1
|
Laudouze J, Point V, Achache W, Crauste C, Canaan S, Santucci P. Fluorescence-based CRISPR interference system for controlled genetic repression and live single-cell imaging in mycobacteria. FEBS Lett 2025; 599:488-501. [PMID: 39618159 PMCID: PMC11848015 DOI: 10.1002/1873-3468.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 02/25/2025]
Abstract
In this research letter, we report the development and validation of a new subset of fluorescence-based CRISPR interference (CRISPRi) tools for our scientific community. The pJL series is directly derived from the original pIRL CRISPRi vectors and conserves all the elements to perform inducible targeted gene repression. These vectors carry two distinct fluorescent markers under the constitutive promoter psmyc to simplify the selection of recombinant clones. We demonstrate the functionality of these vectors by targeting the expression of the glycopeptidolipid translocase mmpL4b and the essential genes rpoB and mmpL3. Finally, we describe an efficient single-step procedure to co-transform mycobacterial species with this integrative genetic tool alongside episomal vectors. Such tools and approaches should be useful to foster discovery in mycobacterial research.
Collapse
Affiliation(s)
| | - Vanessa Point
- Aix Marseille Univ, CNRS, LISM, IMM FR3479, IM2BFrance
| | - Wafaa Achache
- Aix Marseille Univ, CNRS, LISM, IMM FR3479, IM2BFrance
- IHU Méditerranée Infection, Aix‐Marseille Univ.France
| | | | | | | |
Collapse
|
2
|
Xiang G, Liu T, Li L, Lin G, Liu K, Wang F. Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus. Biotechnol Lett 2024; 46:1319-1332. [PMID: 39083115 DOI: 10.1007/s10529-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 11/10/2024]
Abstract
Non-pathogenic mycobacteria, including Mycolicibacterium neoaurum, can directly utilize phytosterols for large-scale industrial production of steroid medicine intermediates due to their natural steroid metabolism pathway. The targeted genetic modification of M. neoaurum is conducive to the selection of high-yield engineering bacteria with high-value-added product, such as Pregnadien-20-carboxylic acid (PDC), which is an important precursor for synthesizing some corticosteroids. Based on heterologous type II CRISPR/sth1Cas9 system, a simple strategy was developed to genetic engineer M. neoaurum genome. Here, a customizable plasmid tool pMSC9 was constructed from pMV261 with integration of sth1Cas9 protein and corresponding sgRNA scaffold. Subsequently, the pMSC9 was inserted with spacer sequences corresponding to different targeted genes, generating editing plasmids, and then transformed into M. neoaurum. As a result, the targeted genes were introduced with DNA double stand breaks (DSBs) by CRISPR/sth1Cas9 system and then repaired by innate non-homologous end-joining (NHEJ) mechanism. Finally, editing plasmids were cured from correctly edited M. neoaurum mutants by means of no resistance cultivation, and the resulting mutant deleting the one target gene was used as the host to which another target gene could be deleted via the same process. This study demonstrated that the CRISPR/sth1Cas9 tool allowed M. neoaurum strains to be rapidly edited. And the editing mode of CRISPR/sth1Cas9 system indicated that this tool was an important supplement to the gene editing toolbox of M. neoaurum.
Collapse
Affiliation(s)
- Gedan Xiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lekai Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guihong Lin
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Rahman SU, Khan MO, Ullah R, Ahmad F, Raza G. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects. Mol Biotechnol 2024; 66:1836-1852. [PMID: 37573566 DOI: 10.1007/s12033-023-00826-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Plant transformation based on Agrobacterium-mediated transformation is a technique that mimics the natural agrobacterium system for gene(s) introduction into crops. Through this technique, various crop species have been improved/modified for different trait/s, showing a successful genetic transformation so far. This technique has many advantages over other transformation methods such as stable integration of transgene, cost effective. However, there are many limitations of this technology such as mostly the crops are recalcitrant to agrobacterium, low transformation efficiency, transgene integration as well as off targets. So, it's very important to explore the major limitations and possible solutions for Agrobacterium-mediated transformation in order to increase its genetic transformation efficiency. Therefore, the present review article gives a comprehensive study how the transgenic crops are developed using Agrobacterium-mediated transformation, crops that have already been modified through this method, and risks associated with transgenic plants based on Agrobacterium-mediated transformation. Moreover, the challenges and problems associated with Agrobacterium-mediated transformation and how those problems can be solved in future for a successful genetic transformation of crops using modern biotechnology techniques such as CRISPR/Cas9 systems. The present review article will be really helpful for the audience those working on Genome editing of crops using Agrobacterium-mediated transformation and will opens many ways for future plant genetic transformation.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Omar Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Rahim Ullah
- Department of Biotechnology, Shahid Benazir Bhatoo University Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan
| | - Fayaz Ahmad
- Agriculture Research Institute (ARI), Swat, Mingora, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
4
|
Yang Y, Wang D, Lü P, Ma S, Chen K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep 2023; 50:3723-3738. [PMID: 36648696 PMCID: PMC9843688 DOI: 10.1007/s11033-023-08240-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE This work characterizes the applications of CRISPR/Cas12 system, including nucleic acid detection, animal, plant and microbial genome editing. METHODS The literature on CRISPR/Cas12 system was collected and reviewed. RESULTS CRISPR/Cas system is an acquired immune system derived from bacteria and archaea, which has become the most popular technology around the world because of its outstanding contribution in genome editing. Type V CRISPR/Cas systems are distinguished by a single RNA-guided RuvC nuclease domain with single effector molecule. Cas12a, the first reported type V CRISPR/Cas system, targets double-stranded DNA (dsDNA) adjacent to PAM sequences and trans-cleaves single-stranded DNA (ssDNA). We present the applications of CRISPR/Cas12 system for nucleic acid detection and genome editing in animals, plants and microorganisms. Furthermore, this review also summarizes the applications of other Cas12 proteins, such as Cas12b, Cas12c, Cas12d, and so on, which further widen the application prospects of CRISPR/Cas12 system. CONCLUSIONS Knowledge of the applications of CRISPR/Cas12 system is necessary for improving the understanding of the functional diversity of CRISPR/Cas12 system and also provides significant references for further research and utilization of CRISPR/Cas12 in other new fields.
Collapse
Affiliation(s)
- Yanhua Yang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
5
|
Li Q, Sun M, Lv L, Zuo Y, Zhang S, Zhang Y, Yang S. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synth Biol 2023; 12:672-680. [PMID: 36867054 DOI: 10.1021/acssynbio.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Due to the high specificity in targeting DNA and highly convenient programmability, CRISPR-Cas-based antimicrobials applied for eliminating specific strains such as antibiotic-resistant bacteria in the microbiome were gradually developed. However, the generation of escapers makes the elimination efficiency far lower than the acceptable rate (10-8) recommended by the National Institutes of Health. Here, a systematic study was carried out providing insight into the escaping mechanisms in Escherichia coli, and strategies for reducing the escapers were devised accordingly. We first showed an escape rate of 10-5-10-3 in E. coli MG1655 under the editing of pEcCas/pEcgRNA established previously. Detailed analysis of the escapers obtained at ligA site in E. coli MG1655 uncovered that the disruption of cas9 was the main cause of the generation of survivors, notably the frequent insertion of IS5. Hence, the sgRNA was next designed to target the "perpetrator" IS5, and subsequently the killing efficiency was improved 4-fold. Additionally, the escape rate in IS-free E. coli MDS42 was also tested at the ligA site, ∼10-fold decrease compared with MG1655, but the disruption of cas9 was still observed in all survivors manifested in the form of frameshifts or point mutations. Thus, we optimized the tool itself by increasing the copy number of cas9 to retain some cas9 that still has the correct DNA sequence. Fortunately, the escape rates dropped below 10-8 at 9 of the 16 tested genes. Furthermore, the λ-Red recombination system was added to generate the pEcCas-2.0, and a 100% gene deletion efficiency was achieved at genes cadA, maeB, and gntT in MG1655, whereas those genes were edited with low efficiency previously. Last, the application of pEcCas-2.0 was then expanded to the E. coli B strain BL21(DE3) and W strain ATCC9637. This study reveals the mechanism of E. coli surviving Cas9-mediated death, and a highly efficient editing tool is established based on the mechanism, which will accelerate the further application of CRISPR-Cas.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lu Lv
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan China
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| |
Collapse
|
6
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ. Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system. Synth Syst Biotechnol 2022; 7:1002-1011. [PMID: 35782483 PMCID: PMC9213222 DOI: 10.1016/j.synbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.
Collapse
|