1
|
Shinozaki K, Honda T, Yamaji K, Nishijima E, Ichi I, Yamane D. Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells. J Lipid Res 2025; 66:100795. [PMID: 40180213 DOI: 10.1016/j.jlr.2025.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Apolipoprotein B (ApoB) is essential for the assembly and secretion of triglyceride (TG)-rich VLDL particles, and its dysfunction is linked to metabolic disorders, including dyslipidemia and liver steatosis. However, less attention has been paid to whether and how other apolipoproteins play redundant or compensatory roles when the ApoB function is compromised. Here, we investigated the effects of microsomal triglyceride transfer protein (MTP), which mediates lipidation of nascent ApoB, on ApoE function. We observed a paradoxical increase in ApoE secretion resulting from increased expression in MTP inhibitor (MTPi)-treated human hepatoma cells. This phenotype was recapitulated in APOB-knockout cells and was associated with impaired ApoB secretion. While MTP-dependent transfer of neutral lipids is dispensable for ApoE secretion, TG biosynthesis, redundantly catalyzed by DGAT1 and DGAT2, is required for efficient ApoE secretion in hepatoma cells. ApoE colocalizes with lipid droplets near the Golgi apparatus and mediates TG export in an ApoB-independent fashion. We found that simultaneous inhibition of both ApoE and ApoB, but not inhibition of either alone, led to TG accumulation in hepatoma cells, indicating that both proteins function redundantly to control TG content. Validation studies in primary human hepatocytes (PHHs) demonstrated DGAT2-dependent secretion of ApoE. While MTPi treatment did not elevate ApoE secretion, it induced increased sialylation of ApoE in the supernatants of PHHs. These results show that enhanced ApoE secretion compensates for the impaired ApoB function to maintain the lipid homeostasis, providing an alternative route to modulate lipid turnover in hepatoma cells.
Collapse
Affiliation(s)
- Kotomi Shinozaki
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Tomoko Honda
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emi Nishijima
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
2
|
Nedelkov D, Tsokolas ZE, Rodrigues MS, Sible I, Han SD, Kerman BE, Renteln M, Mack WJ, Pascoal TA, Yassine HN. Increased cerebrospinal fluid and plasma apoE glycosylation is associated with reduced levels of Alzheimer's disease biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629619. [PMID: 39763949 PMCID: PMC11702616 DOI: 10.1101/2024.12.20.629619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The apolipoprotein E ( APOE ) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is glycosylated with an O-linked Core-1 sialylated glycan at several sites, yet the impact and function of this glycosylation on AD biomarkers remains unclear. We examined apoE glycosylation in a cohort of cerebrospinal fluid (CSF, n=181) and plasma (n= 178) samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) stratified into 4 groups: cognitively normal (CN), Mild Cognitive Impairment (MCI), progressors and non-progressors based on delayed word recall performance over 4 years. We observed decreasing glycosylation from apoE2 > apoE3 > apoE4 in CSF, and in plasma (apoE3 > apoE4). ApoE glycosylation was reduced in the MCI compared with CN groups, and in progressors compared to non-progressors. In CSF, higher apoE glycosylation associated cross-sectionally with lower total tau (t-tau), p-tau181, and with higher Aβ 1-42 . Similar associations of apoE glycosylation with higher Aβ 1-42 were observed in plasma. In CSF, greater apoE4 glycosylation was associated with lower t-tau and p-tau181. Over a 6-year period, higher baseline levels of CSF apoE glycosylation predicted lower rates of increase in CSF t-tau and p-tau181 and lower rates of decrease in CSF Aβ 1-42 . These results indicate strong associations of apoE glycosylation with biomarkers of AD pathology independent of apoE genotype, warranting a deeper understanding of the functional role of apoE glycosylation on AD tau pathology.
Collapse
|
3
|
Lindner K, Gavin AC. Isoform- and cell-state-specific APOE homeostasis and function. Neural Regen Res 2024; 19:2456-2466. [PMID: 38526282 PMCID: PMC11090418 DOI: 10.4103/nrr.nrr-d-23-01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 03/26/2024] Open
Abstract
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling. It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them. Apolipoprotein E polymorphism, combined with environmental stresses and/or age-related alterations, influences the risk of developing late-onset Alzheimer's disease. In this review, we discuss our current knowledge of how apolipoprotein E homeostasis, i.e. its synthesis, secretion, degradation, and lipidation, is affected in Alzheimer's disease.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
5
|
Guan B, Cao X, Yang M, Yue X, Liu D. Comparative Site-Specific O-Glycosylation Analysis of the Milk Fat Globule Membrane Proteome in Donkey Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1405-1417. [PMID: 38181196 DOI: 10.1021/acs.jafc.3c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Donkey milk fat globule membrane (MFGM) proteins are a class of membrane-bound secreted proteins with broad-spectrum biofunctional activities; however, their site-specific O-glycosylation landscapes have not been systematically mapped. In this study, an in-depth MFGM O-glycoproteome profile of donkey milk during lactation was constructed based on an intact glycopeptide-centered, label-free glycoproteomics pipeline, with 2137 site-specific O-glycans from 1121 MFGM glycoproteins and 619 site-specific O-glycans from 217 MFGM glycoproteins identified in donkey colostrum and donkey mature milk, respectively. As lactation progressed, the number of site-specific O-glycans from three glycoproteins significantly increased, whereas that of 11 site-specific O-glycans from five glycoproteins significantly decreased. Furthermore, donkey MFGM O-glycoproteins with core-1 and core-2 core structures and Lewis and sialylated branch structures may be involved in regulating apoptosis. The findings of this study reveal the differences in the composition of donkey MFGM O-glycoproteins and their site-specific O-glycosylation modification dynamic change rules during lactation, providing a molecular basis for understanding the complexity and biological functions of donkey MFGM protein O-glycosylation.
Collapse
Affiliation(s)
- Boyuan Guan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
6
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
7
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. Cell Mol Life Sci 2023; 80:376. [PMID: 38010414 PMCID: PMC11061799 DOI: 10.1007/s00018-023-05026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Mari N Nakamura
- Undergraduate program, Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT, 05753, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
8
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551703. [PMID: 37577501 PMCID: PMC10418262 DOI: 10.1101/2023.08.04.551703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Mari N. Nakamura
- Undergraduate program, Department of Chemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT 05753VT United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
9
|
Meuret CJ, Hu Y, Smadi S, Bantugan MA, Xian H, Martinez AE, Krauss RM, Ma QL, Nedelkov D, Yassine HN. An association of CSF apolipoprotein E glycosylation and amyloid-beta 42 in individuals who carry the APOE4 allele. Alzheimers Res Ther 2023; 15:96. [PMID: 37221560 PMCID: PMC10204298 DOI: 10.1186/s13195-023-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer's disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aβ42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aβ42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aβ42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aβ metabolism and can be a potential target of treatment.
Collapse
Affiliation(s)
- Cristiana J Meuret
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Yueming Hu
- Isoformix Inc., 9830 S. 51. St. Suite B-113, Phoenix, AZ, 85044, USA
| | - Sabrina Smadi
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Mikaila Ann Bantugan
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Haotian Xian
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Ashley E Martinez
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | | | - Qiu-Lan Ma
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA
| | - Dobrin Nedelkov
- Isoformix Inc., 9830 S. 51. St. Suite B-113, Phoenix, AZ, 85044, USA.
| | - Hussein N Yassine
- University of Southern California, 2250 Alcazar St, Rm 210, Los Angeles, CA, 90033, USA.
| |
Collapse
|
10
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1189-1204. [PMID: 36817952 PMCID: PMC9932299 DOI: 10.1016/j.csbj.2023.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Three common Apolipoprotein E isoforms, ApoE2, ApoE3, and ApoE4, are key regulators of lipid homeostasis, among other functions. Apolipoprotein E can interact with amyloid proteins. The isoforms differ by one or two residues at positions 112 and 158, and possess distinct structural conformations and functions, leading to isoform-specific roles in amyloid-based neurodegenerative diseases. Over 30 different amyloid proteins have been found to share similar characteristics of structure and toxicity, suggesting a common interactome. The molecular and genetic interactions of ApoE with amyloid proteins have been extensively studied in neurodegenerative diseases, but have not yet been well connected and clarified. Here we summarize essential features of the interactions between ApoE and different amyloid proteins, identify gaps in the understanding of the interactome and propose the general interaction mechanism between ApoE isoforms and amyloid proteins. Perhaps more importantly, this review outlines what we can learn from the interactome of ApoE and amyloid proteins; that is the need to see both ApoE and amyloid proteins as a basis to understand neurodegenerative diseases.
Collapse
|
12
|
Lennol MP, Sánchez-Domínguez I, Cuchillo-Ibañez I, Camporesi E, Brinkmalm G, Alcolea D, Fortea J, Lleó A, Soria G, Aguado F, Zetterberg H, Blennow K, Sáez-Valero J. Apolipoprotein E imbalance in the cerebrospinal fluid of Alzheimer's disease patients. Alzheimers Res Ther 2022; 14:161. [PMID: 36324176 PMCID: PMC9628034 DOI: 10.1186/s13195-022-01108-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without β-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.
Collapse
Affiliation(s)
- Matthew Paul Lennol
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d’Alacant, Spain ,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain
| | - Irene Sánchez-Domínguez
- grid.5841.80000 0004 1937 0247Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Inmaculada Cuchillo-Ibañez
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d’Alacant, Spain ,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.513062.30000 0004 8516 8274Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Elena Camporesi
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Daniel Alcolea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d’Alacant, Spain ,grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Guadalupe Soria
- grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Laboratory of Surgical Neuroanatomy, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Fernando Aguado
- grid.5841.80000 0004 1937 0247Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK ,grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
13
|
Kim H, Devanand DP, Carlson S, Goldberg TE. Apolipoprotein E Genotype e2: Neuroprotection and Its Limits. Front Aging Neurosci 2022; 14:919712. [PMID: 35912085 PMCID: PMC9329577 DOI: 10.3389/fnagi.2022.919712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this review, we comprehensively, qualitatively, and critically synthesized several features of APOE-e2, a known APOE protective variant, including its associations with longevity, cognition, and neuroimaging, and neuropathology, all in humans. If e2’s protective effects—and their limits—could be elucidated, it could offer therapeutic windows for Alzheimer’s disease (AD) prevention or amelioration. Literature examining e2 within the years 1994–2021 were considered for this review. Studies on human subjects were selectively reviewed and were excluded if observation of e2 was not specified. Effects of e2 were compared with e3 and e4, separately and as a combined non-e2 group. Our examination of existing literature indicated that the most robust protective role of e2 is in longevity and AD neuropathologies, but e2’s effect on cognition and other AD imaging markers (brain structure, function, and metabolism) were inconsistent, thus inconclusive. Notably, e2 was associated with greater risk of non-AD proteinopathies and a disadvantageous cerebrovascular profile. We identified multiple methodological shortcomings of the literature on brain function and cognition that could have contributed to inconsistent and potentially misleading findings. We make careful interpretations of existing findings and provide directions for research strategies that could effectively examine the independent and unbiased effect of e2 on AD risk.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Scott Carlson
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Terry E. Goldberg,
| |
Collapse
|