S, Van Meir EG, Escayg A. Generation and initial characterization of mice lacking full-length BAI3 (ADGRB3) expression. Basic Clin Pharmacol Toxicol 2023; 133:353-363. [PMID: 37337931 PMCID: PMC10730119 DOI: 10.1111/bcpt.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Brain-specific angiogenesis inhibitor 3 (ADGRB3/BAI3) belongs to the family of adhesion G protein-coupled receptors. It is most highly expressed in the brain where it plays a role in synaptogenesis and synapse maintenance. Genome-wide association studies have implicated ADGRB3 in disorders such as schizophrenia and epilepsy. Somatic mutations in ADGRB3 have also been identified in cancer. To better understand the in vivo physiological role of ADGRB3, we used CRISPR/Cas9 editing to generate a mouse line with a 7-base pair deletion in Adgrb3 exon 10. Western blot analysis confirmed that homozygous mutants (Adgrb3∆7/∆7 ) lack full-length ADGRB3 expression. The mutant mice were viable and reproduced in Mendelian ratios but demonstrated reduced brain and body weights and deficits in social interaction. Measurements of locomotor function, olfaction, anxiety levels and prepulse inhibition were comparable between heterozygous and homozygous mutants and wild-type littermates. Since ADGRB3 is also expressed in organs such as lung and pancreas, this new mouse model will facilitate elucidation of ADGRB3's role in non-central nervous system-related functions. Finally, since somatic mutations in ADGRB3 were identified in patients with several cancer types, these mice can be used to determine whether loss of ADGRB3 function contributes to tumour development.
Collapse
Affiliation(s)
- Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jennifer C. Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yuki Kuranaga
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rashed R. Parag
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Haifa A. Alsharif
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sushant Bhatnagar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erwin G. Van Meir
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
8
|
Sahin H, Yucel O, Emik S, Senturk GE. Protective Effects of Intranasally Administrated Oxytocin-Loaded Nanoparticles on Pentylenetetrazole-Kindling Epilepsy in Terms of Seizure Severity, Memory, Neurogenesis, and Neuronal Damage. ACS Chem Neurosci 2022; 13:1923-1937. [PMID: 35713692 PMCID: PMC9264347 DOI: 10.1021/acschemneuro.2c00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pentylenetetrazole (PTZ)-induced kindling is an animal model for studying human temporal lobe epilepsy (TLE), which is characterized by alterations of hippocampal neurons and memory. Although the intranasal (IN) administration of oxytocin (OT) has limited efficiency, nanoparticles (NPs) are a promising candidate to deliver OT to the brain. However, there are very limited data on epilepsy research about oxytocin-loaded nanoparticles (NP-OTs). The aim of this study is to investigate the effects of IN administration of chronic NP-OTs on the hippocampus of PTZ-induced male epileptic rats in terms of seizure severity, memory, neurogenesis, and neuronal damage. Saline/OT/NP-OTs were administrated to both control (Ctrl) and PTZ groups intranasally. Consequently, saline and PTZ were injected, respectively, 25 times every 48 h. Then, seizure severity (score and latency) was calculated for the PTZ groups. A spatial working memory evaluation test (SWMET) was performed after the last injection. Hippocampus histopathology, neurogenesis, and apoptosis were demonstrated. Serum total antioxidant status (TAS) and total oxidant status (TOS) levels and the oxidative stress index (OSI) were measured. We showed that OTs and NP-OTs prevented the kindling development and had positive effects on seizure severity. SWMET-related behaviors were also recovered in the PTZ + NP-OT group. A significant increase of neurogenesis and decrease of apoptosis in the hippocampus of the PTZ + NP-OT group were observed, while OTs and NP-OTs had protective effects against PTZ-induced damage to hippocampal neurons. Our results indicate that the chronic administration of NP-OTs may have positive effects on hippocampal damage via increasing neurogenesis and decreasing apoptosis and seizure severity.
Collapse
Affiliation(s)
- Hakan Sahin
- Department
of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University—Cerrahpasa, Istanbul 34098, Turkey
| | - Oguz Yucel
- Department
of Chemical Engineering, Faculty of Engineering, Istanbul University—Cerrahpasa, Istanbul 34320, Turkey
| | - Serkan Emik
- Department
of Chemical Engineering, Faculty of Engineering, Istanbul University—Cerrahpasa, Istanbul 34320, Turkey
| | - Gozde Erkanli Senturk
- Department
of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University—Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
9
|
Mao X, Wang X, Jin M, Li Q, Jia J, Li M, Zhou H, Liu Z, Jin W, Zhao Y, Luo Z. Critical involvement of lysyl oxidase in seizure-induced neuronal damage through ERK-Alox5-dependent ferroptosis and its therapeutic implications. Acta Pharm Sin B 2022; 12:3513-3528. [PMID: 36176900 PMCID: PMC9513491 DOI: 10.1016/j.apsb.2022.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023] Open
Abstract
Recent insights collectively suggest the important roles of lysyl oxidase (LysOX) in the pathological processes of several acute and chronic neurological diseases, but the molecular regulatory mechanisms remain elusive. Herein, we explore the regulatory role of LysOX in the seizure-induced ferroptotic cell death of neurons. Mechanistically, LysOX promotes ferroptosis-associated lipid peroxidation in neurons via activating extracellular regulated protein kinase (ERK)-dependent 5-lipoxygenase (Alox5) signaling. In addition, overexpression of LysOX via adeno-associated viral vector (AAV)-based gene transfer enhances ferroptosis sensitivity and aggravates seizure-induced hippocampal damage. Our studies show that pharmacological inhibition of LysOX with β-aminopropionitrile (BAPN) significantly blocks seizure-induced ferroptosis and thereby alleviates neuronal damage, while the BAPN-associated cardiotoxicity and neurotoxicity could further be reduced through encapsulation with bioresponsive amorphous calcium carbonate-based nanocarriers. These findings unveil a previously unrecognized LysOX-ERK-Alox5 pathway for ferroptosis regulation during seizure-induced neuronal damage. Suppressing this pathway may yield therapeutic implications for restoring seizure-induced neuronal injury.
Collapse
|
10
|
Shiu FH, Wong JC, Yamamoto T, Lala T, Purcell RH, Owino S, Zhu D, Van Meir EG, Hall RA, Escayg A. Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Exp Neurol 2022; 351:113994. [PMID: 35114205 PMCID: PMC9817291 DOI: 10.1016/j.expneurol.2022.113994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.
Collapse
Affiliation(s)
- Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Takahiro Yamamoto
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Trisha Lala
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan H Purcell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon Owino
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dan Zhu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
12
|
Zagrean AM, Georgescu IA, Iesanu MI, Ionescu RB, Haret RM, Panaitescu AM, Zagrean L. Oxytocin and vasopressin in the hippocampus. VITAMINS AND HORMONES 2022; 118:83-127. [PMID: 35180939 DOI: 10.1016/bs.vh.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin (OXT) and vasopressin (AVP) are related neuropeptides that exert a wide range of effects on general health, homeostasis, development, reproduction, adaptability, cognition, social and nonsocial behaviors. The two peptides are mainly of hypothalamic origin and execute their peripheral and central physiological roles via OXT and AVP receptors, which are members of the G protein-coupled receptor family. These receptors, largely distributed in the body, are abundantly expressed in the hippocampus, a brain region particularly vulnerable to stress exposure and various lesions. OXT and AVP have important roles in the hippocampus, by modulating important processes like neuronal excitability, network oscillatory activity, synaptic plasticity, and social recognition memory. This chapter includes an overview regarding OXT and AVP structure, synthesis, receptor distribution, and functions, focusing on their relationship with the hippocampus and mechanisms by which they influence hippocampal activity. Brief information regarding hippocampal structure and susceptibility to lesions is also provided. The roles of OXT and AVP in neurodevelopment and adult central nervous system function and disorders are highlighted, discussing their potential use as targeted therapeutic tools in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Ioana-Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Ioana Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rosana-Bristena Ionescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Clinical Neurosciences and National Institute for Health Research (NIHR), Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Robert Mihai Haret
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Maria Panaitescu
- Filantropia Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Shapiro L, Escayg A, Wong JC. Cannabidiol Increases Seizure Resistance and Improves Behavior in an Scn8a Mouse Model. Front Pharmacol 2022; 13:815950. [PMID: 35153788 PMCID: PMC8826257 DOI: 10.3389/fphar.2022.815950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated sodium channel genes are an important family of human epilepsy genes. De novo missense mutations in SCN8A (encoding Nav1.6) are associated with a spectrum of clinical presentation, including multiple seizure types, movement disorders, intellectual disability, and behavioral abnormalities such as autism. Patients with SCN8A mutations are often treated with multiple antiepileptic drugs, the most common being sodium channel blockers. Cannabidiol (CBD) has been included as a component of treatment regimens for some SCN8A patients; however, to date, there are no clinical trials that have evaluated the therapeutic potential of CBD in patients with SCN8A mutations. In the current manuscript, we demonstrated a dose-dependent increase in seizure resistance following CBD treatment in mice expressing the human SCN8A mutation R1620L (RL/+). We also found that CBD treatment improved social behavior and reduced hyperactivity in the RL/+ mutants. Our findings suggest that CBD may be beneficial in patients with SCN8A-associated disease.
Collapse
Affiliation(s)
- Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Janković SM, Đešević M. Advancements in neuroactive peptides in seizures. Expert Rev Neurother 2022; 22:129-143. [DOI: 10.1080/14737175.2022.2031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Slobodan M. Janković
- - University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
- University Clinical Center, Kragujevac, Serbia
| | - Miralem Đešević
- - Private Policlinic Center Eurofarm Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
15
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
16
|
Ghazy AA, Soliman OA, Elbahnasi AI, Alawy AY, Mansour AM, Gowayed MA. Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders. Rev Physiol Biochem Pharmacol 2022; 186:95-134. [PMID: 36416982 DOI: 10.1007/112_2022_72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer's disease, Parkinson's disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother-infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya Y Alawy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira Ma Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
17
|
Cardenal-Muñoz E, Auvin S, Villanueva V, Cross JH, Zuberi SM, Lagae L, Aibar JÁ. Guidance on Dravet syndrome from infant to adult care: Road map for treatment planning in Europe. Epilepsia Open 2021; 7:11-26. [PMID: 34882995 PMCID: PMC8886070 DOI: 10.1002/epi4.12569] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Dravet syndrome (DS) is a severe, rare, and complex developmental and epileptic encephalopathy affecting 1 in 16 000 live births and characterized by a drug‐resistant epilepsy, cognitive, psychomotor, and language impairment, and behavioral disorders. Evidence suggests that optimal treatment of seizures in DS may improve outcomes, even though neurodevelopmental impairments are the likely result of both the underlying genetic variant and the epilepsy. We present an updated guideline for DS diagnosis and treatment, taking into consideration care of the adult patient and nonpharmaceutical therapeutic options for this disease. This up‐to‐date guideline, which is based on an extensive review of the literature and culminates with a new treatment algorithm for DS, is a European consensus developed through a survey involving 29 European clinical experts in DS. This guideline will serve professionals in their clinical practice and, as a consequence, will benefit DS patients and their families.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France.,INSERM NeuroDiderot, Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of the ERN EpiCARE, Valencia, Spain
| | - J Helen Cross
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK.,Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Lieven Lagae
- Department of Development and Regeneration, KU Leuven, Member of the ERN EpiCARE, Leuven, Belgium
| | - José Ángel Aibar
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| |
Collapse
|
18
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
19
|
Al-Suhaimi EA, Nawaz M, Khan FA, Aljafary MA, Baykal A, Homeida AM. Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier. Int J Pharm 2021; 609:121141. [PMID: 34597727 DOI: 10.1016/j.ijpharm.2021.121141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Neurological diseases are related to the central nervous system disorders and considered as serious cases. Several drugs are used to treat neurological diseases; however, to date the main issue is to design a therapeutic model which can cross the blood-brain-barrier (BBB) easily. The delivery of neuropeptides into the brain lays as one of the important routes for treating neurological disorders. Neuropeptides have been demonstrated as potential therapeutics for neurological disorders. Among numerous neuropeptides, the oxytocin (OT) hormone is of particular interest as it serves as a neurotransmitter in the brain as well as its role as a hormone. OT has a wide-range of activities in the brain and has a key role in cognitive, neuroendocrine, and social functions. However, OT does not cross the BBB readily coupled with its half-life in the blood being too short. The current literature reveals that the delivery of OT by nanoparticle-based drug delivery system (DDS) improves its efficacy. Nanoparticle based DDS are considered important tools for the targeted delivery of drugs to the brain as they lower toxicity of the drug and improve the drug efficacy. Nanoparticles are advantageous candidates for biomedical applications due to their distinctive characteristics such as quantum effects, large surface area and their ability to carry and transport the drug to its target site. OT can be delivered through oral and intranasal routes, but the bioavailability of OT inside the brain can further be enhanced by the delivery using nanoparticles. The application of nano-based delivery system not only improves the penetration of OT inside brain but also increases its half-life by the application of encapsulation and extended release. The aim of current review is to provide an overview of nanoparticle-based drug-delivery systems for the delivery of OT inside brain.
Collapse
Affiliation(s)
- Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Firdos A Khan
- Department of Stem cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Meneerah Abdulrahman Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Abdelgadir M Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
20
|
Cid-Jofré V, Moreno M, Reyes-Parada M, Renard GM. Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists. Int J Mol Sci 2021; 22:ijms222112077. [PMID: 34769501 PMCID: PMC8584779 DOI: 10.3390/ijms222112077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades. This review summarizes the role of OT and AVP in neuropsychiatric conditions, as well as the findings of different OT-R and AVP-R agonists and antagonists, used both at the preclinical and clinical level. Furthermore, we discuss their possible therapeutic potential for central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
| | - Macarena Moreno
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias Sociales, Escuela de Psicología, Universidad Bernardo OHiggins, Santiago 8370993, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile
- Correspondence: (M.R.-P.); (G.M.R.)
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Correspondence: (M.R.-P.); (G.M.R.)
| |
Collapse
|
21
|
Specchio N, Di Micco V, Trivisano M, Ferretti A, Curatolo P. The epilepsy-autism spectrum disorder phenotype in the era of molecular genetics and precision therapy. Epilepsia 2021; 63:6-21. [PMID: 34741464 DOI: 10.1111/epi.17115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is frequently associated with infants with epileptic encephalopathy, and early interventions targeting social and cognitive deficits can have positive effects on developmental outcome. However, early diagnosis of ASD among infants with epilepsy is complicated by variability in clinical phenotypes. Commonality in both biological and molecular mechanisms have been suggested between ASD and epilepsy, such as occurs with tuberous sclerosis complex. This review summarizes the current understanding of causal mechanisms between epilepsy and ASD, with a particularly genetic focus. Hypothetical explanations to support the conjugation of the two conditions include abnormalities in synaptic growth, imbalance in neuronal excitation/inhibition, and abnormal synaptic plasticity. Investigation of the probable genetic basis has implemented many genes, although the main risk supports existing hypotheses in that these cluster to abnormalities in ion channels, synaptic function and structure, and transcription regulators, with the mammalian target of rapamycin (mTOR) pathway and "mTORpathies" having been a notable research focus. Experimental models not only have a crucial role in determining gene functions but are also useful instruments for tracing disease trajectory. Precision medicine from gene therapy remains a theoretical possibility, but more contemporary developments continue in molecular tests to aid earlier diagnoses and better therapeutic targeting.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Valentina Di Micco
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
22
|
Autistic-like behavior, spontaneous seizures, and increased neuronal excitability in a Scn8a mouse model. Neuropsychopharmacology 2021; 46:2011-2020. [PMID: 33658654 PMCID: PMC8429750 DOI: 10.1038/s41386-021-00985-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.
Collapse
|