1
|
Han X, Wu G, Liu X, Song X, Cui L. Research on a Support-Free Five-Degree-of-Freedom Additive Manufacturing Method. MICROMACHINES 2024; 15:855. [PMID: 39064366 PMCID: PMC11279049 DOI: 10.3390/mi15070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
When using traditional 3D printing equipment to manufacture overhang models, it is often necessary to generate support structures to assist in the printing of parts. The post-processing operation of removing the support structures after printing is time-consuming and wastes material. In order to solve the above problems, a support-free five-degree-of-freedom additive manufacturing (SFAM) method is proposed. Through the homogeneous coordinate transformation matrix, the forward and inverse kinematics equations of the five-degree-of-freedom additive manufacturing device (FAMD) are established, and the joint variables of each axis are solved to realize the five-axis linkage of the additive manufacturing (AM) device. In this research work, initially, the layered curve is obtained through the structural lines of the overhang model, and a continuous path planning of the infill area is performed on it, and further, the part printing experiments are conducted on the FAMD. Compared with the traditional three-axis additive manufacturing (TTAM) method, the SFAM method shortens the printing time by 23.58% and saves printing materials by 33.06%. The experimental results show that the SFAM method realizes the support-free printing of overhang models, which not only improves the accuracy of the parts but also the manufacturing efficiency of the parts.
Collapse
Affiliation(s)
- Xingguo Han
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China;
- Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin University of Aerospace Technology, Guilin 541004, China; (X.S.); (L.C.)
- Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Aerospace Technology, Guilin 541004, China
| | - Gaofei Wu
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China;
| | - Xuan Liu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Xiaohui Song
- Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin University of Aerospace Technology, Guilin 541004, China; (X.S.); (L.C.)
- Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Aerospace Technology, Guilin 541004, China
| | - Lixiu Cui
- Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin University of Aerospace Technology, Guilin 541004, China; (X.S.); (L.C.)
- Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Aerospace Technology, Guilin 541004, China
| |
Collapse
|
2
|
Scherer K, Huwer A, Ulber R, Wahl M. Optimizing Luminous Transmittance of a Three-Dimensional-Printed Fixed Bed Photobioreactor. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:467-475. [PMID: 38689931 PMCID: PMC11057691 DOI: 10.1089/3dp.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of innovative production processes and the optimization of photobioreactors play an important role in generating industrial competitive production technologies for phototrophic biofilms. With emerse photobioreactors a technology was introduced that allowed efficient surface attached cultivation of terrestrial cyanobacteria. However, the productivity of emerse photobioreactors depends on the available cultivation surface. By the implementation of biocarriers to the bioreactor volume, the cultivation surface can be increased which potentially improves productivity and thus the production of valuable compounds. To investigate the surface attached cultivation on biocarriers new photobioreactors need to be developed. Additive manufacturing (AM) offers new opportunities for the design of photobioreactors but producing the needed transparent parts can be challenging using AM techniques. In this study an emerse fixed bed photobioreactor was designed for the use of biocarriers and manufactured using different AM processes. To validate the suitability of the photobioreactor for phototrophic cultivation, the optical properties of three-dimensional (3D)-printed transparent parts and postprocessing techniques to improve luminous transmittance of the components were investigated. We found that stereolithography 3D printing can produce parts with a high luminous transmittance of over 85% and that optimal postprocessing by sanding and clear coating improved the clarity and transmittance to more than 90%. Using the design freedom of AM resulted in a bioreactor with reduced part count and improved handling. In summary, we found that modern 3D-printing technologies and materials are suitable for the manufacturing of functional photobioreactor prototypes.
Collapse
Affiliation(s)
- Kai Scherer
- Department of Environmental Planning & Technology, Trier University of Applied Sciences, Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany
| | - Adrian Huwer
- Department of Environmental Planning & Technology, Trier University of Applied Sciences, Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Wahl
- Department of Environmental Planning & Technology, Trier University of Applied Sciences, Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany
| |
Collapse
|
3
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
4
|
Gatto ML, Mengucci P, Mattioli-Belmonte M, Munteanu D, Nasini R, Tognoli E, Denti L, Gatto A. Features of Vat-Photopolymerized Masters for Microfluidic Device Manufacturing. Bioengineering (Basel) 2024; 11:80. [PMID: 38247957 PMCID: PMC10813418 DOI: 10.3390/bioengineering11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The growing interest in advancing microfluidic devices for manipulating fluids within micrometer-scale channels has prompted a shift in manufacturing practices, moving from single-component production to medium-size batches. This transition arises due to the impracticality of lab-scale manufacturing methods in accommodating the increased demand. This experimental study focuses on the design of master benchmarks 1-5, taking into consideration critical parameters such as rib width, height, and the relative width-to-height ratio. Notably, benchmarks 4 and 5 featured ribs that were strategically connected to the inlet, outlet, and reaction chamber of the master, enhancing their utility for subsequent replica production. Vat photopolymerization was employed for the fabrication of benchmarks 1-5, while replicas of benchmarks 4 and 5 were generated through polydimethylsiloxane casting. Dimensional investigations of the ribs and channels in both the master benchmarks and replicas were conducted using an optical technique validated through readability analysis based on the Michelson global contrast index. The primary goal was to evaluate the potential applicability of vat photopolymerization technology for efficiently producing microfluidic devices through a streamlined production process. Results indicate that the combination of vat photopolymerization followed by replication is well suited for achieving a minimum rib size of 25 µm in width and an aspect ratio of 1:12 for the master benchmark.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Paolo Mengucci
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Daniel Munteanu
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
| | - Roberto Nasini
- Prosilas S.r.l., Via Terracini 14, 60212 Civitanova Marche, Italy
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| | - Lucia Denti
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| | - Andrea Gatto
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| |
Collapse
|
5
|
Heuer C, Preuß J, Habib T, Enders A, Bahnemann J. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci 2022; 22:744-759. [PMID: 36514534 PMCID: PMC9731604 DOI: 10.1002/elsc.202100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems-which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D-printed objects in biotechnology-ranging from miniaturized cultivation chambers to microfluidic lab-on-a-chip devices for diagnostics-are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Taieb Habib
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Anton Enders
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Janina Bahnemann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Cell Culture TechnologyFaculty of TechnologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
6
|
Wenger L, Radtke CP, Gerisch E, Kollmann M, Niemeyer CM, Rabe KS, Hubbuch J. Systematic evaluation of agarose- and agar-based bioinks for extrusion-based bioprinting of enzymatically active hydrogels. Front Bioeng Biotechnol 2022; 10:928878. [PMID: 36479432 PMCID: PMC9720278 DOI: 10.3389/fbioe.2022.928878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/07/2022] [Indexed: 10/28/2023] Open
Abstract
Extrusion-based 3D bioprinting enables the production of customized hydrogel structures that can be employed in flow reactors when printing with enzyme-containing inks. The present study compares inks based on either low-melt agarose or agar at different concentrations (3-6%) and loaded with the thermostable enzyme esterase 2 from the thermophilic organism Alicyclobacillus acidocaldarius (AaEst2) with regard to their suitability for the fabrication of such enzymatically active hydrogels. A customized printer setup including a heatable nozzle and a cooled substrate was established to allow for clean and reproducible prints. The inks and printed hydrogel samples were characterized using rheological measurements and compression tests. All inks were found to be sufficiently printable to create lattices without overhangs, but printing quality was strongly enhanced at 4.5% polymer or more. The produced hydrogels were characterized regarding mechanical strength and diffusibility. For both properties, a strong correlation with polymer concentration was observed with highly concentrated hydrogels being more stable and less diffusible. Agar hydrogels were found to be more stable and show higher diffusion rates than comparable agarose hydrogels. Enzyme leaching was identified as a major drawback of agar hydrogels, while hardly any leaching from agarose hydrogels was detected. The poor ability of agar hydrogels to permanently immobilize enzymes indicates their limited suitability for their employment in perfused biocatalytic reactors. Batch-based activity assays showed that the enzymatic activity of agar hydrogels was roughly twice as high as the activity of agarose hydrogels which was mostly attributed to the increased amount of enzyme leaching. Agarose bioinks with at least 4.5% polymer were identified as the most suitable of the investigated inks for the printing of biocatalytic reactors with AaEst2. Drawbacks of these inks are limited mechanical and thermal stability, not allowing the operation of a reactor at the optimum temperature of AaEst2 which is above the melting point of the employed low-melt agarose.
Collapse
Affiliation(s)
- Lukas Wenger
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten P. Radtke
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Eva Gerisch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Max Kollmann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kersten S. Rabe
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
7
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
8
|
He F, Ou Y, Liu J, Huang Q, Tang B, Xin F, Zhang J, Jiang M, Chen S, Yu Z. 3D Printed Biocatalytic Living Materials with Dual-Network Reinforced Bioinks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104820. [PMID: 34854551 DOI: 10.1002/smll.202104820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The field of living materials seeks to harness living cells as microfactories that can construct a material itself or enhance the performance of material in some manner. While recent advances in 3D printing allow microbe manipulation to create bespoke living materials, the effective coupling of these living components in reinforced bioink designs remains a major challenge due to the difficulty in building a robust and cell-friendly microenvironment. Here, a type of dual-network bioink is reported for the 3D printing of living materials with enhanced biocatalysis capabilities, where bioinks are readily printable and provide a biocompatible environment along with desirable mechanical performance. It is demonstrated that integrating microbes into these bioinks enables the direct printing of catalytically living materials with high cell viability and maintains metabolic activity, which those living materials can be preserved and reused. Further, a bacteria-algae coculture system is fabricated for the bioremediation of chemicals, giving rise to its potential field applications.
Collapse
Affiliation(s)
- Fukun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiu Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
9
|
Selective laser melting of Zn-Si-substituted hydroxyapatite. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
|
11
|
3D-printed micro bubble column reactor with integrated microsensors for biotechnological applications: From design to evaluation. Sci Rep 2021; 11:7276. [PMID: 33790348 PMCID: PMC8012708 DOI: 10.1038/s41598-021-86654-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
With the technological advances in 3D printing technology, which are associated with ever-increasing printing resolution, additive manufacturing is now increasingly being used for rapid manufacturing of complex devices including microsystems development for laboratory applications. Personalized experimental devices or entire bioreactors of high complexity can be manufactured within few hours from start to finish. This study presents a customized 3D-printed micro bubble column reactor (3D-µBCR), which can be used for the cultivation of microorganisms (e.g., Saccharomyces cerevisiae) and allows online-monitoring of process parameters through integrated microsensor technology. The modular 3D-µBCR achieves rapid homogenization in less than 1 s and high oxygen transfer with kLa values up to 788 h−1 and is able to monitor biomass, pH, and DOT in the fluid phase, as well as CO2 and O2 in the gas phase. By extensive comparison of different reactor designs, the influence of the geometry on the resulting hydrodynamics was investigated. In order to quantify local flow patterns in the fluid, a three-dimensional and transient multiphase Computational Fluid Dynamics model was successfully developed and applied. The presented 3D-µBCR shows enormous potential for experimental parallelization and enables a high level of flexibility in reactor design, which can support versatile process development.
Collapse
|
12
|
Bogdan E, Michorczyk P. 3D Printing in Heterogeneous Catalysis-The State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4534. [PMID: 33066083 PMCID: PMC7601972 DOI: 10.3390/ma13204534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.
Collapse
Affiliation(s)
- Elżbieta Bogdan
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | | |
Collapse
|
13
|
Schrüfer S, Sonnleitner D, Lang G, Schubert DW. A Novel Simple Approach to Material Parameters from Commonly Accessible Rheometer Data. Polymers (Basel) 2020; 12:polym12061276. [PMID: 32503125 PMCID: PMC7362223 DOI: 10.3390/polym12061276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
When characterizing the viscoelastic properties of polymers, shear rheological measurements are commonly the method of choice. These properties are known to affect extrusion and nozzle-based processes such as fiber melt spinning, cast film extrusion and 3D-printing. However, an adequate characterization of shear thinning polymers can be challenging and still insufficient to not only describe but predict process relevant influences. Furthermore, the evaluation of rheological model systems in literature is mostly based on stress–relaxation experiments, which are rarely available for various polymeric materials. Therefore, a simple approach is presented, that can be used to evaluate and benchmark a wide range of rheological model systems based on commonly accessible frequency sweep data. The approach is validated by analyzing alginate PH176 solutions of various concentrations, a thermoplastic poly-urethane (TPU) Elastollan 1180A melt, the liquid silicon rubber Elastosil 7670 and a polycaprolactone (PCL) fiber-alginate composite system. The used rheological model systems, consisting of simple springs and dashpots, are suitable for the description of complex, viscoelastic material properties that can be observed for polymer solutions and gel-like systems. After revealing a suitable model system for describing those material properties, the determination and evaluation of relevant model parameters can take place. We present a detailed guideline for the systematic parameter revelation using alginate solutions of different concentrations as example. Furthermore, a starting point for future correlations of strut spreading in 3D-bioprinting and model parameters is revealed. This work establishes the basis for a better understanding and potential predictability of key parameters for various fabrication techniques.
Collapse
Affiliation(s)
- S. Schrüfer
- Department of Materials Science and Engineering, Institute of Polymer Materials, University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany;
- Bavarian Polymer Institute, Key Lab Advanced Fiber Technology, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - D. Sonnleitner
- Research Group Biopolymer Processing, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany; (D.S.); (G.L.)
| | - G. Lang
- Research Group Biopolymer Processing, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany; (D.S.); (G.L.)
| | - D. W. Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany;
- Bavarian Polymer Institute, Key Lab Advanced Fiber Technology, Dr.-Mack-Straße 77, 90762 Fürth, Germany
- Correspondence:
| |
Collapse
|
14
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
15
|
Emmermacher J, Spura D, Cziommer J, Kilian D, Wollborn T, Fritsching U, Steingroewer J, Walther T, Gelinsky M, Lode A. Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication 2020; 12:025022. [PMID: 32050179 DOI: 10.1088/1758-5090/ab7553] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systematic analysis of the extrusion process in 3D bioprinting is mandatory for process optimization concerning production speed, shape fidelity of the 3D construct and cell viability. In this study, we applied numerical and analytical modeling to describe the fluid flow inside the printing head based on a Herschel-Bulkley model. The presented analytical calculation method nicely reproduces the results of Computational Fluid Dynamics simulation concerning pressure drop over the printing head and maximal shear parameters at the outlet. An approach with dimensionless flow parameter enables the user to adapt rheological characteristics of a bioink, the printing pressure and needle diameter with regard to processing time, shear sensitivity of the integrated cells, shape fidelity and strand dimension. Bioinks consist of a blend of polymers and cells, which lead to a complex fluid behavior. In the present study, a bioink containing alginate, methylcellulose and agarose (AMA) was used as experimental model to compare the calculated with the experimental pressure gradient. With cultures of an immortalized human mesenchymal stem cell line and plant cells (basil) it was tested how cells influence the flow and how mechanical forces inside the printing needle affect cell viability. Influences on both sides increased with cell (aggregation) size as well as a less spherical shape. This study contributes to a systematic description of the extrusion-based bioprinting process and introduces a general strategy for process design, transferable to other bioinks.
Collapse
Affiliation(s)
- Julia Emmermacher
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Germany. Institute of Natural Materials Technology, Faculty of Mechanical Engineering, Technische Universität Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Peng M, Mittmann E, Wenger L, Hubbuch J, Engqvist MKM, Niemeyer CM, Rabe KS. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene. Chemistry 2019; 25:15998-16001. [PMID: 31618489 PMCID: PMC6972603 DOI: 10.1002/chem.201904206] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.
Collapse
Affiliation(s)
- Martin Peng
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Esther Mittmann
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lukas Wenger
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
17
|
Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. MATERIALS 2019; 12:ma12182892. [PMID: 31500239 PMCID: PMC6766266 DOI: 10.3390/ma12182892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/04/2022]
Abstract
Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.
Collapse
|
18
|
Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110054. [PMID: 31546401 DOI: 10.1016/j.msec.2019.110054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
The construction of ceramic components with UV curing is a developing trend by an additive manufacturing (AM) technology, due to the excellent advantages of high precision selective fixation and rapid prototyping, the application of this technology to bone defect repair had become one of the hotspots of research. Hydroxyapatite (HAP) is one of the most popular calcium phosphate biomaterials, which is very close to the main ingredient of human bones. Thus, hydroxyapatite biomaterials are popular as bone graft materials. In summary, the preparation of HAP bioceramics by a 3D printing of digital light processing (DLP) is a promising work. However, the preparation of HAP hybrid suspensions with high solid loading and good fluidity that can be printed by DLP encountered some challenges. Therefore, the purpose of this work is to improve and develop a novel UV-curing suspension with a high solids loading, which the suspension with the hydrodynamic properties and stability are suitable for DLP printer, in order to compensate for the brittleness of HAP ceramics itself to a certain extent, a low amount of zirconia was added in the suspension as an additive to fabricate a zirconia toughened HAP bioceramic composite by a DLP of 3D printing. In this work, the HAP powder was pre-modified by two organic modifiers to improve the compatibility in the acrylic resin system, and the addition of the castor oil phosphate further reduced the shear stress of the suspension to ensure strong liquidity. The UV suspension with 60 wt% powder particle loading had a minimum viscosity of 7495 mPa·s at 30 rpm, which was vacuum sintered at 1100 °C, 1200 °C, and 1250 °C, respectively. The composite ceramics (with 6 wt% ZrO2) at 1200 °C had a relative density of 90.7%, while the sintered samples at 1250 °C had stronger tensile strength and bending strength. The toughening effect of zirconia incorporation on HAP ceramics was also confirmed by the change of tensile modulus and bending modulus, whereas the corresponding mechanical properties were also significantly enhanced.
Collapse
|
19
|
Toward the design of functional foods and biobased products by 3D printing: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Seidel J, Krujatz F, Walther T, Gelinsky M, Lode A, Steingroewer J. Green Bioprinting - 3D-Druck mit pflanzlichen Zellen für die Biotechnologie. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- J. Seidel
- Technische Universität Dresden; Institut für Naturstofftechnik; Bergstraße 120 01069 Dresden Deutschland
- Technische Universität Dresden; Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung; Fetscherstraße 74 01307 Dresden Deutschland
| | - F. Krujatz
- Technische Universität Dresden; Institut für Naturstofftechnik; Bergstraße 120 01069 Dresden Deutschland
| | - T. Walther
- Technische Universität Dresden; Institut für Naturstofftechnik; Bergstraße 120 01069 Dresden Deutschland
| | - M. Gelinsky
- Technische Universität Dresden; Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung; Fetscherstraße 74 01307 Dresden Deutschland
| | - A. Lode
- Technische Universität Dresden; Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung; Fetscherstraße 74 01307 Dresden Deutschland
| | - J. Steingroewer
- Technische Universität Dresden; Institut für Naturstofftechnik; Bergstraße 120 01069 Dresden Deutschland
| |
Collapse
|
21
|
3D Printing Solutions for Microfluidic Chip-To-World Connections. MICROMACHINES 2018; 9:mi9020071. [PMID: 30393347 PMCID: PMC6187806 DOI: 10.3390/mi9020071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/25/2022]
Abstract
The connection of microfluidic devices to the outer world by tubes and wires is an underestimated issue. We present methods based on 3D printing to realize microfluidic chip holders with reliable fluidic and electric connections. The chip holders are constructed by microstereolithography, an additive manufacturing technique with sub-millimeter resolution. The fluidic sealing between the chip and holder is achieved by placing O-rings, partly integrated into the 3D-printed structure. The electric connection of bonding pads located on microfluidic chips is realized by spring-probes fitted within the printed holder. Because there is no gluing or wire bonding necessary, it is easy to change the chip in the measurement setup. The spring probes and O-rings are aligned automatically because of their fixed position within the holder. In the case of bioanalysis applications such as cells, a limitation of 3D-printed objects is the leakage of cytotoxic residues from the printing material, cured resin. This was solved by coating the 3D-printed structures with parylene-C. The combination of silicon/glass microfluidic chips fabricated with highly-reliable clean-room technology and 3D-printed chip holders for the chip-to-world connection is a promising solution for applications where biocompatibility, optical transparency and accurate sample handling must be assured. 3D printing technology for such applications will eventually arise, enabling the fabrication of complete microfluidic devices.
Collapse
|