1
|
Godlevsky LS, Pervak MP, Yehorenko OS, Marchenko SV. Effects of electrical stimulation of the lateral cerebellar nucleus on PTZ-kindled seizures. Epilepsy Behav 2025; 167:110377. [PMID: 40121731 DOI: 10.1016/j.yebeh.2025.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND In recent years, the cerebellum and its nuclei have become an essential target for understanding and suppressing the mechanisms of seizures. This study aimed to investigate the effects of electrical stimulation (ES) applied to the Lateral Cerebellar Nucleus (LCN) in rats at the early and fully developed pentylenetetrazol (PTZ) kindled seizures. METHODS The experimental groups were represented by the male Wistar rats kindled with PTZ (35.0 mg/kg, i.p.) to myoclonus (9-11 PTZ injections) and generalized tonic-clonic seizures (21 PTZ injections). Unilateral ES (100 Hz) was delivered daily for five days after the last kindled PTZ administration, with PTZ seizure testing after ES. Seizures were videotaped, and the severity score was determined in a blinded manner. RESULTS ES of LCN performed at the early stage of kindling facilitated the appearance of myoclonus, and increased seizure severity by 30.2 % points compared to the control group (H = 6.94; df = 2; p = 0.037) with the spikes frequency generation increased during the poststimulation period (H = 27.34; df = 5; p < 0.001). In fully developed kindling, ES prevented generalized seizure and reduced seizure severity by 27.5 % (H = 9.385; df = 2; p = 0.009), while myoclonuses were present with spikes generation in brain structures. CONCLUSION The data obtained showed that repeated ES of LCN at the early stage promoted myoclonic seizures, while in fully PTZ-kindled rats, it suppressed generalized seizure fits, which were substituted with myoclonus.
Collapse
Affiliation(s)
- Leonid S Godlevsky
- Department of Physiology and Biophysics, Odesa National Medical University, Odesa, Ukraine.
| | - Mykhailo P Pervak
- Department of Simulative Medical Technologies, Odesa National Medical University, Odesa, Ukraine
| | - Olha S Yehorenko
- Department of Simulative Medical Technologies, Odesa National Medical University, Odesa, Ukraine
| | - Serhii V Marchenko
- Department of Physiology and Biophysics, Odesa National Medical University, Odesa, Ukraine
| |
Collapse
|
2
|
Streng ML, Kottke BW, Wasserman EM, Zecker L, Luong L, Kodandaramaiah S, Ebner TJ, Krook-Magnuson E. Early and widespread cerebellar engagement during hippocampal seizures and interictal discharges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.593969. [PMID: 38798649 PMCID: PMC11118491 DOI: 10.1101/2024.05.14.593969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite research illustrating the cerebellum may be a critical circuit element in processes beyond motor control, and growing evidence for a role of the cerebellum in a range of neurological disorders, including the epilepsies, remarkably little is known about cerebellar engagement during seizures. We therefore implemented a novel method for repeated widefield calcium imaging of the cerebellum in awake, chronically epileptic mice. We found widespread changes in cerebellar Purkinje cell activity during temporal lobe seizures. Changes were noted in the anterior and posterior cerebellum (lobules IV-VII), along the midline (vermis), and both ipsilaterally and contralaterally (in the simplex and Crus I) to the seizure focus. This was true for both overtly behavioral seizures and for hippocampal seizures that remained electrographic only -- arguing against cerebellar modulation simply reflecting motor components. Moreover, even brief interictal spikes produced widespread alterations in cerebellar activity. Perhaps most remarkably, changes in the cerebellum also occurred prior to any noticeable change in the hippocampal electrographic recordings. Together these results underscore the relevance of the cerebellum with respect to seizure networks, warranting a more consistent consideration of the cerebellum in epilepsy.
Collapse
|
3
|
Elder C, Kerestes R, Opal P, Marchese M, Devinsky O. The cerebellum in epilepsy. Epilepsia 2025. [PMID: 40079849 DOI: 10.1111/epi.18316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
The cerebellum, a subcortical structure, is traditionally linked to sensorimotor integration and coordination, although its role in cognition and affective behavior, as well as epilepsy, is increasingly recognized. Cerebellar dysfunction in patients with epilepsy can result from genetic disorders, antiseizure medications, seizures, and seizure-related trauma. Impaired cerebellar function, regardless of cause, can cause ataxia (imbalance, impaired coordination, unsteady gait), tremor, gaze-evoked nystagmus, impaired slow gaze pursuit and saccade accuracy, as well as speech deficits (slurred, scanning, or staccato). We explore how cerebellar dysfunction can contribute to epilepsy, reviewing data on genetic, infectious, and neuroinflammatory disorders. Evidence of cerebellar dysfunction in epilepsy comes from animal studies as well as human neuropathology and structural magnetic resonance imaging (MRI), functional and diffusion tensor MRI, positron emission and single photon emission computerized tomography, and depth electrode electro-encephalography studies. Cerebellar lesions can infrequently cause epilepsy, with focal motor, autonomic, and focal to bilateral tonic-clonic seizures. Antiseizure medication-resistant epilepsy typically presents in infancy or before age 1 year with hemifacial clonic or tonic seizures ipsilateral to the cerebellar mass. Lesions are typically asymmetric benign or low-grade tumors in the floor of the fourth ventricle involving the cerebellar peduncles and extending to the cerebellar hemisphere. Electrical stimulation of the cerebellum has yielded conflicting results on efficacy, although methodological issues confound interpretation. Epilepsy-related comorbidities including cognitive and affective disorders, falls, and sudden unexpected death in epilepsy may also be impacted by cerebellar dysfunction. We discuss how cerebellar dysfunction may drive seizures and how genetic epilepsies, seizures and seizure therapies may drive cerebellar dysfunction, and how our understanding of epilepsy-related comorbidities through basic neuroscience, animals models and patient studies can advance our understanding and improve patient outcomes.
Collapse
Affiliation(s)
- Christopher Elder
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York, USA
| | - Rebecca Kerestes
- Department of Psychology, Monash University, Clayton, Victoria, Australia
| | - Puneet Opal
- Denning Ataxia Center, Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Orrin Devinsky
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York, USA
| |
Collapse
|
4
|
Fu W, Lin Q, Fu Z, Yang T, Shi D, Ma P, Su H, Wang Y, Liu G, Ding J, Shi H, Cheng D. Synthesis and evaluation of TSPO-targeting radioligand [ 18F]F-TFQC for PET neuroimaging in epileptic rats. Acta Pharm Sin B 2025; 15:722-736. [PMID: 40177559 PMCID: PMC11959965 DOI: 10.1016/j.apsb.2024.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 05/25/2024] [Indexed: 04/05/2025] Open
Abstract
The translocator protein (TSPO) positron emission tomography (PET) can noninvasively detect neuroinflammation associated with epileptogenesis and epilepsy. This study explored the role of the TSPO-targeting radioligand [18F]F-TFQC, an m-trifluoromethyl ER176 analog, in the PET neuroimaging of epileptic rats. Initially, [18F]F-TFQC was synthesized with a radiochemical yield of 8%-10% (EOS), a radiochemical purity of over 99%, and a specific activity of 38.21 ± 1.73 MBq/nmol (EOS). After determining that [18F]F-TFQC exhibited good biochemical properties, [18F]F-TFQC PET neuroimaging was performed in epileptic rats at multiple time points in various stages of disease progression. PET imaging showed specific [18F]F-TFQC uptake in the right hippocampus (KA-injected site, i.e., epileptogenic zone), which was most pronounced at 1 week (T/NT 1.63 ± 0.21) and 1 month (T/NT 1.66 ± 0.20). The PET results were further validated using autoradiography and pathological analysis. Thus, [18F]F-TFQC can reflect the TSPO levels and localize the epileptogenic zone, thereby offering the potential for monitoring neuroinflammation and guiding anti-inflammatory treatment in patients with epilepsy.
Collapse
Affiliation(s)
- Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Tingting Yang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Pengcheng Ma
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongxing Su
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
5
|
Widdess-Walsh P. ENIGMA in ACAPULCO: Machine Learning Localization of Cerebellar Anatomy in Epilepsy. Epilepsy Curr 2025; 25:20-22. [PMID: 39678782 PMCID: PMC11638925 DOI: 10.1177/15357597241303615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Patterns of Subregional Cerebellar Atrophy Across Epilepsy Syndromes: An ENIGMA-Epilepsy Study. Kerestes R, Perry A, Vivash L, O'Brien TJ, Alvim MKM, Arienzo D, Aventurato ÍK, Ballerini A, Baltazar GF, Bargalló N, Bender B, Brioschi R, Bürkle E, Caligiuri ME, Cendes F, de Tisi J, Duncan JS, Engel JP Jr, Foley S, Fortunato F, Gambardella A, Giacomini T, Guerrini R, Hall G, Hamandi K, Ives-Deliperi V, João RB, Keller SS, Kleiser B, Labate A, Lenge M, Marotta C, Martin P, Mascalchi M, Meletti S, Owens-Walton C, Parodi CB, Pascual-Diaz S, Powell D, Rao J, Rebsamen M, Reiter J, Riva A, Rüber T, Rummel C, Scheffler F, Severino M, Silva LS, Staba RJ, Stein DJ, Striano P, Taylor PN, Thomopoulos SI, Thompson PM, Tortora D, Vaudano AE, Weber B, Wiest R, Winston GP, Yasuda CL, Zheng H, McDonald CR, Sisodiya SM, Harding IH; ENIGMA-Epilepsy Working Group. Epilepsia 2024;65(4):1072-1091. Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (d max = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (d max = .47), crus I/II (d max = .39), VIIIA (d max = .45), and VIIIB (d max = .40). Earlier age at seizure onset (ηρ 2max = .05) and longer epilepsy duration (ηρ 2max = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.
Collapse
|
6
|
Sablik M, Fleury MN, Binding LP, Carey DP, d'Avossa G, Baxendale S, Winston GP, Duncan JS, Sidhu MK. Long-term neuroplasticity in language networks after anterior temporal lobe resection. Epilepsia 2025; 66:207-225. [PMID: 39503631 PMCID: PMC11742647 DOI: 10.1111/epi.18147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Anterior temporal lobe resection (ATLR) is an effective treatment for drug-resistant temporal lobe epilepsy (TLE), although language deficits may occur after both left and right ATLR. Functional reorganization of the language network has been observed in the ipsilateral and contralateral hemispheres within 12 months after ATLR, but little is known of longer-term plasticity effects. Our aim was to examine the plasticity of language functions up to a decade after ATLR, in relation to cognitive profiles. METHODS We examined 24 TLE patients (12 left [LTLE]) and 10 controls across four time points: pre-surgery, 4 months, 12 months, and ~9 years post-ATLR. Participants underwent standard neuropsychological assessments (naming, phonemic, and categorical fluency tests) and a verbal fluency functional magnetic resonance imaging (fMRI) task. Using a flexible factorial design, we analyzed longitudinal fMRI activations from 12 months to ~9 years post-ATLR, relative to controls, with separate analyses for people with hippocampal sclerosis (HS). Change in cognitive profiles was correlated with the long-term change in fMRI activations to determine the "efficiency" of reorganized networks. RESULTS LTLE patients had increased long-term engagement of the left extra-temporal and contralateral temporal regions, with better language performance linked to bilateral activation. Those with HS exhibited more widespread bilateral activations. RTLE patients showed plasticity in the left extra-temporal regions, with better language outcomes associated with these areas. Both groups of patients achieved cognitive stability over 9 years, with more than 50% of LTLE patients improving. Older age, longer epilepsy duration, and lower pre-operative cognitive reserve negatively affected long-term language performance. SIGNIFICANCE Neuroplasticity continues for up to ~9 years post-epilepsy surgery in LTLE and RTLE, with effective language recovery linked to bilateral engagement of temporal and extra-temporal regions. This adaptive reorganization is associated with improved cognitive outcomes, challenging the traditional view of localized surgery effects. These findings emphasize the need for early intervention, tailored pre-operative counseling, and the potential for continued cognitive gains with extended post-ATLR rehabilitation.
Collapse
Affiliation(s)
- Maria Sablik
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
- College of Medicine and Health, Cognitive Neuroscience InstituteBangor UniversityBangorUK
| | - Marine N. Fleury
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | - David P. Carey
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | - Giovanni d'Avossa
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | - Sallie Baxendale
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitChalfont Centre for EpilepsyChalfont St. PeterUK
| |
Collapse
|
7
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct Functional Classes of CA1 Hippocampal Interneurons Are Modulated by Cerebellar Stimulation in a Coordinated Manner. J Neurosci 2024; 44:e0887242024. [PMID: 39448264 PMCID: PMC11622179 DOI: 10.1523/jneurosci.0887-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving male and female mice, we found optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally found that subsets of CA1 interneurons show altered activity during object investigations. Importantly, these interneurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. We examined two different stimulation locations (IV/V vermis or simplex) and two different stimulation approaches (7 Hz or a single 1 s light pulse)-in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that CA1 interneurons are impacted by cerebellar manipulation in a bidirectional and coordinated fashion and are therefore likely to play an important role in cerebello-hippocampal communication.
Collapse
Affiliation(s)
- Jessica M Froula
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jarrett J Rose
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chris Krook-Magnuson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
8
|
Liu T, Wang S, Tang Y, Jiang S, Lin H, Li F, Yao D, Zhu X, Luo C, Li Q. Structural and functional alterations in MRI-negative drug-resistant epilepsy and associated gene expression features. Neuroimage 2024; 302:120908. [PMID: 39490944 DOI: 10.1016/j.neuroimage.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroimaging techniques have been widely used in the study of epilepsy. However, structural and functional changes in the MRI-negative drug-resistant epilepsy (DRE) and the genetic mechanisms behind the structural alterations remain poorly understood. Using structural and functional MRI, we analyzed gray matter volume (GMV) and regional homogeneity (ReHo) in DRE, drug-sensitive epilepsy (DSE) and healthy controls. Gene expression data from Allen human brain atlas and GMV/ReHo were evaluated to obtain drug resistance-related and epilepsy-associated gene expression and compared with real transcriptional data in blood. We found structural and functional alterations in the cerebellum of DRE patients, which may be related to the mechanisms of drug resistance in DRE. Our study confirms that changes in brain morphology and regional activity in DRE patients may be associated with abnormal gene expression related to nervous system development. And SP1, as an important transcription factor, plays an important role in the mechanism of drug resistance.
Collapse
Affiliation(s)
- Ting Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Sheng Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Yingjie Tang
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Sisi Jiang
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Huixia Lin
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Fei Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, PR China
| | - Xian Zhu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China.
| | - Cheng Luo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, PR China.
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China.
| |
Collapse
|
9
|
So M, Kong J, Kim YT, Kim KT, Kim H, Kim JB. Increased cerebellar vermis volume following repetitive transcranial magnetic stimulation in drug-resistant epilepsy: a voxel-based morphometry study. Front Neurosci 2024; 18:1421917. [PMID: 39524030 PMCID: PMC11544559 DOI: 10.3389/fnins.2024.1421917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Voxel-based morphometry (VBM) was applied to explore structural changes induced by repetitive transcranial magnetic stimulation (rTMS) and the relationship with clinical outcomes. Moreover, the relationship between each segmented regional gray matter (GM) volume was investigated to identify circuits involved in the rTMS treatment process in patients with drug-resistant epilepsy (DRE). Methods Nineteen patients with DRE were finally included in the analysis. A session of rTMS was applied for 5 consecutive days. Participants received either 1,000 or 3,000 pulses, at a frequency of 0.5 Hz and the intensity was set at 90% of the individual's resting motor threshold. VBM analysis was performed to explore regional GM volume changes 2 months after rTMS application. The regional volume change was correlated with seizure reduction rate. Relationships between changes in GM volume in each anatomically parcellated region were analyzed using a fully-automated segmentation pipeline. Results Compared to the baseline, seizure frequency was reduced, and quality of life was improved after rTMS treatment. Regional volume was increased in the cerebellar vermis 2 months after rTMS application. The increased cerebellar vermis volume correlated with the reduced seizure frequency. Regional volume changes in the cerebellar vermis were correlated with changes in the subcortical and cortical GM regions including the thalamus, caudate, and frontal cortex. Discussion These results indicate that rTMS treatment effectively reduced seizure frequency in patients with DRE. Increased volume in the cerebellar vermis and activations of the cerebello-thalamo-cortical circuit may be a crucial mechanism underlying the effectiveness of rTMS application in patients with DRE.
Collapse
Affiliation(s)
- Mingyeong So
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jooheon Kong
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Tak Kim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Keun-Tae Kim
- Department of Convergence Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hayom Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Qin L, Zhou Q, Sun Y, Pang X, Chen Z, Zheng J. Dynamic functional connectivity and gene expression correlates in temporal lobe epilepsy: insights from hidden markov models. J Transl Med 2024; 22:763. [PMID: 39143498 PMCID: PMC11323657 DOI: 10.1186/s12967-024-05580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUD Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qin Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuting Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct functional classes of CA1 hippocampal interneurons are modulated by cerebellar stimulation in a coordinated manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594213. [PMID: 38798335 PMCID: PMC11118308 DOI: 10.1101/2024.05.14.594213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving animals, we find optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally find that subsets of CA1 interneurons show altered activity during object investigations, suggesting a role in the processing of objects in space. Importantly, these neurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. Therefore, CA1 interneurons play a role in object processing and in cerebellar impacts on the hippocampus, providing insight into previously noted altered CA1 processing of objects in space with cerebellar stimulation. We examined two different stimulation locations (IV/V Vermis; Simplex) and two different stimulation approaches (7Hz or a single 1s light pulse) - in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that the cerebellum impacts CA1 interneurons in a bidirectional and coordinated fashion, positioning them to play an important role in cerebello-hippocampal communication. Significance Statement Acute manipulation of the cerebellum can affect the activity of cells in CA1, and perturbing normal cerebellar functioning can affect hippocampal-dependent spatial processing, including the processing of objects in space. Despite the importance of interneurons on the local hippocampal circuit, it was unknown how cerebellar activation impacts CA1 inhibitory neurons. We find that stimulating the cerebellum robustly affects multiple populations of CA1 interneurons in a bidirectional, coordinated manner, according to their functional profiles during behavior, including locomotion and object investigations. Our work also provides support for a role of CA1 interneurons in spatial processing of objects, with populations of interneurons showing altered activity during object investigations.
Collapse
|
13
|
Prati JM, Pontes-Silva A, Gianlorenço ACL. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review. Behav Brain Res 2024; 465:114933. [PMID: 38458437 DOI: 10.1016/j.bbr.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The cerebellum has a large network of neurons that communicate with several brain structures and participate in different functions. Recent studies have demonstrated that the cerebellum is not only associated with motor functions but also participates in several non-motor functions. It is suggested that the cerebellum can modulate behavior through many connections with different nervous system structures in motor, sensory, cognitive, autonomic, and emotional processes. Recently, a growing number of clinical and experimental studies support this theory and provide further evidence. In light of recent findings, a comprehensive review is needed to summarize the knowledge on the influence of the cerebellum on the processing of different functions. Therefore, the aim of this review was to describe the neuroanatomical aspects of the activation of the cerebellum and its connections with other structures of the central nervous system in different behaviors.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
14
|
Streng ML. The bidirectional relationship between the cerebellum and seizure networks: a double-edged sword. Curr Opin Behav Sci 2023; 54:101327. [PMID: 38800711 PMCID: PMC11126210 DOI: 10.1016/j.cobeha.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epilepsy is highly prevalent and notoriously pharmacoresistant. New therapeutic interventions are urgently needed, both for preventing the seizures themselves as well as negative outcomes and comorbidities associated with chronic epilepsy. While the cerebellum is not traditionally associated with epilepsy or seizures, research over the past decade has outlined the cerebellum as a brain region that is uniquely suited for both therapeutic needs. This review discusses our current understanding of the cerebellum as a key node within seizure networks, capable of both attenuating seizures in several animal models, and conversely, prone to altered structure and function in chronic epilepsy. Critical next steps are to advance therapeutic modulation of the cerebellum more towards translation, and to provide a more comprehensive characterization of how the cerebellum is impacted by chronic epilepsy, in order to subvert negative outcomes.
Collapse
Affiliation(s)
- M L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Chen Z, Wang Y, Avoli M. Preface to the special issue neural circuit mechanisms in epilepsy and targeted therapeutics. Neurobiol Dis 2023; 185:106256. [PMID: 37562655 DOI: 10.1016/j.nbd.2023.106256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Affiliation(s)
- Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, QC, Canada.
| |
Collapse
|