1
|
Wang M, Song Y, Hu M, Wei J, Li X. Computer-assisted enzyme cocktails enhance fermentation by overcoming toxic inhibitors from pretreatment processes. BIORESOURCE TECHNOLOGY 2025; 419:132076. [PMID: 39828043 DOI: 10.1016/j.biortech.2025.132076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Lignocellulosic biomass is the most abundant form of biomass available for fuel production, serving as the fourth leading energy source globally. However, inhibitors generated during pretreatment processes often hinder fermentation performance and conversion efficiency. In this study, we developed an enhanced computer-assisted enzyme cocktail strategy (ComEC 2.0) to mitigate the inhibitory effects. Through experimental studies and molecular dynamics simulations, eight optimization strategies were developed for enzyme cocktail formulation (comprising CBHI, EG, BG, XYN, LPMO). Notably, Strategy 4b, which accounts for both overall hydration and the synergistic effects between LPMO and CBHI/EG/BG/XYN, increased glucose and xylose yields by 20.7 % and 21 %, respectively, using corn stover, reducing Process Mass Intensity (PMI) by 70.78 % and water use by 80 % during ethanol fermentation. Applying Strategy 4b to industrial corn cob increased glucose and xylose yields by 22.1 % and 21.6 %, surpassing the commercial Ctec3 blend. This scalable approach significantly enhances biomass conversion and resource efficiency, offering broad industrial potential.
Collapse
Affiliation(s)
- Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Meng Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Junnan Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| |
Collapse
|
2
|
Minervini M, Mergy M, Zhu Y, Gutierrez Diaz MA, Pointer C, Shinkazh O, Oppenheim SF, Cramer SM, Przybycien TM, Zydney AL. Continuous precipitation-filtration process for initial capture of a monoclonal antibody product using a four-stage countercurrent hollow fiber membrane washing step. Biotechnol Bioeng 2024; 121:2258-2268. [PMID: 37565527 PMCID: PMC10858288 DOI: 10.1002/bit.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
The significant increase in product titers, coupled with the growing focus on continuous bioprocessing, has renewed interest in using precipitation as a low-cost alternative to Protein A chromatography for the primary capture of monoclonal antibody (mAb) products. In this work, a commercially relevant mAb was purified from clarified cell culture fluid using a tubular flow precipitation reactor with dewatering and washing provided by tangential flow microfiltration. The particle morphology was evaluated using an inline high-resolution optical probe, providing quantitative data on the particle size distribution throughout the precipitation process. Data were obtained in both a lab-built 2-stage countercurrent washing system and a commercial countercurrent contacting skid that provided 4 stages of continuous washing. The processes were operated continuously for 2 h with overall mAb yield of 92 ± 3% and DNA removal of nearly 3 logs in the 4-stage system. The high DNA clearance was achieved by selective redissolution of the mAb using a low pH acetate buffer. Host cell protein clearance was 0.59 ± 0.08 logs, comparable to that based on model predictions. The process mass intensity was slightly better than typical Protein A processes and could be significantly improved by preconcentration of the antibody feed material.
Collapse
Affiliation(s)
- Mirko Minervini
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Matthew Mergy
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Yuncan Zhu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mario A Gutierrez Diaz
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Todd M Przybycien
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
3
|
Schenck L, Risteen B, Johnson LM, Koynov A, Bonaga L, Orr R, Hancock B. A Commentary on Co-Processed API as a Promising Approach to Improve Sustainability for the Pharmaceutical Industry. J Pharm Sci 2024; 113:306-313. [PMID: 38065243 DOI: 10.1016/j.xphs.2023.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Pharmaceutical products represent a meaningful target for sustainability improvement and emissions reduction. It is proposed here that rethinking the standard, and often linear, approach to the synthesis of Active Pharmaceutical Ingredients (API) and subsequent formulation and drug product processing will deliver transformational sustainability opportunities. The greatest potential arguably involves API that have challenging physico-chemical properties. These can require the addition of excipients that can significantly exceed the weight of the API in the final dosage unit, require multiple manufacturing steps to achieve materials amenable to delivering final dosage units, and need highly protective packaging for final product stability. Co-processed API are defined as materials generated via addition of non-covalently bonded, non-active components during drug substance manufacturing steps, differing from salts, solvates and co-crystals. They are an impactful example of provocative re-thinking of historical regulatory and quality precedents, blurring drug substance and drug product operations, with sustainability opportunities. Successful examples utilizing co-processed API can modify properties with use of less excipient, while simultaneously reducing processing requirements by delivering material amenable to continuous manufacturing. There are also opportunities for co-processed API to reduce the need for highly protective packaging. This commentary will detail the array of sustainability impacts that can be delivered, inclusive of business, regulatory, and quality considerations, with discussion on potential routes to more comprehensively commercialize co-processed API technologies.
Collapse
Affiliation(s)
- Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
| | - Bailey Risteen
- Pharma Solutions, BASF Corporation, Florham Park, New Jersey 07932, United States
| | | | - Athanas Koynov
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Llorente Bonaga
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert Orr
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bruno Hancock
- Drug Product Development, Pfizer Inc., Groton CT 06340, United States
| |
Collapse
|
4
|
Zhang H, Hou L, Zhang W, Lin Y, Liu X, Zhao S, Chang C. Coupling process for preparing biomass-based furfural and levulinic acid from corncob: Extraction, green chemistry and techno-economic assessment. BIORESOURCE TECHNOLOGY 2024; 394:130301. [PMID: 38211714 DOI: 10.1016/j.biortech.2024.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The purpose of this study is to design and investigate two coupling processes for acid-catalyzed hydrolysis of corncob, achieving the simultaneous preparation of biomass-based furfural and levulinic acid (LA). Meanwhile, high concentration and yield of LA were obtained through a situ feeding strategy of pretreated furfural residue with high solids loading (20%, w/v). In Scenario A, 2-methyltetrahydrofuran was selected as the solvent for the LA extraction process compared with the neutralization process in Scenario B. Techno-economic assessment results show that Scenario A is technically feasible and cost-competitive, with an internal rate of return of 21.92%, a net present value of 121 million US dollars, a carbon efficiency of 72%, an environmental factor of 4.38, and a process mass intensity of 32.19. This study will provide new insights for fully utilizing lignocellulosic biomass to prepare renewable energy resources, comprehensively evaluating the economic feasibility, and promoting green and low-carbon development.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liutao Hou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Weihong Zhang
- Henan Jiaozuo Huakang Sugar Alcohol Technology Co. Ltd., Jiaozuo 454150, China
| | - Yucheng Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xueli Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shiqiang Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou 450001, China.
| | - Chun Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| |
Collapse
|
5
|
Mohammadzadehmarandi A, Determan A, Krumm C, McIntosh LD, Zydney AL. High-performance countercurrent membrane purification for host cell protein removal from monoclonal antibody products. Biotechnol Bioeng 2023; 120:3585-3591. [PMID: 37593776 DOI: 10.1002/bit.28531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
The transition to continuous biomanufacturing has led to renewed interest in alternative approaches for downstream processing of monoclonal antibody (mAb) products. In this study, we examined the potential of using high-performance countercurrent membrane purification (HPCMP) for the removal of host cell proteins (HCPs) derived from Chinese Hamster Ovary cells in the purification of a mAb. Initial studies used several model proteins to identify appropriate operating conditions for the hollow fiber membrane modules. HPCMP was then used for mAb purification, with mAb yield >95% and more than 100-fold reduction in HCP. Stable operation was maintained for 48 h for feeds that were first prefiltered through the 3MTM Harvest RC chromatographic clarifier to remove DNA and other foulants. In addition, the Process Mass Intensity for HPCMP can be much less than that for alternative HCP separation processes. These results highlight the potential of using HPCMP as part of a fully continuous mAb production process.
Collapse
Affiliation(s)
- Aylin Mohammadzadehmarandi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Amy Determan
- 3M Separation and Purification Sciences, St. Paul, Minnesota, USA
| | - Christian Krumm
- 3M Separation and Purification Sciences, St. Paul, Minnesota, USA
| | | | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|