1
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal maldevelopment in the R6/2 mouse model of juvenile Huntington's disease. Neurobiol Dis 2025; 204:106752. [PMID: 39644979 DOI: 10.1016/j.nbd.2024.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024] Open
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABAA receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| | - Sandra M Holley
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Allison Peng
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
3
|
Vasilkovska T, Salajeghe S, Vanreusel V, Van Audekerke J, Verschuuren M, Hirschler L, Warnking J, Pintelon I, Pustina D, Cachope R, Mrzljak L, Muñoz-Sanjuan I, Barbier EL, De Vos WH, Van der Linden A, Verhoye M. Longitudinal alterations in brain perfusion and vascular reactivity in the zQ175DN mouse model of Huntington's disease. J Biomed Sci 2024; 31:37. [PMID: 38627751 PMCID: PMC11022401 DOI: 10.1186/s12929-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Somaie Salajeghe
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Verdi Vanreusel
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Warnking
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Isabel Pintelon
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Dorian Pustina
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
| | - Roger Cachope
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
| | - Ladislav Mrzljak
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
- Present Address: Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Ignacio Muñoz-Sanjuan
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc, Princeton, NJ, USA
- Present Address: Cajal Neuroscience Inc, Seattle, WA, USA
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Winnok H De Vos
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Wang Y, Ramandi D, Sepers MD, Mackay JP, Raymond LA. Age- and region-dependent cortical excitability in the zQ175 Huntington disease mouse model. Hum Mol Genet 2024; 33:387-399. [PMID: 37947186 PMCID: PMC10877458 DOI: 10.1093/hmg/ddad191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The neurodegenerative disorder, Huntington disease (HD), manifests as disorders of movement, cognition and mood. Although studies report abnormal corticostriatal synaptic function early in HD mouse models, less is known about cortical-cortical activity across brain regions and disease stages. Recently, we reported enhanced mesoscale spread of cortical responses to sensory stimulation in vivo at early-manifest stages of two HD mouse models. Here, we investigated cortical excitability of zQ175 HD-model mice compared to their wild-type littermates across different cell types, ages and/or cortical regions using ex vivo electrophysiology. Cortical pyramidal neurons (CPNs) in somatosensory cortex of zQ175 mice showed intrinsic hyper-excitability at 3-4 months, but hypo-excitability at early-manifest stage (8-9 months); reduced frequency of spontaneous excitatory postsynaptic currents (sEPSCs) was seen at both ages. In contrast, motor cortex CPNs in early-manifest zQ175 mice showed increased intrinsic excitability and sEPSC frequency. Large-amplitude excitatory discharges recorded from CPNs in early-manifest zQ175 mice showed increased frequency only in somatosensory cortex, suggesting the intrinsic hypo-excitability of these CPNs may be compensatory against cortical network hyper-excitability. Similarly, in early-manifest zQ175 mice, region-dependent differences were seen in fast-spiking interneurons (FSIs): somatosensory but not motor FSIs from early-manifest zQ175 mice had reduced intrinsic excitability. Moreover, CPNs showed decreased frequency of spontaneous inhibitory postsynaptic currents and increased excitatory-inhibitory (E-I) balance of evoked synaptic currents in somatosensory cortex. Aberrant large-amplitude discharges and reduced inhibitory drive may therefore underlie E-I imbalances that result in circuit changes and synaptic dysfunction in early-manifest HD.
Collapse
Affiliation(s)
- Yundi Wang
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Daniel Ramandi
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
- Graduate Program in Cell and Developmental Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 2A1, Canada
| | - Marja D Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
5
|
Vasilkovska T, Adhikari M, Van Audekerke J, Salajeghe S, Pustina D, Cachope R, Tang H, Liu L, Munoz-Sanjuan I, Van der Linden A, Verhoye M. Resting-state fMRI reveals longitudinal alterations in brain network connectivity in the zQ175DN mouse model of Huntington's disease. Neurobiol Dis 2023; 181:106095. [PMID: 36963694 DOI: 10.1016/j.nbd.2023.106095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Huntington's disease is an autosomal, dominantly inherited neurodegenerative disease caused by an expansion of the CAG repeats in exon 1 of the huntingtin gene. Neuronal degeneration and dysfunction that precedes regional atrophy result in the impairment of striatal and cortical circuits that affect the brain's large-scale network functionality. However, the evolution of these disease-driven, large-scale connectivity alterations is still poorly understood. Here we used resting-state fMRI to investigate functional connectivity changes in a mouse model of Huntington's disease in several relevant brain networks and how they are affected at different ages that follow a disease-like phenotypic progression. Towards this, we used the heterozygous (HET) form of the zQ175DN Huntington's disease mouse model that recapitulates aspects of human disease pathology. Seed- and Region-based analyses were performed at different ages, on 3-, 6-, 10-, and 12-month-old HET and age-matched wild-type mice. Our results demonstrate decreased connectivity starting at 6 months of age, most prominently in regions such as the retrosplenial and cingulate cortices, pertaining to the default mode-like network and auditory and visual cortices, part of the associative cortical network. At 12 months, we observe a shift towards decreased connectivity in regions such as the somatosensory cortices, pertaining to the lateral cortical network, and the caudate putamen, a constituent of the subcortical network. Moreover, we assessed the impact of distinct Huntington's Disease-like pathology of the zQ175DN HET mice on age-dependent connectivity between different brain regions and networks where we demonstrate that connectivity strength follows a nonlinear, inverted U-shape pattern, a well-known phenomenon of development and normal aging. Conversely, the neuropathologically driven alteration of connectivity, especially in the default mode and associative cortical networks, showed diminished age-dependent evolution of functional connectivity. These findings reveal that in this Huntington's disease model, altered connectivity starts with cortical network aberrations which precede striatal connectivity changes, that appear only at a later age. Taken together, these results suggest that the age-dependent cortical network dysfunction seen in rodents could represent a relevant pathological process in Huntington's disease progression.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Mohit Adhikari
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Somaie Salajeghe
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | | | | | - Haiying Tang
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Water-Reaching Platform for Longitudinal Assessment of Cortical Activity and Fine Motor Coordination Defects in a Huntington Disease Mouse Model. eNeuro 2023; 10:ENEURO.0452-22.2022. [PMID: 36596592 PMCID: PMC9833054 DOI: 10.1523/eneuro.0452-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD), caused by dominantly inherited expansions of a CAG repeat results in characteristic motor dysfunction. Although gross motor defects have been extensively characterized in multiple HD mouse models using tasks such as rotarod and beam walking, less is known about forelimb deficits. We develop a high-throughput alternating reward/nonreward water-reaching task and training protocol conducted daily over approximately two months to simultaneously monitor forelimb impairment and mesoscale cortical changes in GCaMP activity, comparing female zQ175 (HD) and wild-type (WT) littermate mice, starting at ∼5.5 months. Behavioral analysis of the water-reaching task reveals that HD mice, despite learning the water-reaching task as proficiently as wild-type mice, take longer to learn the alternating event sequence as evident by impulsive (noncued) reaches and initially display reduced cortical activity associated with successful reaches. At this age gross motor defects determined by tapered beam assessment were not apparent. Although wild-type mice displayed no significant changes in cortical activity and reaching trajectory throughout the testing period, HD mice exhibited an increase in cortical activity, especially in the secondary motor and retrosplenial cortices, over time, as well as longer and more variable reaching trajectories by approximately seven months. HD mice also experienced a progressive reduction in successful performance. Tapered beam and rotarod tests as well as reduced DARPP-32 expression (striatal medium spiny neuron marker) after water-reaching assessment confirmed HD pathology. The water-reaching task can be used to inform on a daily basis, HD and other movement disorder onset and manifestation, therapeutic intervention windows, and test drug efficacy.
Collapse
|
7
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|