1
|
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023; 9:270-292. [PMID: 36681605 PMCID: PMC10038906 DOI: 10.1016/j.trecan.2022.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in understanding tumor biology, malignant gliomas remain incurable. While immunotherapy has improved outcomes in other cancer types, comparable efficacy has not yet been demonstrated for primary cancers of the central nervous system (CNS). T cell exhaustion, defined as a progressive decrease in effector function, sustained expression of inhibitory receptors, metabolic dysfunction, and distinct epigenetic and transcriptional alterations, contributes to the failure of immunotherapy in the CNS. Herein, we describe recent advances in understanding the drivers of T cell exhaustion in the glioma microenvironment. We discuss the extrinsic and intrinsic factors that contribute to exhaustion and highlight potential avenues for reversing this phenotype. Our ability to directly target specific immunosuppressive drivers in brain cancers would be a major advance in immunotherapy.
Collapse
Affiliation(s)
- Matthew B Watowich
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Highly Expressed CYBRD1 Associated with Glioma Recurrence Regulates the Immune Response of Glioma Cells to Interferon. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2793222. [PMID: 34326882 PMCID: PMC8302377 DOI: 10.1155/2021/2793222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022]
Abstract
Invasiveness, resistance to treatment, and recurrence of gliomas are significant hurdles to successful treatment regimens. Data sets from Gene Expression Omnibus (GEO), CGGA-RNAseq, and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) were analyzed, and an increased expression of Cytochrome B Reductase 1 (CYBRD1) was identified and could be associated with aggravated clinical outcomes. Gene ontology (GO) enrichment analysis indicated that CYBRD1 co-expressed genes are enriched during an immune response. CYBRD1 overexpression in glioma cell lines is enhanced, whereas CYBRD1 silencing attenuated the aggressiveness of glioma cells. In IFN-α-treated glioma cells, IFN-α suppressed the viability and migratory ability and invasive ability of glioma cells, whereas CYBRD1 overexpression attenuated the antitumor effects of IFN-α. CYBRD1 could potentially serve as a biomarker for glioma recurrence. CYBRD1 overexpression enhances glioma cell aggressiveness and attenuates glioma cell response to IFN-α.
Collapse
|
3
|
Fakhoury KR, Ney DE, Ormond DR, Rusthoven CG. Immunotherapy and radiation for high-grade glioma: a narrative review. Transl Cancer Res 2021; 10:2537-2570. [PMID: 35116570 PMCID: PMC8797698 DOI: 10.21037/tcr-20-1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma and other high-grade gliomas (HGGs) are the most common and deadly primary brain tumors. Due to recent advances in immunotherapy and improved clinical outcomes in other disease sites, the study of immunotherapy in HGG has increased significantly. Herein, we summarize and evaluate existing evidence and ongoing clinical trials investigating the use of immunotherapy in the treatment of HGG, including therapeutic vaccination, immune checkpoint inhibition, adoptive lymphocyte transfer, and combinatorial approaches utilizing radiation and multiple modalities of immunotherapy. Special attention is given to the mechanisms by which radiation may improve immunogenicity in HGG, why this motivates the study of radiation in combination with immunotherapy, and how to determine optimal dosing and scheduling of radiation. Though larger randomized controlled trials have not consistently shown improvements in clinical outcomes, this area of research is still in its early stages and a number of important lessons can be taken away from the studies that have been completed to date. Many studies found a subset of patients who experienced durable responses, and analysis of their immune cells and tumor cells can be used to identify biomarkers that predict therapeutic response, as well as additional glioma-specific targets that can enhance therapeutic efficacy in a challenging tumor type.
Collapse
Affiliation(s)
- Kareem R. Fakhoury
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Douglas E. Ney
- Department of Neurology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - D. Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
4
|
Dendritic cell immunotherapy for brain tumors. J Neurooncol 2015; 123:425-32. [PMID: 26037466 DOI: 10.1007/s11060-015-1830-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 12/15/2022]
Abstract
Glioblastomas are characterized by immunosuppression, rapid proliferation, angiogenesis, and invasion into the surrounding brain parenchyma. Limitations in current therapeutic approaches have spurred the development of personalized, patient-specific treatments. Among these, active immunotherapy has emerged as a viable option for glioma treatment. The ability to generate an immune response utilizing patient-derived dendritic cells (DCs) (professional antigen-presenting cells) is especially attractive. This approach to glioma treatment allows for the immunologic targeting and destruction of malignant cells. Data acquired in multiple pre-clinical models and clinical trials have shown significant responses and prolonged survival. Here we provide an overview of the current status of DC vaccination for the treatment of gliomas.
Collapse
|
5
|
Glas M, Coch C, Trageser D, Dassler J, Simon M, Koch P, Mertens J, Quandel T, Gorris R, Reinartz R, Wieland A, Von Lehe M, Pusch A, Roy K, Schlee M, Neumann H, Fimmers R, Herrlinger U, Brüstle O, Hartmann G, Besch R, Scheffler B. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells 2013; 31:1064-74. [PMID: 23390110 DOI: 10.1002/stem.1350] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/12/2013] [Indexed: 01/03/2023]
Abstract
Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain.
Collapse
Affiliation(s)
- Martin Glas
- Stem Cell Pathologies, University of Bonn Medical Center, Bonn, Germany. martin.glas@ukb
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kushchayev SV, Kushchayeva YS, Wiener PC, Scheck AC, Badie B, Preul MC. Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus. World Neurosurg 2012. [PMID: 23178919 DOI: 10.1016/j.wneu.2012.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Monocyte-derived cells of the brain (MDCB) are a diverse group of functional immune cells that are also highly abundant in gliomas. There is growing evidence that MDCB play essential roles in the pathogenesis of gliomas. The aim of this review was to collate and systematize contemporary knowledge about these cells as they relate to glioma progression and antiglioblastoma therapeutic modalities with a view toward improved effectiveness of therapy. METHODS We reviewed relevant studies to construct a summary of different MDCB subpopulations in steady state and in malignant gliomas and discuss their role in the development of malignant gliomas and potential future therapies. RESULTS Current studies suggest that MDCB subsets display different phenotypes and differentiation potentials depending on their milieu in the brain and exposure to tumoral influences. MDCB possess specific and unique functions, including those that are protumoral and those that are antitumoral. CONCLUSIONS Elucidating the role of mononuclear-derived cells associated with gliomas is crucial in designing novel immunotherapy strategies. Much progress is needed to characterize markers to identify cell subsets and their specific regulatory roles. Investigation of MDCB can be clinically relevant. Specific MDCB populations potentially can be used for glioma therapy as a target or as cell vehicles that might deliver cytotoxic substances or processes to the glioma microenvironment.
Collapse
Affiliation(s)
- Sergiy V Kushchayev
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Yevgeniya S Kushchayeva
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Surgery, Medstar Washington Hospital Center, Washington, DC, USA
| | - Philip C Wiener
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Adrienne C Scheck
- Neuro-oncology Research Laboratory, Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Mark C Preul
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
7
|
Kushchayev SV, Sankar T, Eggink LL, Kushchayeva YS, Wiener PC, Hoober JK, Eschbacher J, Liu R, Shi FD, Abdelwahab MG, Scheck AC, Preul MC. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part II: combination with external radiation improves survival. Cancer Manag Res 2012; 4:325-34. [PMID: 23049281 PMCID: PMC3459592 DOI: 10.2147/cmar.s33355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background A peptide mimetic of a ligand for the galactose/N-acetylgalactosamine-specific C-type lectin receptors (GCLR) exhibited monocyte-stimulating activity, but did not extend survival when applied alone against a syngeneic murine malignant glioma. In this study, the combined effect of GCLRP with radiation was investigated. Methods C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells. Animals were grouped based on randomized tumor size by magnetic resonance imaging on day seven. One group that received cranial radiation (4 Gy on days seven and nine) only were compared with animals treated with radiation and GCLRP (4 Gy on days seven and nine combined with subcutaneous injection of 1 nmol/g on alternative days beginning on day seven). Magnetic resonance imaging was used to assess tumor growth and correlated with survival rate. Blood and brain tissues were analyzed with regard to tumor and contralateral hemisphere using fluorescence-activated cell sorting analysis, histology, and enzyme-linked immunosorbent assay. Results GCLRP activated peripheral monocytes and was associated with increased blood precursors of dendritic cells. Mean survival increased (P < 0.001) and tumor size was smaller (P < 0.02) in the GCLRP + radiation group compared to the radiation-only group. Accumulation of dendritic cells in both the tumoral hemisphere (P < 0.005) and contralateral tumor-free hemisphere (P < 0.01) was associated with treatment. Conclusion Specific populations of monocyte-derived brain cells develop critical relationships with malignant gliomas. The biological effect of GCLRP in combination with radiation may be more successful because of the damage incurred by tumor cells by radiation and the enhanced or preserved presentation of tumor cell antigens by GCLRP-activated immune cells. Monocyte-derived brain cells may be important targets for creating effective immunological modalities such as employing the receptor system described in this study.
Collapse
Affiliation(s)
- Sergiy V Kushchayev
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
González-Aramundiz JV, Lozano MV, Sousa-Herves A, Fernandez-Megia E, Csaba N. Polypeptides and polyaminoacids in drug delivery. Expert Opin Drug Deliv 2012; 9:183-201. [DOI: 10.1517/17425247.2012.647906] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
10
|
Tossberg JT, Crooke PS, Henderson MA, Sriram S, Mrelashvili D, Chitnis S, Polman C, Vosslamber S, Verweij CL, Olsen NJ, Aune TM. Gene-expression signatures: biomarkers toward diagnosing multiple sclerosis. Genes Immun 2011; 13:146-54. [PMID: 21938015 PMCID: PMC3291793 DOI: 10.1038/gene.2011.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of biomarkers contributing to disease diagnosis, classification or prognosis could be of considerable utility. For example, primary methods to diagnose multiple sclerosis (MS) include magnetic resonance imaging and detection of immunological abnormalities in cerebrospinal fluid. We determined whether gene-expression differences in blood discriminated MS subjects from comparator groups, and identified panels of ratios that performed with varying degrees of accuracy depending upon complexity of comparator groups. High levels of overall accuracy were achieved by comparing MS with homogeneous comparator groups. Overall accuracy was compromised when MS was compared with a heterogeneous comparator group. Results, validated in independent cohorts, indicate that gene-expression differences in blood accurately exclude or include a diagnosis of MS and suggest that these approaches may provide clinically useful prediction of MS.
Collapse
Affiliation(s)
- J T Tossberg
- Research Department, ArthroChip, LLC, Franklin, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|