1
|
Saadh MJ, Allela OQB, Al-Hussainy AF, Baldaniya L, Rekha MM, Nathiya D, Kaur P, Aminov Z, Sameer HN, Hameed HG, Athab ZH, Adil M. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflamm (Lond) 2025; 22:18. [PMID: 40369549 PMCID: PMC12079953 DOI: 10.1186/s12950-025-00443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Autoimmune diseases (AIDs) are marked by systemic inflammation and immune dysregulation, yet current therapies often fail to target their underlying causes. Emerging evidence positions exosomal non-coding RNAs (ncRNAs)-including miRNAs, lncRNAs, and circRNAs-as key regulators of inflammatory pathways, providing critical insights into AID pathogenesis. This review synthesizes recent advances in how these ncRNAs orchestrate immune cell communication, modulate inflammatory mediators, and drive microglial activation in neuroinflammatory AIDs. It evaluates their dual role as disease amplifiers (e.g., miR-155 in lupus, miR-326 in rheumatoid arthritis) and therapeutic targets, emphasizing their potential to reprogram immune responses or deliver anti-inflammatory agents. In this review, we first provide a glimpse into the pathogenesis of autoimmune diseases and delve into the structure and function of exosomes, emphasizing their role in cell-cell communication. We then discuss the regulatory roles of exosomal ncRNAs in immune modulation, detailing their types, functions, and mechanisms of action. Finally, we examine the implications of exosomes and exosomal ncRNAs in the context of autoimmune diseases, with a particular focus on microglial activation and its contribution to neuroinflammation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Liu MW, Li H, Xiong GF, Zhang BR, Zhang QJ, Gao SJ, Zhu YL, Zhang LM. Mesenchymal stem cell exosomes therapy for the treatment of traumatic brain injury: mechanism, progress, challenges and prospects. J Transl Med 2025; 23:427. [PMID: 40217480 PMCID: PMC11987214 DOI: 10.1186/s12967-025-06445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disease characterized by brain damage and functional impairment caused by external forces. Under the influence of multiple mechanisms, TBI can cause synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammatory cascade reactions, resulting in a high disability and mortality rate for patients and a heavy burden on families and society. Exosomes are cell-derived vesicles that encapsulate a variety of molecules, including proteins, lipids, mRNAs, and other small biomolecules. Among these, exosomes derived from mesenchymal stem cells (MSCs) have garnered significant attention owing to their therapeutic potential in the nervous system, offering broad clinical applicability. Recent studies have demonstrated that MSC-derived exosome injections in traumatic brain injury models effectively mitigate local inflammatory damage and promote nerve regeneration following injury. Owing to their small size, challenging replication, ease of preservation, and low immunogenicity, MSC exosomes are emerging as a promising therapeutic strategy for traumatic brain injury. This review explores the pathogenesis of traumatic brain injury, the underlying mechanisms of MSC exosome action, and the potential clinical applications of MSC exosomes in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, China.
| | - Hua Li
- Department of Emergency, The Third People's Hospital of Yunnan Province, Kunming, China, 650200
| | - Gui-Fei Xiong
- Department of Pain Management, Kaiyuan City People's Hospital of Hani-Yi Autonomous Prefecture of Honghe, KaiYuan, 661600, China
| | - Bin-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qiu-Juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shu-Ji Gao
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan-Lin Zhu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin-Ming Zhang
- Department of Neurology, The First Hospital Affiliated to Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
3
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
4
|
Zhirong Z, Kexin J, Mu Y, Lichen Z, Zhen T, Hongyin L, Ruiwu D. Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation. Stem Cells Int 2025; 2025:8883585. [PMID: 40129959 PMCID: PMC11932749 DOI: 10.1155/sci/8883585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Objective: The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. Methods: A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. Results: The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. Conclusion: This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.
Collapse
Affiliation(s)
- Zhao Zhirong
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jiang Kexin
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yuan Mu
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Tan Zhen
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Liang Hongyin
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Shi X, He W, Gupta A, To K, Clark L, Mirle N, Wynn T, Wang D, Ganesh A, Zeng HM, Wang H. Extracellular vesicles as drug and gene delivery vehicles in central nervous system diseases. Biomater Sci 2025; 13:1161-1178. [PMID: 39871579 PMCID: PMC11773327 DOI: 10.1039/d4bm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers. EVs from different cell types or biological fluids carry distinct cargo depending on their origin, and they perform diverse functions. For instance, EVs derived from stem cells possess pluripotent properties, reflecting the cargo from their parent cells. Over the past two decades, substantial preclinical and clinical research has explored EVs-mediated drug and gene delivery to various organs, including the brain. Natural or intrinsic EVs may be effective for certain applications, but as drug or gene carriers, they demonstrate broader and more efficient potential across various diseases. Here, we review research on using EVs to treat central nervous system (CNS) diseases, such as Alzheimer's Disease, Parkinson diseases, depression, anxiety, dementia, and acute ischemic strokes. We first reviewed the naïve EVs, especially mesenchymal stem cell (MSC) derived EVs in CNS diseases and summarized the clinical trials of EVs in treating CNS diseases and highlighted the reports of two complete trials. Then, we overviewed the preclinical research of EVs as drug and gene delivery vehicles in CNS disease models, including the most recent two years' progress and discussed the mechanisms and new methods of engineered EVs for targeting CNS. Finally, we discussed challenges and future directions and of EVs as personalized medicine for CNS diseases.
Collapse
Affiliation(s)
- Xi Shi
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Weilong He
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ashwin Gupta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyran To
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Leonardo Clark
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nitya Mirle
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akash Ganesh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena M Zeng
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huiliang Wang
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
7
|
Liang S, Hu Z. Unveiling the predictive power of biomarkers in traumatic brain injury: A narrative review focused on clinical outcomes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 39687991 DOI: 10.5507/bp.2024.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Traumatic brain injury (TBI) has long-term consequences, including neurodegenerative disease risk. Current diagnostic tools are limited in detecting subtle brain damage. This review explores emerging biomarkers for TBI, including those related to neuronal injury, inflammation, EVs, and ncRNAs, evaluating their potential to predict clinical outcomes like mortality, recovery, and cognitive impairment. It addresses challenges and opportunities for implementing biomarkers in clinical practice, aiming to improve TBI diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Sitao Liang
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Zihui Hu
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| |
Collapse
|
8
|
Rabou YKA, Zayed AA, Fahim SA, Abdelgwad M, Fiki AE, Fayed NN. Exploring New and Promising Genetic Biomarkers for Evaluating Traumatic Brain Injuries: A Case-Control Study. Neurochem Res 2024; 50:48. [PMID: 39641810 PMCID: PMC11624226 DOI: 10.1007/s11064-024-04292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and death in all age groups, with an estimated 50 million people having brain injury due to trauma each year. Accurate blood-based biomarkers are needed to assist with diagnosis of patients across the spectrum of time and severity. Our objectives were to explore the diagnostic precision of time- and severity- related four blood-based biomarkers: AKT3, GSK-3β, hsa-miR-16-5p, and MALAT-1 for TBI for the purpose of diagnosis, prognosis, and follow-up. 40 samples were recruited as the following: 30 TBI patients and 10 healthy volunteers as controls with matched age and sex. They were divided according to the Glasgow Coma Scale into mild (mTBI), moderate (modTBI), and severe(sTBI) TBI. Blood samples were withdrawn at entry, and after 5 and 30 days, RT-PCR was used for measuring the expression level. The results showed upregulated expression levels of AKT3, hsa-miR-16-5p and significantly downregulated expression levels of GSK-3β in TBI patients compared to controls at all timings measured. mTBI patients showed a higher expression level of hsa-miR-16-5p compared with modTBI, and sTBI patients. MALAT-1 level showed a significant increase in severe cases only. We concluded that AKT3, hsa-miR-16-5p, and GSK-3β are excellent diagnostic biomarkers in TBI patients at initial assessment, as well as at 5 and 30 days following the injury. Moreover, MALAT-1 had good diagnostic value in sTBI patients, and its prognostic value extends to 30 days. GSK-3β was an excellent biomarker for detecting mTBI.
Collapse
Affiliation(s)
- Yasmin Kamal Abd Rabou
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Abeer Ahmed Zayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, New Giza University (NGU), New Giza, Km 22 Cairo- Alexandria Desert Road, P.O. Box 12577, Giza, Egypt.
| | - Marwa Abdelgwad
- Department of Biochemistry, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Ahmed El Fiki
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Nermin Nabil Fayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Raja HAA, Chaurasia B. Prognostication in traumatic brain injury. Neurosurg Rev 2024; 47:314. [PMID: 38990432 DOI: 10.1007/s10143-024-02574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Affiliation(s)
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
10
|
Gareev I, Beylerli O, Ilyasova T, Ahmad A, Shi H, Chekhonin V. Therapeutic application of adipose-derived stromal vascular fraction in myocardial infarction. iScience 2024; 27:109791. [PMID: 38736548 PMCID: PMC11088339 DOI: 10.1016/j.isci.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
11
|
Patel RS, Krause-Hauch M, Kenney K, Miles S, Nakase-Richardson R, Patel NA. Long Noncoding RNA VLDLR-AS1 Levels in Serum Correlate with Combat-Related Chronic Mild Traumatic Brain Injury and Depression Symptoms in US Veterans. Int J Mol Sci 2024; 25:1473. [PMID: 38338752 PMCID: PMC10855201 DOI: 10.3390/ijms25031473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long noncoding RNA (lncRNA) expression signature in serum samples that correlated with rmTBI years after the incidences. Serum samples were obtained from Long-Term Impact of Military-Relevant Brain-Injury Consortium Chronic Effects of Neurotrauma Consortium (LIMBIC CENC) repository, from participants unexposed to TBI or who had rmTBI. Four lncRNAs were identified as consistently present in all samples, as detected via droplet digital PCR and packaged in exosomes enriched for CNS origin. The results, using qPCR, demonstrated that the lncRNA VLDLR-AS1 levels were significantly lower among individuals with rmTBI compared to those with no lifetime TBI. ROC analysis determined an AUC of 0.74 (95% CI: 0.6124 to 0.8741; p = 0.0012). The optimal cutoff for VLDLR-AS1 was ≤153.8 ng. A secondary analysis of clinical data from LIMBIC CENC was conducted to evaluate the psychological symptom burden, and the results show that lncRNAs VLDLR-AS1 and MALAT1 are correlated with symptoms of depression. In conclusion, lncRNA VLDLR-AS1 may serve as a blood biomarker for identifying chronic rmTBI and depression in patients.
Collapse
Affiliation(s)
- Rekha S. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd., Tampa, FL 33612, USA; (R.S.P.); (S.M.)
| | - Meredith Krause-Hauch
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Shannon Miles
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd., Tampa, FL 33612, USA; (R.S.P.); (S.M.)
- Department of Psychiatry & Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Risa Nakase-Richardson
- Chief of Staff Office, James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA;
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Niketa A. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd., Tampa, FL 33612, USA; (R.S.P.); (S.M.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|