1
|
Tomatsu S, Abbott SM, Attarian H. Clinical Chronobiology: Circadian Rhythms in Health and Disease. Semin Neurol 2025. [PMID: 39961369 DOI: 10.1055/a-2538-3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Circadian rhythms (CRs) are entrainable endogenous rhythms that respond to external stimuli and regulate physiological functions. The suprachiasmatic nucleus (SCN) in the hypothalamus is the mammalian master clock that synchronizes all other tissue-specific peripheral clocks, primarily through gamma-aminobutyric acid (GABA) and vasoactive intestinal polypeptide (VIP). The SCN follows Earth's 24-hour cycle by light entrainment through the retinohypothalamic tract. At the cellular level, the core clock genes CLOCK, BMAL1, PER1-PER3, CRY1, and CRY2 regulate CRs in a negative feedback loop. The circadian disruption of the sleep-wake cycle manifests in at least six distinct clinical conditions. These are the circadian rhythm sleep-wake disorders (CRSWDs). Their diagnosis is made by history, sleep diaries, and actigraphy. Treatment involves a combination of timed light exposure, melatonin/melatonin agonists, and behavioral interventions. In addition, CR disturbances and subsequent misalignment can increase the risk of a variety of illnesses. These include infertility and menstrual irregularities as well as diabetes, obesity, fatty liver disease, and other metabolic syndromes. In addition, a disruption in the gut microbiome creates a proinflammatory environment. CR disturbances increase the risk for mood disorders, hence the utility of light-based therapies in depression. People with neurodegenerative disorders demonstrate significant disturbances in their CRs, and in their sleep-wake cycles. Circadian realignment therapies can also help decrease the symptomatic burden of these disorders. Certain epilepsy syndromes, such as juvenile myoclonic epilepsy (JME), have a circadian pattern of seizures. Circadian disturbances in epilepsy can be both the consequence and cause for breakthrough seizures. The immune system has its own CR. Disturbances in these due to shift work, for instance, can increase the risk of infections. CR disturbances can also increase the risk of cancer by impacting DNA repair, apoptosis, immune surveillance, and cell cycle regulation. Moreover, the timing of chemotherapeutic agents has been shown to increase their therapeutic impact in certain cancers.
Collapse
Affiliation(s)
- Shizuka Tomatsu
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sabra M Abbott
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hrayr Attarian
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
2
|
Sciarra F, Franceschini E, Palmieri G, Venneri MA. Complex gene-dependent and-independent mechanisms control daily rhythms of hematopoietic cells. Biomed Pharmacother 2025; 183:117803. [PMID: 39753096 DOI: 10.1016/j.biopha.2024.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored. Studies on anucleate hematopoietic components, such as red blood cells and platelets, have shown that auto-sustained redox reaction cycles persist and operate in mammals. This opens to the possibility that transcriptional and non-transcriptional circadian mechanisms might coexist in nucleated immune cell populations, potentially complementing each other. It is becoming increasingly clear that disruption of the circadian rhythm at the central level (core clock) is strongly implicated in a plethora of diseases that are associated with maladaptive immune responses. On the other hand, several evidence imply that dysregulated immune activity (e.g. excessive inflammation) may alter/disrupt the proper functioning of peripheral clocks. This knowledge paves the way to the exploitation of chronobiological concepts in clinical practice. A better comprehension of various transcriptional/translational and biochemical mechanisms that maintain rhythmicity in immune system activities, as well as the many factors (host-derived, microbiota-derived, environment) that can alter or disrupt these processes, will facilitate the development of novel chrono-immunotherapeutic approaches.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|
3
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Xu Y, Tang Y, Cheng Y, Yang W, Liu J, Guo B, Luo G, Zhu H. Effects of different monochromatic light on growth performance and liver circadian rhythm of Yangzhou geese. Poult Sci 2025; 104:104496. [PMID: 39577174 PMCID: PMC11617679 DOI: 10.1016/j.psj.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The objective of this study is to examine the impact of monochromatic light on the circadian rhythms of blood melatonin and insulin-like growth factor 1 (IGF-1) levels, liver clock genes, and melatonin receptors. A total of 144 male Yangzhou geese were randomly assigned to four groups based on light color, with each group consisting of 36 geese. The geese were provided with ad libitum access to food and water, and were raised for 70 days under a photoperiod of 16 hours of light and 8 hours of darkness. They were weighed every 10 days, and blood, liver, and pituitary gland samples were collected at six time points every four hours when the geese reached 70 days of age. The findings indicated that exposure to green light (GL) had a stimulating impact on weight gain in Yangzhou geese, while not significantly affecting the feed-to-weight ratio. After undergoing the four photochromic treatments, both plasma melatonin levels and liver positive feedback clock gene expression displayed a diurnal low-night high pattern, reaching their peak in the evening. Conversely, plasma IGF-1 and negative feedback clock genes exhibited an opposite trend. However, monochromatic light significantly down-regulated the gene expression, peak and amplitude of retinoic acid receptor-related orphan receptor α (RORα), as well as advancing or delaying the phase of the circadian rhythm. Among them, GL significantly up-regulated the gene expression of the melatonin receptors 1C (MEL1C); blue light (BL) significantly increased plasma melatonin concentration and IGF-1 concentration and significantly decreased the peak and amplitude of period 3 gene (PER3), resulting in almost no difference in the expression of PER3 at the six times; and red light (RL) significantly down-regulated the expression and the peak of MEL1C as well as the peaks and amplitudes of the seven liver clock genes, especially circadian locomotor output cycles kaput factor (CLOCK). Moreover, the peaks and amplitudes of the clock genes for BL and GL are almost identical, except for PER3. The findings of this study offer a theoretical framework for facilitating the development of meat geese and implementing a logical approach to managing lighting conditions.
Collapse
Affiliation(s)
- Yingqing Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yi Tang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiyi Cheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wen Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Binbin Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Luo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Huanxi Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
5
|
Sopori S, Kavinay K, Bhan S, Saxena S, Medha M, Kumar R, Dhar A, Bhat A. CLOCK gene 3'UTR and exon 9 polymorphisms show a strong association with essential hypertension in a North Indian population. BMC Med Genomics 2024; 17:289. [PMID: 39696277 DOI: 10.1186/s12920-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hypertension (HTN) is a medical condition characterized by persistent systolic and diastolic blood pressures of ≥ 140 mmHg and ≥ 90 mmHg, respectively. With more than 1200 million adult patients aged 30-79 years worldwide according to the latest WHO data, HTN is a major health risk factor; more importantly, 46% of patients are unaware of this condition. Essential hypertension (EH), also known as primary hypertension, is the predominant subtype and has a complex etiology that involves both genetic and non-genetic factors. Majority of living organisms are influenced by the light and dark cycle of a day and respond to these changes through an intricate clock referred to as the "biological clock" or "circadian rhythm". The connection between circadian rhythm and blood pressure is well established, with many studies supporting the role of circadian rhythm gene mutation(s)/polymorphism(s) in EH. To date, no such data are available from any Indian population. METHODS This case‒control study was conducted on 405 EH patients and 505 healthy controls belonging to the Jammu region of North India after an informed consent was obtained from the participants. A total of three single nucleotide variants, two in the CLOCK gene (rs1801260 and rs34789226) and one in the BMAL1/ARNTL gene (rs6486121), were selected for genotyping. Genotyping was performed via the RFLP technique, and the applicable statistical analyses were performed via the SPSS and SNPStats programs. RESULTS Logistic regression analysis revealed a statistically significant association of both CLOCK gene variants rs1801260 (T > C 3'UTR) and rs34789226 (C > T Exon 9) and a nonsignificant association of the BMAL1/ARNTL intronic variant rs6486121 (C > T) with EH. The 3'UTR variant showed a statistically significant association under the codominant (p < 0.0001), dominant (p < 0.0001), and recessive (p = 0.0004) models. In contrast, the exon 9 variant showed a statistically significant negative association under the codominant (p = 0.003) and dominant (p = 0.015) models only. The rs6486121/rs1801260 and rs1801260/rs34789226/rs6486121 haplotypes showed significant differences in their distribution between cases and controls (p < 0.0001). Certain genotypes and haplotypes were found more common in hypertensive males than females. CONCLUSION This is a first report linking circadian rhythm gene polymorphisms with EH in any Indian population. The statistically significant association of the CLOCK gene 3'UTR and exon 9 polymorphisms with EH, highlight the potential role of this gene and probably other genes of the circadian pathway in the etiology of EH in the study population. Additionally, our study also revealed that certain genotypes are making males more susceptible to EH.
Collapse
Affiliation(s)
- Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Kavinay Kavinay
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Shreya Saxena
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Medha Medha
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India
| | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, 182320, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, UT Jammu and Kashmir, 181143, India.
| |
Collapse
|
6
|
Wang Y, Gu L, Zhang H, Wang J, Wang X, Li Y, Chai S, Xu C. Therapeutic potential of mackerel-derived peptides and the synthetic tetrapeptide TVGF for sleep disorders in a light-induced anxiety zebrafish model. Front Pharmacol 2024; 15:1475432. [PMID: 39600360 PMCID: PMC11589825 DOI: 10.3389/fphar.2024.1475432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Anxiety-like insomnia is a known risk factor for the onset and worsening of certain neurological diseases, including Alzheimer's disease. Due to the adverse effects of current anti-insomnia medications, such as drug dependence and limited safety, researchers are actively exploring natural bioactive compounds to mitigate anxiety-like insomnia with fewer side effects. Mackerel (Pneumatophorus japonicus), a traditional Chinese medicine, is known for its tonic effects and is commonly used to treat neurasthenia. The use of mackerel protein extract has been shown to effectively improve symptoms of light-induced anxiety-like insomnia in a zebrafish model. Methods This study examines the effects of mackerel bone peptides (MW < 1 kDa, MBP1) and the synthetic peptide Thr-Val-Gly-Phe (TVGF) on light-induced anxiety-like insomnia in zebrafish. The evaluation is conducted through behavioral observation, biochemical marker analysis, and gene transcriptome profiling. Results MBP1 significantly alleviated abnormal hyperactivity and restored neurotransmitter levels (dopamine and γ-aminobutyric acid) to normal. Moreover, it mitigated oxidative stress by reducing reactive oxygen species production and malonaldehyde levels, while enhancing antioxidant enzyme activities (superoxide dismutase and catalase). This was further attributed to the regulation of lipid accumulation and protein homeostasis. Furthermore, MBP1 ameliorated sleep disturbances primarily by restoring normal expression levels of genes involved in circadian rhythm (per2 and sik1) and visual function (opn1mw2, zgc:73075, and arr3b). Molecular docking analysis indicated that TVGF exhibited good affinity for receptors linked to sleep disturbances, including IL6, HTR1A, and MAOA. TVGF exhibited sedative effects in behavioral assays, mainly mediated by regulating the normal expression of genes associated with circadian rhythm (cry1bb, cry1ba, per2, per1b and sik1), visual function (opn1mw1, gnb3b, arr3b, gnat2), purine metabolism (pnp5a), and stress recovery (fkbp5). Discussion These findings suggest that MBP1 and TVGF could be promising therapies for light-induced anxiety-like insomnia in humans, offering safer alternatives to current medications. Additionally, the regulation of genes related to circadian rhythm and visual perception may be a key mechanism by which MBP1 and TVGF effectively relieve anxiety-like insomnia.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haijing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Junbao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| | - Yu Li
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiwei Chai
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| |
Collapse
|
7
|
Ogunlusi O, Sarkar M, Chakrabarti A, Boland DJ, Nguyen T, Sampson J, Nguyen C, Fails D, Jones-Hall Y, Fu L, Mallick B, Keene A, Jones J, Sarkar TR. Disruption of Circadian Clock Induces Abnormal Mammary Morphology and Aggressive Basal Tumorigenesis by Enhancing LILRB4 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585534. [PMID: 38562905 PMCID: PMC10983926 DOI: 10.1101/2024.03.19.585534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epidemiological studies have shown that circadian rhythm disruption (CRD) is associated with the risk of breast cancer. However, the role of CRD in mammary gland morphology and aggressive basal mammary tumorigenesis and the molecular mechanisms underlying CRD and cancer risk remain unknown. To investigate the effect of CRD on aggressive tumorigenesis, a genetically engineered mouse model that recapitulates the human basal type of breast cancer was used for this study. The effect of CRD on mammary gland morphology was investigated using wild-type mice model. The impact of CRD on the tumor microenvironment was investigated using the tumors from LD12:12 and CRD mice via scRNA seq. ScRNA seq was substantiated by multiplexing immunostaining, flow cytometry, and realtime PCR. The effect of LILRB4 immunotherapy on CRD-induced tumorigenesis was also investigated. Here we identified the impact of CRD on basal tumorigenesis and mammary gland morphology and identified the role of LILRB4 on CRD-induced lung metastasis. We found that chronic CRD disrupted mouse mammary gland morphology and increased tumor burden, and lung metastasis and induced an immunosuppressive tumor microenvironment by enhancing LILRB4a expression. Moreover, CRD increased the M2-macrophage and regulatory T-cell populations but decreased the M1-macrophage, and dendritic cell populations. Furthermore, targeted immunotherapy against LILRB4 reduced CRD-induced immunosuppressive microenvironment and lung metastasis. These findings identify and implicate LILRB4a as a link between CRD and aggressive mammary tumorigenesis. This study also establishes the potential role of the targeted LILRB4a immunotherapy as an inhibitor of CRD-induced lung metastasis.
Collapse
|
8
|
de Andrade TG, Beale AD. Darwin and the biological rhythms. PNAS NEXUS 2024; 3:pgae318. [PMID: 39192844 PMCID: PMC11348560 DOI: 10.1093/pnasnexus/pgae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
While the formalization of chronobiology as a scientific discipline occurred in the mid-20th century, the exploration of rhythmic phenomena has a longer history, notably exemplified by De Mairan's observations of Mimosa pudica in darkness in 1729. In this historical narrative, Charles Darwin is known for his investigations into the "sleep movements" of plants. Nevertheless, the complete scope of Darwin's exploration of biological rhythms remains incompletely understood. Through a detailed examination of Darwin's writings, meticulous observations, experiments, and conceptualizations, we unveil a depth of engagement that surpasses his widely acknowledged work on plants, revealing a more extensive interest in and insight into biological rhythms than traditionally recognized.
Collapse
Affiliation(s)
- Tiago G de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Campus A.C. Simões, Av. Lourival Melo Mota, s/n - Tabuleiro do Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, 01223 267000, Cambridge, United Kingdom
| |
Collapse
|
9
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
10
|
Landvreugd A, Pool R, Nivard MG, Bartels M. Using Polygenic Scores for Circadian Rhythms to Predict Wellbeing, Depressive Symptoms, Chronotype, and Health. J Biol Rhythms 2024; 39:270-281. [PMID: 38425306 PMCID: PMC11141090 DOI: 10.1177/07487304241230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The association between circadian rhythms and diseases has been well established, while the association with mental health is less explored. Given the heritable nature of circadian rhythms, this study aimed to investigate the relationship between genes underlying circadian rhythms and mental health outcomes, as well as a possible gene-environment correlation for circadian rhythms. Polygenic scores (PGSs) represent the genetic predisposition to develop a certain trait or disease. In a sample from the Netherlands Twin Register (N = 14,021), PGSs were calculated for two circadian rhythm measures: morningness and relative amplitude (RA). The PGSs were used to predict mental health outcomes such as subjective happiness, quality of life, and depressive symptoms. In addition, we performed the same prediction analysis in a within-family design in a subset of dizygotic twins. The PGS for morningness significantly predicted morningness (R2 = 1.55%) and depressive symptoms (R2 = 0.22%). The PGS for RA significantly predicted general health (R2 = 0.12%) and depressive symptoms (R2 = 0.20%). Item analysis of the depressive symptoms showed that 4 out of 14 items were significantly associated with the PGSs. Overall, the results showed that people with a genetic predisposition of being a morning person or with a high RA are likely to have fewer depressive symptoms. The four associated depressive symptoms described symptoms related to decision-making, energy, and feeling worthless or inferior, rather than sleep. Based on our findings future research should include a substantial role for circadian rhythms in depression research and should further explore the gene-environment correlation in circadian rhythms.
Collapse
Affiliation(s)
- Anne Landvreugd
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
| | - Michel G. Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Chen K, Wang Y, Li D, Wu R, Wang J, Wei W, Zhu W, Xie W, Feng D, He Y. Biological clock regulation by the PER gene family: a new perspective on tumor development. Front Cell Dev Biol 2024; 12:1332506. [PMID: 38813085 PMCID: PMC11133573 DOI: 10.3389/fcell.2024.1332506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| |
Collapse
|
12
|
Peters B, Vahlhaus J, Pivovarova-Ramich O. Meal timing and its role in obesity and associated diseases. Front Endocrinol (Lausanne) 2024; 15:1359772. [PMID: 38586455 PMCID: PMC10995378 DOI: 10.3389/fendo.2024.1359772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Meal timing emerges as a crucial factor influencing metabolic health that can be explained by the tight interaction between the endogenous circadian clock and metabolic homeostasis. Mistimed food intake, such as delayed or nighttime consumption, leads to desynchronization of the internal circadian clock and is associated with an increased risk for obesity and associated metabolic disturbances such as type 2 diabetes and cardiovascular diseases. Conversely, meal timing aligned with cellular rhythms can optimize the performance of tissues and organs. In this review, we provide an overview of the metabolic effects of meal timing and discuss the underlying mechanisms. Additionally, we explore factors influencing meal timing, including internal determinants such as chronotype and genetics, as well as external influences like social factors, cultural aspects, and work schedules. This review could contribute to defining meal-timing-based recommendations for public health initiatives and developing guidelines for effective lifestyle modifications targeting the prevention and treatment of obesity and associated metabolic diseases. Furthermore, it sheds light on crucial factors that must be considered in the design of future food timing intervention trials.
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Janna Vahlhaus
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Odriozola A, González A, Álvarez-Herms J, Corbi F. Circadian rhythm and host genetics. ADVANCES IN GENETICS 2024; 111:451-495. [PMID: 38908904 DOI: 10.1016/bs.adgen.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter aims to explore the usefulness of the latest advances in genetic studies in the field of the circadian system in the future development of individualised strategies for health improvement based on lifestyle intervention. Due to the multifactorial and complex nature of the circadian system, we focus on the highly prevalent phenotypes in the population that are key to understanding its biology from an evolutionary perspective and that can be modulated by lifestyle. Therefore, we leave in the background those phenotypes that constitute infrequent pathologies or in which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Therefore, from an evolutionary paradigm, this chapter addresses phenotypes such as morning chronotypes, evening chronotypes, extreme chronotypes, and other key concepts such as circadian rhythm amplitude, resilience to changes in circadian rhythm, and their relationships with pathologies associated with circadian rhythm imbalances.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
14
|
Pavithra S, Aich A, Chanda A, Zohra IF, Gawade P, Das RK. PER2 gene and its association with sleep-related disorders: A review. Physiol Behav 2024; 273:114411. [PMID: 37981094 DOI: 10.1016/j.physbeh.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
The natural circadian rhythm in an individual governs the sleep-wake cycle over 24 h. Disruptions in this internal cycle can lead to major health hazards and sleep disorders. Reports suggest that at least 50 % of people worldwide suffer from sleep-related disorders. An increase in screen time, especially in the wake of the COVID-19 pandemic, is one of the external causative factors for this condition. While many factors govern the circadian clock and its aberrance, the PER2 gene has been strongly linked to chronotypes by many researchers. The current paper provides an extensive examination of key Single Nucleotide Polymorphisms within the PER2 gene and their potential connection to four major types of sleep disorders. This study investigates whether these SNPs play a causative role in sleep disorders or if they are solely associated with these conditions. Additionally, we explore whether these genetic variations exert a lifelong influence on these sleep patterns or if external triggers contribute to the development of sleep disorders. This gene is a crucial regulator of the circadian cycle responsible for the transcription of other clock genes. It regulates a variety of physiological systems such as metabolism, sleep, body temperature, blood pressure, endocrine, immunological, cardiovascular, and renal function. We aim to establish some clarity to the multifaceted nature of this gene, which is often overlooked, and seek to establish the mechanistic role of PER2 gene mutations in sleep disorders. This will improve further understanding, assessment, and treatment of these conditions in future.
Collapse
Affiliation(s)
- S Pavithra
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India; Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Adrija Aich
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Adrita Chanda
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Ifsha Fatima Zohra
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Pranotee Gawade
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
15
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
16
|
Wang J, Zhang L, Tao N, Wang X, Deng S, Li M, Zu Y, Xu C. Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms. Foods 2023; 12:foods12030464. [PMID: 36765993 PMCID: PMC9914586 DOI: 10.3390/foods12030464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the high addiction and side effects of medicines, people have increasingly inclined to natural and healthy peptides to improve sleep. Herein, we isolated novel peptides with sleep-promoting ability from Pneumatophorus japonicus bone peptides (PBPs) and constructed an insomniac zebrafish model as a demonstration, incorporating behavioral and transcriptomic approaches to reveal the sleep-promoting effect and mechanism of PBPs. Specifically, a sequential targeting isolation approach was developed to refine and identify a peptide with remarkable sleep-promoting activity, namely TG7 (Tyr-Gly-Asn-Pro-Trp-Glu-Lys). TG7 shows comparable effects and a similar action pathway to melatonin in improving sleep. TG7 restores abnormal behavior of insomnia zebrafish to normal levels by upregulating the hnrnpa3 gene. The peptide downregulates per1b gene but upregulates cry1b, cry1ba and per2, improving the circadian rhythm. Furthermore, TG7 upregulates the genes gnb3b, arr3b and opn1mw1 to regulate the visual function. The above results indicate that TG7 improves circadian rhythms and attenuated abnormal alterations in visual function and motility induced by light, allowing for effective sleep promotion. This study isolated sleep-promoting peptides from PBPs, which provides a theoretical basis for the development of subsequent sleep-promoting products based on protein peptides.
Collapse
Affiliation(s)
- Junbao Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mingyou Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
- Correspondence: (Y.Z.); (C.X.)
| |
Collapse
|
17
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
18
|
Characteristic of Ultrastructure of Mice B16 Melanoma Cells under the Influence of Different Lighting Regimes. Clocks Sleep 2022; 4:745-760. [PMID: 36547107 PMCID: PMC9777458 DOI: 10.3390/clockssleep4040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms of physiological processes, constantly being in a state of dynamic equilibrium and plastically associated with changes in environmental conditions, are the basis of homeostasis of an organism of human and other mammals. Violation of circadian rhythms due to significant disturbances in parameters of main environmental effectors (desynchronosis) leads to the development of pathological conditions and a more severe course of preexisting pathologies. We conducted the study of the ultrastructure of cells of mice transplantable malignant melanoma B16 under the condition of normal (fixed) lighting regime and under the influence of constant lighting. Results of the study show that melanoma B16 under fixed light regime represents a characteristic picture of this tumor-predominantly intact tissue with safe junctions of large, functionally active cells with highly irregular nuclei, developed organelles and a relatively low content of melanin. The picture of the B16 melanoma tissue structure and the ultrastructure of its cells under the action of constant lighting stand in marked contrast to the group with fixed light: under these conditions the tumor exhibits accelerated growth, a significant number of cells in the state of apoptosis and necrosis, ultrastructural signs of degradation of the structure and functions, and signs of embryonization of cells with the background of adaptation to oxygen deficiency.
Collapse
|
19
|
Goetting MG. Role of Psychologists in Pediatric Sleep Medicine. Pediatr Clin North Am 2022; 69:989-1002. [PMID: 36207108 DOI: 10.1016/j.pcl.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sleep disorders commonly afflict infants, children, and adolescents and have a significant adverse impact on them and their families, sometimes to a severe degree. They can cause immediate stress and suffering and long-term loss of opportunities and potential. Many of these disorders can be well managed by the psychologist and often one is required, either as the sole provider or as an integral part of a team. Sleep disorders have a bidirectional interplay with mental health disorders. The patient may therefore present initially to the psychologist, primary care provider, or the sleep medicine specialist.
Collapse
Affiliation(s)
- Mark G Goetting
- Department of Pediatric and Adolescent Medicine; Department of Medicine, Center for Clinical Research, Western Michigan University Homer Stryker M.D. School of Medicine, Office 2627, 1000 Oakland Drive, Kalamazoo, MI 49008-8010, USA.
| |
Collapse
|
20
|
Thompson RS, Gaffney M, Hopkins S, Kelley T, Gonzalez A, Bowers SJ, Vitaterna MH, Turek FW, Foxx CL, Lowry CA, Vargas F, Dorrestein PC, Wright KP, Knight R, Fleshner M. Ruminiclostridium 5, Parabacteroides distasonis, and bile acid profile are modulated by prebiotic diet and associate with facilitated sleep/clock realignment after chronic disruption of rhythms. Brain Behav Immun 2021; 97:150-166. [PMID: 34242738 DOI: 10.1016/j.bbi.2021.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.
Collapse
Affiliation(s)
- Robert S Thompson
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | - Michelle Gaffney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Samuel J Bowers
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Martha Hotz Vitaterna
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Fred W Turek
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Christine L Foxx
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
21
|
Lipsanen J, Kuula L, Elovainio M, Partonen T, Pesonen AK. Data-driven modelling approach to circadian temperature rhythm profiles in free-living conditions. Sci Rep 2021; 11:15029. [PMID: 34294824 PMCID: PMC8298484 DOI: 10.1038/s41598-021-94522-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 01/13/2023] Open
Abstract
The individual variation in the circadian rhythms at the physiological level is not well understood. Albeit self-reported circadian preference profiles have been consolidated, their premises are grounded on human experience, not on physiology. We used data-driven, unsupervised time series modelling to characterize distinct profiles of the circadian rhythm measured from skin surface temperature in free-living conditions. We demonstrate the existence of three distinct clusters of individuals which differed in their circadian temperature profiles. The cluster with the highest temperature amplitude and the lowest midline estimating statistic of rhythm, or rhythm-adjusted mean, had the most regular and early-timed sleep–wake rhythm, and was the least probable for those with a concurrent delayed sleep phase, or eveningness chronotype. While the clusters associated with the observed sleep and circadian preference patterns, the entirely unsupervised modelling of physiological data provides a novel basis for modelling and understanding the human circadian functions in free-living conditions.
Collapse
Affiliation(s)
- Jari Lipsanen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kuula
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Elovainio
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Merikanto I, Kantojärvi K, Partonen T, Pesonen AK, Paunio T. Genetic variants for morningness in relation to habitual sleep-wake behavior and diurnal preference in a population-based sample of 17,243 adults. Sleep Med 2021; 80:322-332. [PMID: 33631501 DOI: 10.1016/j.sleep.2021.01.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Associations of eveningness with health hazards benefit from analyzing to what extent the polygenic score for morningness correlates with the assessments of the behavioral trait of morningness-eveningness and chronotype. METHODS With a population-based sample of 17,243 Finnish adults, aged 25-74 years, this study examines the associations of four feasible assessment methods of chronotype, a) biological the genetic liability based on the polygenic score for morningness (PGSmorn), b) the widely-used single item for self-assessed morningness/eveningness (MEQi19) of the original Morningness-Eveningness Questionnaire (MEQ), c) the behavioral trait of morningness-eveningness as assessed with the score on the shortened version (sMEQ) of the original MEQ, and d) the phase of entrainment as assessed with the habitual midpoint of sleep based on the self-reported sleep-wake schedule during weekend (Sleepmid-wknd) as well as the sleep debt corrected midpoint of sleep (Sleepmid-corr). RESULTS All self-report measures correlated with each other, but very weakly with the PGSmorn, which explained 1-2% of the variation in diurnal preference or habitual sleep-wake schedule. The influence of age was greater on Sleepmid-wknd and Sleepmid-corr than on the sMEQ or MEQi19, indicating that the diurnal preference might be a more stable indicator for morningness-eveningness than the sleep-wake schedule. Analyses of the discrepancies between sMEQ and MEQi19 indicated that eveningness can be over-estimated when relying on only the single-item self-assessment. CONCLUSIONS The current polygenic score for morningness explains only a small proportion of the variation in diurnal preference or habitual sleep-wake schedule. The molecular genetic basis for morningness-eveningness needs further elucidation.
Collapse
Affiliation(s)
- Ilona Merikanto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Psychology and Logopedics and SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Orton Orthopaedics Hospital, Helsinki, Finland.
| | - Katri Kantojärvi
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Psychiatry and SleepWell Research Program, University of Helsinki and Helsinki University Hospital, Finland
| | - Timo Partonen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics and SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Psychiatry and SleepWell Research Program, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|