1
|
Patel SKS, Singh D, Pant D, Gupta RK, Busi S, Singh RV, Lee JK. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Polymers (Basel) 2024; 16:2570. [PMID: 39339034 PMCID: PMC11435153 DOI: 10.3390/polym16182570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Methanotrophs are bacteria that consume methane (CH4) as their sole carbon and energy source. These microorganisms play a crucial role in the carbon cycle by metabolizing CH4 (the greenhouse gas), into cellular biomass and carbon dioxide (CO2). Polyhydroxyalkanoates (PHAs) are biopolymers produced by various microorganisms, including methanotrophs. PHA production using methanotrophs is a promising strategy to address growing concerns regarding plastic pollution and the need for sustainable, biodegradable materials. Various factors, including nutrient availability, environmental conditions, and metabolic engineering strategies, influence methanotrophic production. Nutrient limitations, particularly those of nitrogen or phosphorus, enhance PHA production by methanotrophs. Metabolic engineering approaches, such as the overexpression of key enzymes involved in PHA biosynthesis or the disruption of competing pathways, can also enhance PHA yields by methanotrophs. Overall, PHA production by methanotrophs represents a sustainable and versatile approach for developing biomedical materials with numerous potential applications. Additionally, alternative feedstocks, such as industrial waste streams or byproducts can be explored to improve the economic feasibility of PHA production. This review briefly describes the potential of methanotrophs to produce PHAs, with recent updates and perspectives.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Deepshikha Singh
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Diksha Pant
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Siddhardha Busi
- Department of Microbiology, Pondicherry University, Pondicherry 605014, Kalapet, India
| | - Rahul V Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Sauvageau D, Stein LY, Arenas E, Das S, Iacobelli M, Lawley M, Lazic M, Rondón FL, Weiblen C. Industrializing methanotrophs and other methylotrophic bacteria: from bioengineering to product recovery. Curr Opin Biotechnol 2024; 88:103167. [PMID: 38901110 DOI: 10.1016/j.copbio.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Microbes that use the single-carbon substrates methanol and methane offer great promise to bioindustry along with substantial environmental benefits. Methanotrophs and other methylotrophs can be engineered and optimized to produce a wide range of products, from biopolymers to biofuels and beyond. While significant limitations remain, including delivery of single-carbon feedstock to bioreactors, efficient growth, and scale-up, these challenges are being addressed and notable improvements have been rapid. Development of expression chassis, use of genome-scale and regulatory models based on omics data, improvements in bioreactor design and operation, and development of green product recovery schemes are enabling the rapid development of single-carbon bioconversion in the industrial space.
Collapse
Affiliation(s)
- Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Lisa Y Stein
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Elizabeth Arenas
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shibashis Das
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Maryssa Iacobelli
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mark Lawley
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marina Lazic
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fabián L Rondón
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Cerrise Weiblen
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
3
|
Amabile C, Abate T, Muñoz R, Chianese S, Musmarra D. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: properties, metabolic routes and current trend. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172138. [PMID: 38582106 DOI: 10.1016/j.scitotenv.2024.172138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that could effectively replace fossil-based and non-biodegradable plastics. However, their production is currently limited by the high production costs, mainly due to the costly carbon sources used, low productivity and quality of the materials produced. A potential solution lies in utilizing cheap and renewable carbon sources as the primary feedstock during the biological production of PHAs, paving the way for a completely sustainable and economically viable process. In this review, the opportunities and challenges related to the production of polyhydroxyalkanoates using methane and volatile fatty acids (VFAs) as substrates were explored, with a focus on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The discussion reports the current knowledge about promising Type II methanotrophs, the impact of process parameters such as limiting nutrients, CH4:O2 ratio and temperature, the type of co-substrate and its concentration. Additionally, the strategies developed until now to enhance PHA production yields were also discussed.
Collapse
Affiliation(s)
- Claudia Amabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Teresa Abate
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
4
|
Nasershariat M, Pishvaie MR, Boozarjomehry RB, Waldherr S. A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis. Bioprocess Biosyst Eng 2024; 47:463-474. [PMID: 38492006 DOI: 10.1007/s00449-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/06/2024] [Indexed: 03/18/2024]
Abstract
Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor performance. The model was run by the use of a genome-scale metabolic network of Methylocystis hirsuta in a dynamic flux balance analysis framework. The reactor has been modeled for two separate feeding scenarios: a pure methane feed and a biogas feed. The mass transfer coefficient parameter was predicted as a function of superficial gas velocities by the regression of data from published experiments. The results show an increase of removal efficiency by 38% and biomass concentration by 2.8 g/L with the increase of gas recycle ratio from 0 to 30 at the empty bed residence time of 60 min .
Collapse
Affiliation(s)
- Mohadeseh Nasershariat
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahmoud Reza Pishvaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | | | - Steffen Waldherr
- Faculty of Life Sciences, Division of Molecular Systems Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
5
|
Ma R, Li J, Tyagi RD, Zhang X. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation. BIORESOURCE TECHNOLOGY 2024; 391:129977. [PMID: 37925086 DOI: 10.1016/j.biortech.2023.129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The currently used plastics are non-biodegradable, and cause greenhouse gases (GHGs) emission as they are petroleum-based. Polyhydroxyalkanoates (PHAs) are biopolymers with excellent biodegradability and biocompatibility, which can be used to replace petroleum-based plastics. A variety of microorganisms have been found to synthesize PHAs by using typical GHGs: carbon dioxide and methane as carbon sources. Converting carbon dioxide (CO2) and methane (CH4) to PHAs is an attractive option for carbon capture and biodegradable plastic production. In this review, the microorganisms capable of using CO2 and CH4 to produce PHAs were summarized. The metabolic mechanism, PHAs production process, and the factors influencing the production process are illustrated. The currently used optimization techniques to improve the yield of PHAs are discussed. The challenges and future prospects for developing economically viable PHAs production using GHGs as carbon source are identified. This work provides an insight for achieving carbon sequestration and bioplastics based circular economy.
Collapse
Affiliation(s)
- Rui Ma
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - R D Tyagi
- Chief Scientific Officer, BOSK-Bioproducts, Quebec, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China.
| |
Collapse
|
6
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
7
|
Ali N, Rashid MI, Rehan M, Shah Eqani SAMA, Summan ASA, Ismail IMI, Koller M, Ali AM, Shahzad K. Environmental Evaluation of Polyhydroxyalkanoates from Animal Slaughtering Waste Using Material Input Per Service Unit. N Biotechnol 2023; 75:40-51. [PMID: 36948413 DOI: 10.1016/j.nbt.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
The massive production and extensive use of fossil-based non-biodegradable plastics are leading to their environmental accumulation and ultimately cause health threats to animals, humans, and the biosphere in general. The problem can be overcome by developing eco-friendly ways for producing plastics-like biopolymers from waste residues such as of agricultural origin. This will solve two currently prevailing social issues: waste management and the efficient production of a biopolymer that is environmentally benign, polyhydroxyalkanoates (PHA). The current study assesses the environmental impact of biopolymer (PHA) manufacturing, starting from slaughterhouse waste as raw material. The Material Input Per Service Unit methodology (MIPS) is used to examine the sustainability of the PHA production process. In addition, the impact of shifting from business-as-usual energy provision (i.e., electricity from distribution grid network and heat provision from natural gas) to alternative renewable energy sources is also evaluated. As a major outcome, it is shown that the abiotic material contribution for PHA production process is almost double for using hard coal as an energy source than the petro-plastic low-density-poly(ethene) (LPDE), which PHA shall ultimately replace. Likewise, abiotic material contribution is 43% and 7% higher when using the electricity from the European electricity mix (EU-27 mix) and biogas, respectively, than in the case of LDPE production. However, PHA production based on wind power for energy provision has 12% lower abiotic material input than LDPE. Furthermore, the water input decreases when moving from the EU-27 mix to wind power. The reduction in water consumption for various electricity provision resources amounts to 20% for the EU-27 mix, 25% for hard coal, 71% for wind, and 70% for biogas. As the main conclusion, it is demonstrated that using wind farm electricity to generate PHA is the most environmentally friendly choice. Biogas is the second-best choice, although it requires additional abiotic material input.
Collapse
Affiliation(s)
- Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Imtiaz Rashid
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Rehan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Ahmed Saleh Ahmed Summan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Graz, Austria.
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurram Shahzad
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Aerobic oxidation of hydroxymethylfurfural using a homogeneous TEMPO/TBN catalytic system in 3D-printed milli-scale porous reactors. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
10
|
Amabile C, Abate T, De Crescenzo C, Sabbarese S, Muñoz R, Chianese S, Musmarra D. Sustainable Process for the Production of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) from Renewable Resources: A Simulation Study. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:14230-14239. [PMID: 36340972 PMCID: PMC9632471 DOI: 10.1021/acssuschemeng.2c04111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Bacterially produced polyhydroxyalkanoates are valuable substitutes for petrochemical plastics, but their current production capacities are very scarce. Producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV) from methane and odd-chain carbon fatty acids could make the production of this biodegradable polymer cost-effective. This study analyzes the main factors affecting methanotrophic growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation, simulating a pilot-scale process based on a double-stage approach. The effects of the nitrogen source and the oxygen partial pressure during a 20 day growth phase were studied; the cosubstrate concentration, the culture selected, and the methane partial pressure were investigated during the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production stage performed within 15 days under nutrient starvation. Methylocystis parvus OBBP and Methylosinus thricosporum OB3b reached the maximum growth productivities with ammonium as the nitrogen source and oxygen at high partial pressure. The simulation of the PHB-co-HV accumulation revealed that methanotrophs could better accumulate the polymer with low valeric acid concentrations. A methane-abundant gas stream (0.5 atm of methane) could increase process yields up to 0.32 kg m-3 d-1.
Collapse
Affiliation(s)
- Claudia Amabile
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| | - Teresa Abate
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| | - Carmen De Crescenzo
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| | - Simona Sabbarese
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| | - Raul Muñoz
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011Valladolid, Spain
| | - Simeone Chianese
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| | - Dino Musmarra
- Department
of Engineering, University of Campania “Luigi
Vanvitelli”, Via Roma 29, 81031Aversa, Italy
| |
Collapse
|