1
|
Song W, Giannotti A, Bekiaridou A, Bloom O, Zanos S. Low intensity trans-spinal focused ultrasound reduces mechanical sensitivity and suppresses spinal microglia activation in rats with chronic constriction injury. Bioelectron Med 2025; 11:8. [PMID: 40159475 PMCID: PMC11956222 DOI: 10.1186/s42234-025-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Low intensity, trans-spinal focused ultrasound (tsFUS) is a noninvasive neuromodulation approach that has been shown to modulate spinal circuit excitability in healthy rats. Here, we evaluated the potential of tsFUS for alleviating neuropathic pain by testing it in a chronic constriction injury (CCI) model. Male rats underwent CCI of the left sciatic nerve and then received tsFUS (2 kHz pulse repetition frequency; 40% duty cycle) or sham stimulation, targeted at spinal segment level L5 for 3 min daily over three days. As expected, CCI causes significant reduction of von Frey Threshold (vFT), a measure of mechanical sensitivity. We found that tsFUS treatment is associated with increased vFT compared to sham; this increase persists beyond the duration of treatment, through days 4 to 23 post-CCI. In spinal cords of tsFUS-treated animals, counts of spinal microglia (Iba1 + cells) and of activated, pro-inflammatory microglia (Iba1 + /CD86 + cells), are reduced compared to sham-treated animals. This reduction in microglia counts is limited to the insonified side of the spinal cord, ipsilateral to CCI. These findings suggest that tsFUS may be a promising approach for treatment of neuropathic pain at early stages, possibly by attenuating the development of microglial-driven inflammation.
Collapse
Affiliation(s)
- Weiguo Song
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Alice Giannotti
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alexandra Bekiaridou
- Elmezzi Graduate School of Molecular Medicine, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Ona Bloom
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| |
Collapse
|
2
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Camera F, Colantoni E, Casciati A, Tanno B, Mencarelli L, Di Lorenzo F, Bonnì S, Koch G, Merla C. Dosimetry for repetitive transcranial magnetic stimulation: a translational study from Alzheimer's disease patients to controlled in vitroinvestigations. Phys Med Biol 2024; 69:185001. [PMID: 39142335 DOI: 10.1088/1361-6560/ad6f69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Objective.Recent studies have indicated that repetitive transcranial magnetic stimulation (rTMS) could enhance cognition in Alzheimer's Disease (AD) patients, but to now the molecular-level interaction mechanisms driving this effect remain poorly understood. While cognitive scores have been the primary measure of rTMS effectiveness, employing molecular-based approaches could offer more precise treatment predictions and prognoses. To reach this goal, it is fundamental to assess the electric field (E-field) and the induced current densities (J) within the stimulated brain areas and to translate these values toin vitrosystems specifically devoted in investigating molecular-based interactions of this stimulation.Approach.This paper offers a methodological procedure to guide dosimetric assessment to translate the E-field induced in humans (in a specific pilot study) intoin vitrosettings. Electromagnetic simulations on patients' head models and cellular holders were conducted to characterize exposure conditions and determine necessary adjustments forin vitroreplication of the same dose delivered in humans using the same stimulating coil.Main results.Our study highlighted the levels of E-field andJinduced in the target brain region and showed that the computed E-field andJwere different among patients that underwent the treatment, so to replicate the exposure to thein vitrosystem, we have to consider a range of electric quantities as reference. To match the E-field to the levels calculated in patients' brains, an increase of at least the 25% in the coil feeding current is necessary whenin vitrostimulations are performed. Conversely, to equalize current densities, modifications in the cells culture medium conductivity have to be implemented reducing it to one fifth of its value.Significance.This dosimetric assessment and subsequent experimental adjustments are essential to achieve controlledin vitroexperiments to better understand rTMS effects on AD cognition. Dosimetry is a fundamental step for comparing the cognitive effects with those obtained by stimulating a cellular model at an equal dose rigorously evaluated.
Collapse
Affiliation(s)
| | | | | | - Barbara Tanno
- Division of Biotechnologies, ENEA, Rome 00123, Italy
| | - Lucia Mencarelli
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Francesco Di Lorenzo
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Giacomo Koch
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | | |
Collapse
|
4
|
Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S, Wijaya JH, Maniyar P, Karki Y, Makrani MP, Viswanath O, Kaye AD. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr Pain Headache Rep 2024; 28:321-333. [PMID: 38386244 PMCID: PMC11126447 DOI: 10.1007/s11916-024-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW This manuscript summarizes novel clinical and interventional approaches in the management of chronic, nociceptive, and neuropathic pain. RECENT FINDINGS Pain can be defined as a feeling of physical or emotional distress caused by an external stimulus. Pain can be grouped into distinct types according to characteristics including neuropathic pain, which is a pain caused by disease or lesion in the sensory nervous system; nociceptive pain, which is pain that can be sharp, aching, or throbbing and is caused by injury to bodily tissues; and chronic pain, which is long lasting or persisting beyond 6 months. With improved understanding of different signaling systems for pain in recent years, there has been an upscale of methods of analgesia to counteract these pathological processes. Novel treatment methods such as use of cannabinoids, stem cells, gene therapy, nanoparticles, monoclonal antibodies, and platelet-rich plasma have played a significant role in improved strategies for therapeutic interventions. Although many management options appear to be promising, extensive additional clinical research is warranted to determine best practice strategies in the future for clinicians.
Collapse
Affiliation(s)
- Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
- LSU Health Science Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71104, USA.
| | | | - Kevin Yabut
- Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Jayshil Patel
- Benchmark Physical Therapy, Upstream Rehabilitation, Knoxville, TN, 37920, USA
| | - Rajkumar Patel
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Savan Patel
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | | | - Pankti Maniyar
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Yukti Karki
- Kathmandu Medical College and Teaching Hospital, Kathmandu, 44600, Nepal
| | - Moinulhaq P Makrani
- Department of Pharmacology, Parul Institute of Medical Science and Research, Waghodia, Gujarat, 291760, India
| | - Omar Viswanath
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
| |
Collapse
|
5
|
Carneiro BD, Tavares I. Transcranial Magnetic Stimulation to Treat Neuropathic Pain: A Bibliometric Analysis. Healthcare (Basel) 2024; 12:555. [PMID: 38470666 PMCID: PMC10930707 DOI: 10.3390/healthcare12050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Neuropathic pain is caused by a lesion or disease of the somatosensory system and is one of the most incapacitating pain types, representing a significant non-met medical need. Due to the increase in research in the field and since innovative therapeutic strategies are required, namely in intractable neuropathic pain, neurostimulation has been used. Within this approach, transcranial magnetic stimulation (TMS) that uses a transient magnetic field to produce electrical currents over the cortex emerges as a popular method in the literature. Since this is an area in expansion and due to the putative role of TMS, we performed a bibliometric analysis in Scopus with the primary objective of identifying the scientific production related to the use of TMS to manage neuropathic pain. The research had no restrictions, and the analysis focused on the characteristics of the literature retrieved, scientific collaboration and main research topics from inception to 6 July 2023. A total of 474 articles were collected. A biggest co-occurrence between the terms "neuropathic pain" and "transcranial magnetic stimulation" was obtained. The journal "Clinical Neurophysiology" leads the Top 5 most productive sources. The United States is the most productive country, with 50% of US documents being "review articles", followed by France, with 56% of French documents being "original articles". Lefaucheur, JP and Saitoh, Y are the two most influential authors. The most frequent type of document was "original article". Most of the studies (34%) that identified the neuropathic pain type focused on traumatic neuropathic pain, although a large proportion (38%) did not report the neuropathic pain type. This study allows us to provide a general overview of the field of TMS application for neuropathic pain and is useful for establishing future directions of research in this field.
Collapse
Affiliation(s)
- Bruno Daniel Carneiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Gurdiel-Álvarez F, Navarro-López V, Varela-Rodríguez S, Juárez-Vela R, Cobos-Rincón A, Sánchez-González JL. Transcranial magnetic stimulation therapy for central post-stroke pain: systematic review and meta-analysis. Front Neurosci 2024; 18:1345128. [PMID: 38419662 PMCID: PMC10899389 DOI: 10.3389/fnins.2024.1345128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Although rare, central post-stroke pain remains one of the most refractory forms of neuropathic pain. It has been reported that repetitive transcranial magnetic stimulation (rTMS) may be effective in these cases of pain. Aim The aim of this study was to investigate the efficacy of rTMS in patients with central post-stroke pain (CPSP). Methods We included randomized controlled trials or Controlled Trials published until October 3rd, 2022, which studied the effect of rTMS compared to placebo in CPSP. We included studies of adult patients (>18 years) with a clinical diagnosis of stroke, in which the intervention consisted of the application of rTMS to treat CSP. Results Nine studies were included in the qualitative analysis; 6 studies (4 RCT and 2 non-RCT), with 180 participants, were included in the quantitative analysis. A significant reduction in CPSP was found in favor of rTMS compared with sham, with a large effect size (SMD: -1.45; 95% CI: -1.87; -1.03; p < 0.001; I2: 58%). Conclusion The findings of the present systematic review with meta-analysis suggest that there is low quality evidence for the effectiveness of rTMS in reducing CPSP. Systematic review registration Identifier (CRD42022365655).
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Sergio Varela-Rodríguez
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Raúl Juárez-Vela
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Ana Cobos-Rincón
- Nursing Department, Faculty of Health Sciences, University of La Rioja, Research Group GRUPAC, Logroño, Spain
| | - Juan Luis Sánchez-González
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
Shlobin NA, Wu C. Current Neurostimulation Therapies for Chronic Pain Conditions. Curr Pain Headache Rep 2023; 27:719-728. [PMID: 37728863 DOI: 10.1007/s11916-023-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE OF REVIEW Neurostimulation treatment options have become more commonly used for chronic pain conditions refractory to these options. In this review, we characterize current neurostimulation therapies for chronic pain conditions and provide an analysis of their effectiveness and clinical adoption. This manuscript will inform clinicians of treatment options for chronic pain. RECENT FINDINGS Non-invasive neurostimulation includes transcranial direct current stimulation and repetitive transcranial magnetic stimulation, while more invasive options include spinal cord stimulation (SCS), peripheral nerve stimulation (PNS), dorsal root ganglion stimulation, motor cortex stimulation, and deep brain stimulation. Developments in transcranial direct current stimulation, repetitive transcranial magnetic stimulation, spinal cord stimulation, and peripheral nerve stimulation render these modalities most promising for the alleviating chronic pain. Neurostimulation for chronic pain involves non-invasive and invasive modalities with varying efficacy. Well-designed randomized controlled trials are required to delineate the outcomes of neurostimulatory modalities more precisely.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, 909 Walnut Street, Floor 2, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Sun H, Li Z, Qiu Z, Shen Y, Guo Q, Hu SW, Ding HL, An S, Cao JL. A common neuronal ensemble in nucleus accumbens regulates pain-like behaviour and sleep. Nat Commun 2023; 14:4700. [PMID: 37543693 PMCID: PMC10404280 DOI: 10.1038/s41467-023-40450-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
A comorbidity of chronic pain is sleep disturbance. Here, we identify a dual-functional ensemble that regulates both pain-like behaviour induced by chronic constrictive injury or complete Freund's adjuvant, and sleep wakefulness, in the nucleus accumbens (NAc) in mice. Specifically, a select population of NAc neurons exhibits increased activity either upon nociceptive stimulation or during wakefulness. Experimental activation of the ensemble neurons exacerbates pain-like (nociceptive) responses and reduces NREM sleep, while inactivation of these neurons produces the opposite effects. Furthermore, NAc ensemble primarily consists of D1 neurons and projects divergently to the ventral tegmental area (VTA) and preoptic area (POA). Silencing an ensemble innervating VTA neurons selectively increases nociceptive responses without affecting sleep, whereas inhibiting ensemble-innervating POA neurons decreases NREM sleep without affecting nociception. These results suggest a common NAc ensemble that encodes chronic pain and controls sleep, and achieves the modality specificity through its divergent downstream circuit targets.
Collapse
Affiliation(s)
- Haiyan Sun
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhilin Li
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhentong Qiu
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu Shen
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
9
|
Hu Y, Zhu Y, Wen X, Zeng F, Feng Y, Xu Z, Xu F, Wang J. Repetitive transcranial magnetic stimulation regulates neuroinflammation, relieves hyperalgesia and reverses despair-like behaviour in chronic constriction injury rats. Eur J Neurosci 2022; 56:4930-4947. [PMID: 35895439 DOI: 10.1111/ejn.15779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) could effectively relieve the pain and depression in neuropathic pain (NP) patients. However, the specific treatment parameters and exact mechanism are still unclear. Our purpose is to observe the effects of rTMS on pain and despair-like behaviour in chronic constriction injury (CCI) rats and explore its possible mechanism. Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into four groups: sham operation group (S, n = 8), CCI group (n = 8), 1 Hz-rTMS group (n = 8) and 10 Hz-rTMS group (n = 8). The rTMS was applied to the left dorsal anterior agranular insular (AId) 1 week after the operation, once a day, 5 days/week for 4 consecutive weeks. Mechanical hyperalgesia, despair-like behaviours and sciatic nerve function were used to evaluate the effects of rTMS. Besides, glucose metabolism, the metabotropic glutamate receptors 5 (mGluR5), N-Methyl-D-Aspartic acid receptor type 2B (NMDAR2B), tumour necrosis factor-α (TNF-α), interleukin-6 (Ll-6) and interleukin-1β (Ll-1β) in AId were tested to explore the possible mechanism. Compared with 1 Hz-rTMS, the rats of 10 Hz-rTMS had higher the mechanical hyperalgesia, higher sugar preference and shorter swimming immobility time. Besides, the expressions of mGluR5, NMDAR2B, TNF-α, Ll-1β and Ll-6 both in 1 Hz-rTMS and 10 Hz-rTMS groups were reduced compared with the CCI group; the 10 Hz-rTMS group had a more decrease than that of 1 Hz-rTMS. Furthermore, the [18]F-FDG uptake was lower than that in the 1 Hz-rTMS group. Compared with 1 Hz-rTMS, 10 Hz-rTMS could more effectively relieve mechanical hyperalgesia and reverse despair-like behaviour in rats. The mechanism could be related to regulating mGluR5/NMDAR2B-related inflammatory signalling pathways in the AId.
Collapse
Affiliation(s)
- Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Wen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
10
|
Xiong HY, Zheng JJ, Wang XQ. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front Mol Neurosci 2022; 15:888716. [PMID: 35694444 PMCID: PMC9179147 DOI: 10.3389/fnmol.2022.888716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
As a technique that can guide brain plasticity, non-invasive brain stimulation (NIBS) has the potential to improve the treatment of chronic pain (CP) because it can interfere with ongoing brain neural activity to regulate specific neural networks related to pain management. Treatments of CP with various forms of NIBS, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), using new parameters of stimulation have achieved encouraging results. Evidence of moderate quality indicates that high-frequency rTMS of the primary motor cortex has a clear effect on neuropathic pain (NP) and fibromyalgia. However, evidence on its effectiveness regarding pain relief in other CP conditions is conflicting. Concerning tDCS, evidence of low quality supports its benefit for CP treatment. However, evidence suggesting that it exerts a small treatment effect on NP and headaches is also conflicting. In this paper, we describe the underlying principles behind these commonly used stimulation techniques; and summarize the results of randomized controlled trials, systematic reviews, and meta-analyses. Future research should focus on a better evaluation of the short-term and long-term effectiveness of all NIBS techniques and whether they decrease healthcare use, as well as on the refinement of selection criteria.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | | | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
11
|
Li C, Zhang N, Han Q, Zhang L, Xu S, Tu S, Xie Y, Wang Z. Prolonged Continuous Theta Burst Stimulation Can Regulate Sensitivity on Aβ Fibers: An Functional Near-Infrared Spectroscopy Study. Front Mol Neurosci 2022; 15:887426. [PMID: 35493324 PMCID: PMC9039327 DOI: 10.3389/fnmol.2022.887426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective High-frequency repetitive transcranial magnetic stimulation (rTMS) induces analgesic effects in both experimental pain and clinical pain conditions. However, whether rTMS can modulate sensory and pain thresholds on sensory fibers is still unclear. Here, we compared the effects of three rTMS paradigms on sensory and pain thresholds conducted by different sensory fibers (Aβ, Aδ, and C fibers) with sham stimulation and investigate the potential brain activation using functional near-infrared spectroscopy (fNIRS). Methods Forty right-handed healthy subjects were randomly allocated into one of four groups. Each subject received one session rTMS [prolonged continuous theta-burst stimulation (pcTBS), intermittent theta-burst stimulation (iTBS), 10 Hz rTMS or sham]. Current perception threshold (CPT), pain tolerance threshold (PTT), and fNIRS were measured at baseline, immediately after stimulation, and 1 h after stimulation, respectively. Results Significant differences between treatments were observed for changes for CPT 2,000 Hz between baseline and 1 h after rTMS (F = 6.551, P < 0.001): pcTBS versus sham (P = 0.004) and pcTBS versus 10 Hz rTMS (P = 0.007). There were significant difference in average HbO μm in the right frontopolar cortex (FPC) [channel 23: P = 0.030 (pcTBS versus sham: P = 0.036)], left dorsolateral prefrontal cortex (DLPFC) [channel 7: P = 0.006 (pcTBS versus sham: P = 0.004)], left FPC [channel 17: P = 0.014 (pcTBS versus sham: P = 0.046), channel 22: P = 0.004 (pcTBS versus sham: P = 0.004)] comparing four group in 1 h after stimulation in PTT 2000 Hz (Aβ-fiber). Conclusion Prolonged continuous theta-burst stimulation can regulate sensitivity on Aβ fibers. In addition, single-session pcTBS placed on left M1 can increase the excitability of DLPFC and FPC, indicating the interaction between M1 and prefrontal cortex may be a potential mechanism of analgesic effect of rTMS. Studies in patients with central post-stroke pain are required to confirm the potential clinical applications of pcTBS.
Collapse
|
12
|
Eldaief MC, Dickerson BC, Camprodon JA. Transcranial Magnetic Stimulation for the Neurological Patient: Scientific Principles and Applications. Semin Neurol 2022; 42:149-157. [PMID: 35213900 PMCID: PMC9838190 DOI: 10.1055/s-0041-1742265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-invasive brain stimulation has been increasingly recognized for its potential as an investigational, diagnostic and therapeutic tool across the clinical neurosciences. Transcranial magnetic stimulation (TMS) is a non-invasive method of focal neuromodulation. Diagnostically, TMS can be used to probe cortical excitability and plasticity, as well as for functional mapping. Therapeutically, depending on the pattern employed, TMS can either facilitate or inhibit stimulated cortex potentially modulating maladaptive physiology through its effects on neuroplasticity. Despite this potential, applications of TMS in neurology have only been approved for diagnostic clinical neurophysiology, pre-surgical mapping of motor and language cortex, and the treatment of migraines. In this article, we discuss the principles of TMS and its clinical applications in neurology, including experimental applications in stroke rehabilitation, seizures, autism spectrum disorder, neurodegenerative disorders, movement disorders, tinnitus, chronic pain and functional neurological disorder. To promote increased cross-talk across neurology and psychiatry, we also succinctly review the TMS literature for the treatment of major depression and obsessive compulsive disorder. Overall, we argue that larger clinical trials that are better informed by circuit-level biomarkers and pathophysiological models will lead to an expansion of the application of TMS for patients cared for by neurologists.
Collapse
Affiliation(s)
- Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,Department of Psychology, Center for Brain Science, Neuroimaging Facility, Harvard University, Cambridge, Massachusetts
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Joan A. Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
13
|
Malfitano C, Rossetti A, Scarano S, Malloggi C, Tesio L. Efficacy of Repetitive Transcranial Magnetic Stimulation for Acute Central Post-stroke Pain: A Case Study. Front Neurol 2021; 12:742567. [PMID: 34858311 PMCID: PMC8631781 DOI: 10.3389/fneur.2021.742567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Although rare, central post-stroke pain remains one of the most refractory forms of neuropathic pain. Repetitive transcranial magnetic stimulation (rTMS) has been reported to be effective in chronic cases. However, there are no data on the effects in the acute and subacute phases after stroke. In this study, we present a case of a patient with thalamic stroke with acute onset of pain and paresthesia who was responsive to rTMS. After a right thalamic stroke, a 32-year-old woman presented with drug-resistant pain and paresthesia on the left side of the body. There were no motor or sensory deficits, except for blunted thermal sensation and allodynia on light touch. Ten daily sessions were performed, where 10 Hz rTMS was applied to the hand area of the right primary motor cortex, 40 days after stroke. Before rTMS treatment (T0), immediately after treatment conclusion (T1), and 1 month after treatment (T2), three pain questionnaires were administered, and cortical responses to single and paired-pulse TMS were assessed. Eight healthy participants served as controls. At T0, when the patient was experiencing the worst pain, the excitability of the ipsilesional motor cortex was reduced. At T1 and T2, the pain scores and paresthesia' spread decreased. The clinical improvement was paralleled by the recovery in motor cortex excitability of the affected hemisphere, in terms of both intra- and inter-hemispheric connections. In this subacute central post-stroke pain case, rTMS treatment was associated with decreased pain and motor cortex excitability changes.
Collapse
Affiliation(s)
- Calogero Malfitano
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milano, Italy
| | - Angela Rossetti
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milano, Italy
| | - Stefano Scarano
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milano, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy
| | - Chiara Malloggi
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milano, Italy
| | - Luigi Tesio
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milano, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
14
|
Sorkpor SK, Ahn H. Transcranial direct current and transcranial magnetic stimulations for chronic pain. Curr Opin Anaesthesiol 2021; 34:781-785. [PMID: 34419991 DOI: 10.1097/aco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic pain is debilitating and difficult to treat with pharmacotherapeutics alone. Consequently, exploring alternative treatment methods for chronic pain is essential. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are increasingly being investigated for their neuropharmacological effects in the treatment of chronic pain. This review aims to examine and evaluate the present state of evidence regarding the use of tDCS and TMS in the treatment of chronic pain. RECENT FINDINGS Despite conflicting evidence in the early literature, evidence from recent rigorous research supports the use of tDCS and TMS in treating chronic pain conditions. For both tDCS and TMS, standardized stimulation parameters have been identified with the recommendation for repeated maintenance stimulation to ensure that the analgesic effect is sustained beyond discontinuation of therapy. SUMMARY Due to a lack of defined stimulation protocols, early findings on the efficacy of tDCS and TMS are mixed. Although the application of tDCS and TMS as pain relief approaches is still in its early stages, the introduction of standardized stimulation protocols is paving the way for more robust and informed research.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Cizik School of Nursing, University of Texas Health Science Center, Houston, Texas
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
15
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
16
|
Enhanced descending pain facilitation in acute traumatic brain injury. Exp Neurol 2019; 320:112976. [PMID: 31185197 DOI: 10.1016/j.expneurol.2019.112976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). We observed significant hindpaw allodynia in TBI rats that was reduced after DHT but not vehicle treatment. Immunohistochemical studies demonstrated profound spinal serotonin depletion in DHT-treated rats. Furthermore, lumbar intrathecal administration of the 5-HT3 receptor antagonist ondansetron at 7 days post-injury (DPI), when hindpaw allodynia was maximal, also attenuated nociceptive sensitization. Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.
Collapse
|
17
|
Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC 2-NIN-CP). Pain Rep 2019; 4:e692. [PMID: 30801041 PMCID: PMC6370142 DOI: 10.1097/pr9.0000000000000692] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Chronic pain (CP) is highly prevalent and generally undertreated health condition. Noninvasive brain stimulation may contribute to decrease pain intensity and influence other aspects related to CP. Objective: To provide consensus-based recommendations for the use of noninvasive brain stimulation in clinical practice. Methods: Systematic review of the literature searching for randomized clinical trials followed by consensus panel. Recommendations also involved a cost-estimation study. Results: The systematic review wielded 24 transcranial direct current stimulation (tDCS) and 22 repetitive transcranial magnetic stimulation (rTMS) studies. The following recommendations were provided: (1) Level A for anodal tDCS over the primary motor cortex (M1) in fibromyalgia, and level B for peripheral neuropathic pain, abdominal pain, and migraine; bifrontal (F3/F4) tDCS and M1 high-definition (HD)-tDCS for fibromyalgia; Oz/Cz tDCS for migraine and for secondary benefits such as improvement in quality of life, decrease in anxiety, and increase in pressure pain threshold; (2) level A recommendation for high-frequency (HF) rTMS over M1 for fibromyalgia and neuropathic pain, and level B for myofascial or musculoskeletal pain, complex regional pain syndrome, and migraine; (3) level A recommendation against the use of anodal M1 tDCS for low back pain; and (4) level B recommendation against the use of HF rTMS over the left dorsolateral prefrontal cortex in the control of pain. Conclusion: Transcranial DCS and rTMS are recommended techniques to be used in the control of CP conditions, with low to moderate analgesic effects, and no severe adverse events. These recommendations are based on a systematic review of the literature and a consensus made by experts in the field. Readers should use it as part of the resources available to decision-making.
Collapse
|
18
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
19
|
Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain 2017; 18:1. [PMID: 28058534 PMCID: PMC5216011 DOI: 10.1186/s10194-016-0713-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hyperbaric oxygen (HBO) therapy is proven to attenuate neuropathic pain in rodents. The goal of the present study was to determine the potential involvement of the Kindlin-1/Wnt-10a signaling pathway during astrocyte activation and inflammation in a rodent model of neuropathic pain. METHODS Rats were assigned into sham operation, chronic constriction injury (CCI), and CCI + HBO treatment groups. Neuropathic pain developed in rats following CCI of the sciatic nerve. Rats in the CCI + HBO group received HBO treatment for five consecutive days beginning on postoperative day 1. The mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL) tests were performed to determine mechanical and heat hypersensitivity of animals, respectively. Kindlin-1, Wnt-10a and β-catenin protein expression was examined by immunohistochemistry and Western blot analysis. Expression of tumor necrosis factor (TNF)-α was also determined by ELISA. RESULTS Our findings demonstrated that HBO treatment significantly suppressed mechanical and thermal hypersensitivity in the CCI neuropathic pain model in rats. HBO therapy significantly reversed the up-regulation of Kindlin-1 in dorsal root ganglia (DRG), spinal cord, and hippocampus of CCI rats. CCI-induced astrocyte activation and increased levels of TNF-α were efficiently reversed by HBO (P < 0.05 vs. CCI). HBO also reversed Wnt-10a up-regulation induced by CCI in the DRG, spinal cord, and hippocampus (P < 0.05 vs. CCI). CONCLUSIONS Our findings demonstrate that HBO attenuated CCI-induced rat neuropathic pain and inflammatory responses, possibly through regulation of the Kindlin-1/Wnt-10a signaling pathway.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China
| | - Haiping Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
20
|
Abstract
Cancer pain remains a significant clinical problem worldwide. Causes of cancer pain are multifactorial and complex and are likely to vary with an array of tumor-related and host-related factors and processes. Pathophysiology is poorly understood; however, new laboratory research points to cross-talk between cancer cells and host’s immune and neural systems as an important potential mechanism that may be broadly relevant to many cancer pain syndromes. Opioids remain the most effective pharmaceuticals used in the treatment of cancer pain. However, their role has been evolving due to emerging awareness of risks of chronic opioid therapy. Despite extensive research efforts, no new class of analgesics has been developed. However, many potential therapeutic targets that may lead to the establishment of new pharmaceuticals have been identified in recent years. It is also expected that the role of non-pharmacological modalities of treatment will grow in prominence. Specifically, neuromodulation, a rapidly expanding field, may play a major role in the treatment of neuropathic cancer pain provided that further technological progress permits the development of non-invasive and inexpensive neuromodulation techniques.
Collapse
Affiliation(s)
- Marcin Chwistek
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center/Temple Health, Philadelphia, PA, USA
| |
Collapse
|
21
|
Wen HZ, Gao SH, Zhao YD, He WJ, Tian XL, Ruan HZ. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats. Front Behav Neurosci 2017; 11:115. [PMID: 28659772 PMCID: PMC5468406 DOI: 10.3389/fnbeh.2017.00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 01/27/2023] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications.
Collapse
Affiliation(s)
- Hui-Zhong Wen
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Shi-Hao Gao
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Yan-Dong Zhao
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Wen-Juan He
- Department of Pathophysiology and High Altitudepathology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
| | - Xue-Long Tian
- Bioengineering College, Chongqing UniversityChongqing, China
| | - Huai-Zhen Ruan
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| |
Collapse
|
22
|
Effectiveness of repetitive transcranial magnetic stimulation in patients with fibromyalgia: a meta-analysis. Int J Rehabil Res 2017; 40:11-18. [PMID: 27977465 DOI: 10.1097/mrr.0000000000000207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Even though repetitive transcranial magnetic stimulation (rTMS) has been used for a decade for the treatment of fibromyalgia, evidence of its effectiveness has not been definitely presented. The aim of this study was to investigate whether there is evidence of rTMS being effective in decreasing the severity of pain among patients with fibromyalgia. CENTRAL, MEDLINE, EMBASE, CINAHL, SCOPUS, WEB OF SCIENCE, and relevant references of the identified studies were searched. Randomized controlled studies on adults with fibromyalgia were included. The outcome studied was change in pain severity. Methodological quality was assessed using the scale introduced in the Guidelines for Systematic Reviews in the Cochrane Collaboration Back Review Group. A random-effects meta-analysis was carried out with a test for heterogeneity using the I and pooled estimate as a nonstandardized mean of difference in change in pain severity measures by a numeric rating scale. The search resulted in 791 records, eight relevant, and meta-analyses on seven trials. The risk of bias was considered low for seven studies. Pain severity before and after the last stimulation decreased by -1.2 points on 0-10 numeric rating scale (95% confidence interval: -1.7 to -0.8). Pain severity before and 1 week to 1 month after the last stimulation decreased by -0.7 points (95% confidence interval: -1.0 to -0.3). Both pooled results were below the minimal clinically important difference of 1.5 points. There is moderate evidence that rTMS is not more effective than sham in reducing the severity of pain in fibromyalgia patients, questioning the routine recommendation of this method for fibromyalgia treatment.
Collapse
|
23
|
Sanchis-Alfonso V, McConnell J, Monllau JC, Fulkerson JP. Diagnosis and treatment of anterior knee pain. J ISAKOS 2016. [DOI: 10.1136/jisakos-2015-000033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Hoyt BW, Pavey GJ, Pasquina PF, Potter BK. Rehabilitation of Lower Extremity Trauma: a Review of Principles and Military Perspective on Future Directions. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-014-0004-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|