1
|
Feng X, Zhu ZA, Wang HT, Zhou HW, Liu JW, Shen Y, Zhang YX, Xiong ZQ. A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations. Neurosci Bull 2025; 41:805-820. [PMID: 40042769 PMCID: PMC12014890 DOI: 10.1007/s12264-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/25/2024] [Indexed: 04/23/2025] Open
Abstract
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Ai Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Tao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui-Wen Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ya Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Keith RE, Shen Y, Janzen-Meza JA, Abramovitz J, Antonello PC, Hameed A, Mohana Krishnan B, Antoine MW. Perirhinal cortex abnormalities impair hippocampal plasticity and learning in Scn2a, Fmr1, and Cdkl5 autism mouse models. SCIENCE ADVANCES 2025; 11:eadt0780. [PMID: 40053578 PMCID: PMC11887805 DOI: 10.1126/sciadv.adt0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Learning and memory deficits, including spatial navigation difficulties, are common in autism spectrum disorder (ASD). Several ASD mouse models (Scn2a+/-, Fmr1-/-, Cdkl5-/-) exhibit impaired spatial learning, with these deficits often attributed to hippocampal dysfunction. However, we identify the perirhinal cortex (PRC) as a critical driver of these deficits. Cortical-wide Scn2a reduction in excitatory neurons replicated the spatial learning and long-term potentiation (LTP) impairments-a cellular correlate of learning-seen in Scn2a+/- mice, while hippocampal-wide reduction did not. PRC-specific viral-mediated Scn2a reduction in excitatory neurons decreased release probability, which consequently disrupted synaptic transmission and LTP in the hippocampus, as well as spatial learning. As PRC activity was reduced, chemogenetic activation of the PRC reversed these deficits in Scn2a+/- mice and rescued spatial learning and LTP impairments in Fmr1 and Cdkl5 knockout mice. Thus, in several genetic models of ASD, PRC abnormalities may disrupt hippocampal function to impair learning and memory.
Collapse
Affiliation(s)
- Rachel E. Keith
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yiming Shen
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph Abramovitz
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Priscila C. Antonello
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Baskar Mohana Krishnan
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michelle W. Antoine
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Mottolese N, Loi M, Trazzi S, Tassinari M, Uguagliati B, Candini G, Iqbal K, Medici G, Ciani E. Effects of a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic in an in vitro and in vivo model of CDKL5 deficiency disorder. J Neurodev Disord 2024; 16:65. [PMID: 39592934 PMCID: PMC11590213 DOI: 10.1186/s11689-024-09583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice. P021, a tetra-peptide derived from the biologically active region of the human ciliary neurotrophic factor (CNTF), was found to enhance neurogenesis and synaptic plasticity by promoting an increase in BDNF expression in preclinical models of brain disorders, such as Alzheimer's disease and Down syndrome, resulting in a beneficial therapeutic effect. Considering the positive actions of P021 on brain development and cognition associated with increased BDNF expression, the present study aimed to evaluate the possible beneficial effect of treatment with P021 in an in vitro and in vivo model of CDD. METHODS We used SH-CDKL5-KO cells as an in vitro model of CDD to test the efficacy of P021 on neuronal proliferation, survival, and maturation. In addition, both young and adult Cdkl5 KO mice were used to evaluate the in vivo effects of P021, on neuroanatomical and behavioral defects. RESULTS We found that P021 treatment was effective in restoring neuronal proliferation, survival, and maturation deficits, as well as alterations in the GSK3β signaling pathway, features that characterize a human neuronal model of CDKL5 deficiency. Unexpectedly, chronic in vivo P021 treatment failed to increase BDNF levels and did not improve neuroanatomical defects in Cdkl5 KO mice, resulting in limited behavioral benefit. CONCLUSIONS At present, it remains to be understood whether initiating the treatment prenatally, or prolonging the duration of treatment will be necessary in order to achieve similar results in vivo in CDD mice to those obtained in vitro.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
- Phanes Biotech Inc, Malvern, PA, 19355, USA
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Li X, Yennawar M, Wiest A, O'Brien WT, Babrowicz B, White RS, Talos DM, Jensen FE. Cannabidiol attenuates seizure susceptibility and behavioural deficits in adult CDKL5 R59X knock-in mice. Eur J Neurosci 2024; 59:3337-3352. [PMID: 38654472 DOI: 10.1111/ejn.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhumita Yennawar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa Wiest
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bergan Babrowicz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel S White
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
6
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Ademuwagun IA, Oduselu GO, Rotimi SO, Adebiyi E. Pharmacophore-Aided Virtual Screening and Molecular Dynamics Simulation Identifies TrkB Agonists for Treatment of CDKL5-Deficiency Disorders. Bioinform Biol Insights 2023; 17:11779322231158254. [PMID: 36895324 PMCID: PMC9989394 DOI: 10.1177/11779322231158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Therapeutic intervention in cyclin-dependent kinase-like 5 (CDKL5) deficiency disorders (CDDs) has remained a concern over the years. Recent advances into the mechanistic interplay of signalling pathways has revealed the role of deficient tropomyosin receptor kinase B (TrkB)/phospholipase C γ1 signalling cascade in CDD. Novel findings showed that in vivo administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), resulted in a remarkable reversal in the molecular pathologic mechanisms underlying CDD. Owing to this discovery, this study aimed to identify more potent TrkB agonists than 7,8-DHF that could serve as alternatives or combinatorial drugs towards effective management of CDD. Using pharmacophore modelling and multiple database screening, we identified 691 compounds with identical pharmacophore features with 7,8-DHF. Virtual screening of these ligands resulted in identification of at least 6 compounds with better binding affinities than 7,8-DHF. The in silico pharmacokinetic and ADMET studies of the compounds also indicated better drug-like qualities than those of 7,8-DHF. Postdocking analyses and molecular dynamics simulations of the best hits, 6-hydroxy-10-(2-oxo-1-azatricyclo[7.3.1.05,13]trideca-3,5(13),6,8-tetraen-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem: 91637738) and 6-hydroxy-10-(8-methyl-2-oxo-1H-quinolin-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem ID: 91641310), revealed unique ligand interactions, validating the docking findings. We hereby recommend experimental validation of the best hits in CDKL5 knock out models before consideration as drugs in CDD management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Gbolahan Oladipupo Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines 2022; 10:biomedicines10081859. [PMID: 36009405 PMCID: PMC9405724 DOI: 10.3390/biomedicines10081859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
Brain synapses are neuronal structures of the greatest interest. For a long time, however, the knowledge about them was variable, and interest was mostly focused on their pre-synaptic portions, especially neurotransmitter release from axon terminals. In the present review interest is focused on post-synapses, the structures receiving and converting pre-synaptic messages. Upon further modulation, such messages are transferred to dendritic fibers. Dendrites are profoundly different from axons; they are shorter and of variable thickness. Their post-synapses are of two types. Those called flat/intended/aspines, integrated into dendritic fibers, are very frequent in inhibitory neurons. The spines, small and stemming protrusions, connected to dendritic fibers by their necks, are present in almost all excitatory neurons. Several structures and functions including the post-synaptic densities and associated proteins, the nanoscale mechanisms of compartmentalization, the cytoskeletons of actin and microtubules, are analogous in the two post-synaptic forms. However other properties, such as plasticity and its functions of learning and memory, are largely distinct. Several properties of spines, including emersion from dendritic fibers, growth, change in shape and decreases in size up to disappearance, are specific. Spinal heads correspond to largely independent signaling compartments. They are motile, their local signaling is fast, however transport through their thin necks is slow. When single spines are activated separately, their dendritic effects are often lacking; when multiple spines are activated concomitantly, their effects take place. Defects of post-synaptic responses, especially those of spines, take place in various brain diseases. Here alterations affecting symptoms and future therapy are shown to occur in neurodegenerative diseases and autism spectrum disorders.
Collapse
|
9
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
10
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Loi M, Gennaccaro L, Fuchs C, Trazzi S, Medici G, Galvani G, Mottolese N, Tassinari M, Rimondini Giorgini R, Milelli A, Ciani E. Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2021; 22:5950. [PMID: 34073043 PMCID: PMC8198396 DOI: 10.3390/ijms22115950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3β or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3β/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3β and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3β/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | | | - Andrea Milelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| |
Collapse
|