1
|
Lucie L, Sarah L, Laurène J, Louise T, Assia B, Julie K, Alexandre C, Rosalie B, Erwan S, Sébastien M, Benoit L, Nicolas T, Grégory DB, Karine T, Anthony N. Enhancing oxime efficacy into brain using ultrasound to counteract nerve agent exposure. Biomed Pharmacother 2025; 187:118120. [PMID: 40347846 DOI: 10.1016/j.biopha.2025.118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Organophosphates (OP) found in pesticides and chemical weapons irreversibly inhibit acetylcholinesterases (AChE) and cause toxic accumulation of acetylcholine throughout the organism. Due to their lipophilicity, OP easily cross the blood-brain barrier (BBB) and affect the central nervous system (CNS), resulting in epileptic seizures and long-term cognitive impairment. The antidote includes oximes which reactivate inhibited AChE. Unfortunately, oximes have limited BBB penetration and therefore fail to prevent neurological damage. Improving the penetration of oximes through the CNS and their therapeutic effect on the brain, is a major challenge. Recent studies have demonstrated the efficacy of transcranial focused ultrasound (FUS), in combination to intravenously injected microbubbles, to transiently disrupt the BBB for drug delivery. We assessed the efficacy of FUS to deliver two known oximes (2-PAM, HI-6) into the brain and reactivate AChE following an exposure to VX in a mouse model. After both sub-lethal and supra-lethal exposure, HI-6 + FUS treatment reactivated nearly 30 % more AChE in the hippocampus than HI-6 alone. In contrast, 2-PAM+FUS was not effective. Furthermore, animals treated with HI-6 + FUS following an exposure to a supra-lethal dose of VX exhibited enhanced short-term recovery and an increased 24 hours survival rate. Finally, up to 7 days after exposure to a supra-lethal dose of VX, HI-6 + FUS showed a significant reduction of pro-inflammatory cytokines IL-6 and MIP-1α expression levels in the hippocampus. Thus, the use of FUS is very promising for improving the medical care of OP exposure because it enables antidotes to treat central symptoms and it may reduce brain damage.
Collapse
Affiliation(s)
- Lépinard Lucie
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Leterrier Sarah
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Jourdain Laurène
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Turri Louise
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France
| | - Belkebir Assia
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Knoertzer Julie
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France
| | - Champault Alexandre
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Bel Rosalie
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France
| | - Selingue Erwan
- Université Paris-Saclay, CEA, CNRS, BAOBAB, Neurospin, Gif-sur-Yvette, France
| | - Mériaux Sébastien
- Université Paris-Saclay, CEA, CNRS, BAOBAB, Neurospin, Gif-sur-Yvette, France
| | - Larrat Benoit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, Neurospin, Gif-sur-Yvette, France
| | - Tournier Nicolas
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Dal Bo Grégory
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Thibault Karine
- IRBA, Département Toxicologie et Risques Chimiques, Brétigny-sur-Orge, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France
| | - Novell Anthony
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay, France.
| |
Collapse
|
2
|
Ammothumkandy A, Cayce A, Shariq M, Bonaguidi MA. Astroglia's role in synchronized spontaneous neuronal activity: from physiology to pathology. Front Cell Neurosci 2025; 19:1544460. [PMID: 40177583 PMCID: PMC11961896 DOI: 10.3389/fncel.2025.1544460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The nervous system relies on a balance of excitatory and inhibitory signals. Aberrant neuronal hyperactivity is a pathological phenotype associated with several neurological disorders, with its most severe effects observed in epilepsy patients. This review explores the literature on spontaneous synchronized neuronal activity, its physiological role, and its aberrant forms in disease. Emphasizing the importance of targeting underlying disease mechanisms beyond traditional neuron-focused therapies, the review delves into the role of astroglia in epilepsy progression. We detail how astroglia transitions from a normal to a pathological state, leading to epileptogenic seizures and cognitive decline. Astroglia activity is correlated with epileptiform activity in both animal models and human tissue, indicating their potential role in seizure induction and modulation. Understanding astroglia's dual beneficial and detrimental roles could lead to novel treatments for epilepsy and other neurological disorders with aberrant neuronal activity as the underlying disease substrate.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Mohammad Shariq
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Gerontology, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Kelemen K, Sárosi M, Csüdör Á, Orbán-Kis K, Kelemen H, Bába L, Gáll Z, Horváth E, Katona I, Szilágyi T. Marked differences in the effects of levetiracetam and its analogue brivaracetam on microglial, astrocytic, and neuronal density in the rat model of kainic acid-induced temporal lobe epilepsy. Front Pharmacol 2025; 16:1553545. [PMID: 40115266 PMCID: PMC11922880 DOI: 10.3389/fphar.2025.1553545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Efficient treatment of temporal lobe epilepsy (TLE) remains challenging due to limited understanding of cellular and network changes and the interference of novel antiepileptic drugs (AEDs) with tissue reorganisation. This study compared the effects of brivaracetam and levetiracetam on histological alterations in key brain regions of the epileptic circuitry, namely, the hippocampus, amygdala, piriform cortex (PC), endopiriform nucleus (EPN) and paraventricular thalamic nucleus (PVT), using the kainic acid (KA) rat model of TLE. Male Wistar rats were assigned to sham-operated (SHAM), epileptic (EPI), brivaracetam- (BRV-EPI) and levetiracetam-treated (LEV-EPI) epileptic groups. Epileptic groups received KA in the right lateral ventricle, which induced status epilepticus followed by a 3-week recovery and latent period. Rats then underwent 3 weeks of oral brivaracetam, levetiracetam or placebo treatment with continuous video monitoring for seizure analysis. Subsequently, triple fluorescent immunolabeling assessed microglial, astrocytic, and neuronal changes. The results showed a drastic increase in microglia density in the EPI and BRV-EPI groups compared to control and LEV-EPI. The BRV-EPI group displayed a significantly higher microglia density than SHAM and EPI groups in the right CA1, CA3 and left CA1 regions, bilateral amygdalae, EPN, PVT and left PC. Astrocyte density was significantly elevated in hippocampal regions of the BRV-EPI group, while neuronal density decreased. Furthermore, brivaracetam did not reduce seizure activity in this disease phase. Significance: Brivaracetam treatment increased microglial activation under epileptic conditions in vivo in all examined brain-regions participating in the epileptic circuitry, in contrast to the effects of levetiracetam, highlighting differences in AED-induced histological alterations.
Collapse
Affiliation(s)
- Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Máté Sárosi
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
| | - Ágnes Csüdör
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
| | - Károly Orbán-Kis
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
| | - Hanga Kelemen
- Translational Behavioural Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Neurosciences Division, Doctoral College, Semmelweis University, Budapest, Hungary
| | - László Bába
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mures, Romania
| | - Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mures, Romania
| | - Eszter Horváth
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - István Katona
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| | - Tibor Szilágyi
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Târgu Mureș, Romania
| |
Collapse
|
4
|
Tinston J, Hudson MR, Harutyunyan A, Chen Z, Jones NC. Forty-hertz sensory entrainment impedes kindling epileptogenesis and reduces amyloid pathology in an Alzheimer disease mouse model. Epilepsia 2025; 66:886-898. [PMID: 39737719 DOI: 10.1111/epi.18222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVE The 5xFAD mouse model of Alzheimer disease (AD) recapitulates amyloid-beta (Aβ) deposition and pronounced seizure susceptibility observed in patients with AD. Forty-hertz audiovisual stimulation is a noninvasive technique that entrains gamma neural oscillations and can reduce Aβ pathology and modulate glial expression in AD models. We hypothesized that 40-Hz sensory stimulation would improve seizure susceptibility in 5xFAD mice and this would be associated with reduction of plaques and modulation of glial phenotypes. METHODS 5xFAD mice and wild-type (WT) littermates received 1 h/day 40-Hz audiovisual stimulation or sham (n = 7-11/group), beginning 2 weeks before and continuing throughout amygdala kindling epileptogenesis. Postmortem analyses included Aβ pathology and morphology of astrocytes and microglia. RESULTS 5xFAD mice exhibited enhanced susceptibility to seizures compared to WT, evidenced by fewer stimulations to reach kindling endpoint (incidence rate ratio [IRR] = 1.46, p < .0001) and a trend to higher seizure severity (odds ratio [OR] = .34, p = .059). Forty-hertz stimulation reduced the behavioral severity of the first seizure (OR = 4.04, p = .02) and delayed epileptogenesis, increasing the number of stimulations required to reach kindling endpoint (IRR = .82, p = .01) compared to sham, regardless of genotype. 5xFAD mice receiving sensory stimulation exhibited ~50% reduction in amyloid pathology compared to sham. Furthermore, markers of astrocytes and microglia were upregulated in both genotypes receiving 40-Hz stimulation. SIGNIFICANCE Forty-hertz sensory entrainment slows epileptogenesis in the mouse amygdala kindling model. Although this intervention improves Aβ pathology in 5xFAD mice, the observed antiepileptogenic effect may also relate to effects on glia, because mice without Aβ plaques (i.e., WT) also experienced antiepileptogenic effects of the intervention.
Collapse
Affiliation(s)
- Jennifer Tinston
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna Harutyunyan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
6
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Hwang Y, Park JH, Kim HC, Shin EJ. Nimodipine attenuates neuroinflammation and delayed apoptotic neuronal death induced by trimethyltin in the dentate gyrus of mice. J Mol Histol 2024; 55:721-740. [PMID: 39083161 DOI: 10.1007/s10735-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
9
|
Bernardino PN, Luo AS, Andrew PM, Unkel CM, Gonzalez MI, Gelli A, Lein PJ. Evidence Implicating Blood-Brain Barrier Impairment in the Pathogenesis of Acquired Epilepsy following Acute Organophosphate Intoxication. J Pharmacol Exp Ther 2024; 388:301-312. [PMID: 37827702 PMCID: PMC10801776 DOI: 10.1124/jpet.123.001836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Audrey S Luo
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Peter M Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Chelsea M Unkel
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Marco I Gonzalez
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Angie Gelli
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| |
Collapse
|
10
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
11
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
12
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Zou M, Huang M, Zhang J, Chen R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front Public Health 2022; 10:1001760. [PMID: 36438228 PMCID: PMC9692084 DOI: 10.3389/fpubh.2022.1001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many environmental factors, such as noise, chemicals, and heavy metals, are mostly produced by human activities and easily induce acquired hearing loss. Organophosphorus pesticides (OPs) constitute a large variety of chemicals and have high usage with potentiate damage to human health. Moreover, their metabolites also show a serious potential contamination of soil, water, and air, leading to a serious impact on people's health. Hearing loss affects 430 million people (5.5% of the global population), bringing a heavy burden to individual patients and their families and society. However, the potential risk of hearing damage by OPs has not been taken seriously. In this study, we summarized the effects of OPs on hearing loss from epidemiological population studies and animal experiments. Furthermore, the possible mechanisms of OP-induced hearing loss are elucidated from oxidative stress, DNA damage, and inflammatory response. Overall, this review provides an overview of OP exposure alone or with noise that leads to hearing loss in human and experimental animals.
Collapse
|
14
|
Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia Remodelling and Neuroinflammation Parallel Neuronal Hyperactivation Following Acute Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms23158240. [PMID: 35897817 PMCID: PMC9332153 DOI: 10.3390/ijms23158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1β, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.
Collapse
|
15
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
16
|
Calsbeek JJ, González EA, Bruun DA, Guignet MA, Copping N, Dawson ME, Yu AJ, MacMahon JA, Saito NH, Harvey DJ, Silverman JL, Lein PJ. Persistent neuropathology and behavioral deficits in a mouse model of status epilepticus induced by acute intoxication with diisopropylfluorophosphate. Neurotoxicology 2021; 87:106-119. [PMID: 34509511 PMCID: PMC8595753 DOI: 10.1016/j.neuro.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.
Collapse
Affiliation(s)
- Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Nycole Copping
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Mallory E Dawson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Alexandria J Yu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Naomi H Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
Abstract
The canonical mechanism of organophosphate (OP) neurotoxicity is the inhibition of acetylcholinesterase (AChE). However, multiple lines of evidence suggest that mechanisms in addition to or other than AChE inhibition contribute to the neurotoxic effects associated with acute and chronic OP exposures. Characterizing the role(s) of AChE inhibition versus noncholinergic mechanisms in OP neurotoxicity remains an active area of research with significant diagnostic and therapeutic implications. Here, we review recently published studies that provide mechanistic insights regarding (1) OP-induced status epilepticus, (2) long-term neurologic consequences of acute OP exposures, and (3) neurotoxic effects associated with repeated low-level OP exposures. Key data gaps and challenges are also discussed.
Collapse
Affiliation(s)
- Yi-Hua Tsai
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
19
|
Angrand L, Takillah S, Malissin I, Berriche A, Cervera C, Bel R, Gerard Q, Knoertzer J, Baati R, Kononchik JP, Megarbane B, Thibault K, Dal Bo G. Persistent brainwave disruption and cognitive impairment induced by acute sarin surrogate sub-lethal dose exposure. Toxicology 2021; 456:152787. [PMID: 33887375 DOI: 10.1016/j.tox.2021.152787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.
Collapse
Affiliation(s)
- Loïc Angrand
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; EnvA, IMRB, Maisons-Alfort, France; Université Paris-Est Créteil, INSERM, Team Relaix, Créteil, France
| | - Samir Takillah
- Departement of Neuroscience, Unit of Fatigue and Vigilance, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Asma Berriche
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; CEA, Fontenay aux roses, France
| | - Chloe Cervera
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rosalie Bel
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Quentin Gerard
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Julie Knoertzer
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé, Strasbourg, France
| | - Joseph P Kononchik
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Bruno Megarbane
- VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Karine Thibault
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| | - Gregory Dal Bo
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| |
Collapse
|