1
|
Kricha A, Bouchmaa N, Ben Mkaddem S, Abbaoui A, Ben Mrid R, El Fatimy R. Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance. Cytokine Growth Factor Rev 2024; 80:97-108. [PMID: 39510901 DOI: 10.1016/j.cytogfr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.
Collapse
Affiliation(s)
- Aymane Kricha
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Najat Bouchmaa
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Abdellatif Abbaoui
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Reda Ben Mrid
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Rachid El Fatimy
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| |
Collapse
|
2
|
Medina I, Wieland EB, Temmerman L, Otten JJT, Bermudez B, Bot I, Rademakers T, Wijnands E, Schurgers L, Mees B, van Berkel TJC, Goossens P, Biessen EAL. Colony stimulating factor 1 receptor (Csf1r) expressing cell ablation in mafia (macrophage-specific Fas-induced apoptosis) mice alters monocyte landscape and atherosclerotic lesion characteristics. Eur J Immunol 2024; 54:e2350943. [PMID: 39233527 DOI: 10.1002/eji.202350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis. To deplete monocytes/macrophages we used atherosclerosis-susceptible Apoe- /- mice, bearing a MaFIA (macrophage-Fas-induced-apoptosis) suicide construct under control of the Csf1r (CD115) promotor, where selective apoptosis of Csf1r-expressing cells was induced in a controlled manner, by administration of a drug, AP20187. Systemic induction of apoptosis resulted in a decrease in lesion macrophages and smooth-muscle cells. Plaque size and necrotic core size remained unaffected. Two weeks after the systemic depletion of macrophages, we observed a replenishment of the myeloid compartment. Myelopoiesis was modulated resulting in an expansion of CSF1Rlo myeloid cells in the circulation and a shift from Ly6chi monocytes toward Ly6cint and Ly6clo populations in the spleen. Local apoptosis induction led to a decrease in plaque burden and macrophage content with marginal effects on the circulating myeloid cells. Local, but not systemic depletion of Csf1r+ myeloid cells resulted in decreased plaque burden. Systemic depletion led to CSF1Rlo-monocyte expansion in blood, possibly explaining the lack of effects on plaque development.
Collapse
Affiliation(s)
- Indira Medina
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Elias B Wieland
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jeroen J T Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Beatriz Bermudez
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Erwin Wijnands
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Zhong W, Xiong K, Li S, Li C. Macrophage polarization-related gene signature for risk stratification and prognosis of survival in gliomas. J Cell Mol Med 2024; 28:e70000. [PMID: 39448550 PMCID: PMC11502305 DOI: 10.1111/jcmm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 10/26/2024] Open
Abstract
Macrophage polarization plays an essential role in tumour immune cell infiltration and tumour growth. In this study, we selected a series of genes distinguishing between M1 and M2 macrophages and explored their prognostic value in gliomas. A total of 170 genes were included in our study. The CGGA database was used as the training cohort and the TCGA database as the validation cohort. The biological processes and functions were identified by GO and KEGG analysis. Kaplan-Meier analysis was used to compare survival differences between groups. Importantly, we built a risk score model using Cox regression analysis based on the CGGA and verified it in the TCGA database and our sequencing data. Patients with gliomas in the high-risk group were associated with high pathologic grade, IDH WT status, MGMT promoter unmethylation, 1p19q non-codeletion and prone to have a poor outcome. GEPIA results revealed that CD300C, CNRIP1 and MYO1F are the most related genes of immune infiltrations. The differential expression of these genes between low-grade gliomas and glioblastomas was confirmed by q-RT-PCR. Macrophage polarization-related gene signatures can predict the malignancy and outcome of patients with gliomas and might act as a promising target for glioma immunotherapy in the future.
Collapse
Affiliation(s)
- Weiming Zhong
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanPeople's Republic of China
| | - Kaifen Xiong
- Department of DermatologyShenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongPeople's Republic of China
| | - Shuwang Li
- Department of NeurosurgeryThe Second People's Hospital of Hunan ProvinceChangshaPeople's Republic of China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanPeople's Republic of China
| |
Collapse
|
4
|
Zhu L, Huang J, Zhang S, Cai Q, Guo X, Liu B, Chen L, Zheng C. oHSV2-mGM repolarizes TAMs and cooperates with αPD1 to reprogram the immune microenvironment of residual cancer after radiofrequency ablation. Biomed Pharmacother 2024; 178:117060. [PMID: 39053421 DOI: 10.1016/j.biopha.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Due to the size and location of the tumor, incomplete radiofrequency ablation (iRFA) of the target tumor inhibits tumor immunity. In this study, a murine herpes simplex virus (oHSV2-mGM) armed with granulocyte-macrophage colony-stimulating factor (GM-CSF) was constructed to explore its effect on innate and adaptive immunity during iRFA, and the inhibitory effect of programmed cell death-1 (PD1) on tumor. METHODS We verified the polarization and activation of RAW264.7 cells mediated by oHSV2-mGM in vitro. Subsequently, we evaluated the efficacy of oHSV2-mGM alone and in combination with αPD1 in the treatment of residual tumors after iRFA in two mouse models. RNA-seq was used to characterize the changes of tumor microenvironment. RESULTS oHSV2-mGM lysate effectively stimulated RAW264.7 cells to polarize into M1 cells and activated M1 phenotypic function. In the macrophage clearance experiment, oHSV2-mGM activated the immune response of tumor in mice. The results in vivo showed that oHSV2-mGM showed better anti-tumor effect in several mouse tumor models. Finally, oHSV2-mGM combined with PD1 antibody can further enhance the anti-tumor effect of oHSV2-mGM and improve the complete remission rate of tumor in mice. CONCLUSION The application of oHSV2-mGM leads to the profound remodeling of the immune microenvironment of residual tumors. oHSV2-mGM also works in synergy with PD1 antibody to achieve complete remission of tumors that do not respond well to monotherapy at immune checkpoints. Our results support the feasibility of recombinant oncolytic virus in the treatment of residual tumors after iRFA, and propose a new strategy for oncolytic virus treatment of tumors.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Siqi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Qiying Cai
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China.
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Pan T, Xie DK, Li J, Qiang YJ, Fan SY, Wang TT, Han YY, Zang J, Yang Y, Zhao JL, Li SZ, Wu S. Glioma-Stem-Cell-Derived Exosomes Remodeled Glioma-Associated Macrophage via NEAT1/miR-125a/STAT3 Pathway. Cancers (Basel) 2024; 16:2500. [PMID: 39061140 PMCID: PMC11274466 DOI: 10.3390/cancers16142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), as the most common primary brain tumor, usually results in an extremely poor prognosis, in which glioma stem cells (GSCs) and their immunosuppressive microenvironment prominently intervene in the resistance to radiotherapy and chemotherapy that directly leads to tumor recurrence and shortened survival time. The specific mechanism through which exosomes generated from GSCs support the creation of an immunosuppressive microenvironment remains unknown, while it is acknowledged to be engaged in intercellular communication and the regulation of the glioma immunosuppressive microenvironment. The elevated expression of LncRNA-NEAT1 was found in glioma cells after radiotherapy, chemotherapy, and DNA damage stimulation, and NEAT1 could promote the malignant biological activities of GSCs. Emerging evidence suggests that lncRNAs may reply to external stimuli or DNA damage by playing a role in modulating different aspects of tumor biology. Our study demonstrated a promotive role of the carried NEAT1 by GSC-derived exosomes in the polarization of M2-like macrophages. Further experiments demonstrated the mediative role of miR-125a and its target gene STAT3 in NEAT1-induced polarization of M2-like macrophages that promote glioma progression. Our findings elucidate the mechanism by which GSCs influence the polarization of M2-like macrophages through exosomes, which may contribute to the formation of immunosuppressive microenvironments. Taken together, our study reveals the miR-125a-STAT3 pathway through which exosomal NEAT1 from treatment-resistant GSCs contributes to M2-like macrophage polarization, indicating the potential of exosomal NEAT1 for treating glioma.
Collapse
Affiliation(s)
- Tong Pan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi’an 710032, China
| | - Dong-Kun Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China; (D.-K.X.); (Y.Y.)
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an 710032, China;
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Yu-Jie Qiang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Song-Yuan Fan
- Department of Neurosurgery, The Air Force Hospital of Central Theater of PLA, Datong 037000, China;
| | - Ting-Ting Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Yuan-Yuan Han
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Jian Zang
- Department of Radiotherapy, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China; (D.-K.X.); (Y.Y.)
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an 710032, China;
| | - San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
- Department of Neurosurgery, The Air Force Hospital of Central Theater of PLA, Datong 037000, China;
| |
Collapse
|
6
|
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies. Brain Sci 2023; 13:brainsci13040542. [PMID: 37190507 DOI: 10.3390/brainsci13040542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.
Collapse
|
7
|
Pachocki CJ, Hol EM. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J Neuroinflammation 2022; 19:276. [PMCID: PMC9675250 DOI: 10.1186/s12974-022-02630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Diffuse midline glioma (DMG), formerly called diffuse intrinsic pontine glioma (DIPG), is a high-grade malignant pediatric brain tumor with a near-zero survival rate. To date, only radiation therapy provides marginal survival benefit; however, the median survival time remains less than a year. Historically, the infiltrative nature and sensitive location of the tumor rendered surgical removal and biopsies difficult and subsequently resulted in limited knowledge of the disease, as only post-mortem tissue was available. Therefore, clinical decision-making was based upon experience with the more frequent and histologically similar adult glioblastoma (GBM). Recent advances in tissue acquisition and molecular profiling revealed that DMG and GBM are distinct disease entities, with separate tissue characteristics and genetic profiles. DMG is characterized by heterogeneous tumor tissue often paired with an intact blood–brain barrier, possibly explaining its resistance to chemotherapy. Additional profiling shed a light on the origin of the disease and the influence of several mutations such as a highly recurring K27M mutation in histone H3 on its tumorigenesis. Furthermore, early evidence suggests that DMG has a unique immune microenvironment, characterized by low levels of immune cell infiltration, inflammation, and immunosuppression that may impact disease development and outcome. Within the tumor microenvironment of GBM, tumor-associated microglia/macrophages (TAMs) play a large role in tumor development. Interestingly, TAMs in DMG display distinct features and have low immune activation in comparison to other pediatric gliomas. Although TAMs have been investigated substantially in GBM over the last years, this has not been the case for DMG due to the lack of tissue for research. Bit by bit, studies are exploring the TAM–glioma crosstalk to identify what factors within the DMG microenvironment play a role in the recruitment and polarization of TAMs. Although more research into the immune microenvironment is warranted, there is evidence that targeting or stimulating TAMs and their factors provide a potential treatment option for DMG. In this review, we provide insight into the current status of DMG research, assess the knowledge of the immune microenvironment in DMG and GBM, and present recent findings and therapeutic opportunities surrounding the TAM–glioma crosstalk.
Collapse
Affiliation(s)
- Casper J. Pachocki
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M. Hol
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
9
|
Candiota AP, Arús C. Establishing Imaging Biomarkers of Host Immune System Efficacy during Glioblastoma Therapy Response: Challenges, Obstacles and Future Perspectives. Metabolites 2022; 12:metabo12030243. [PMID: 35323686 PMCID: PMC8950145 DOI: 10.3390/metabo12030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
This hypothesis proposal addresses three major questions: (1) Why do we need imaging biomarkers for assessing the efficacy of immune system participation in glioblastoma therapy response? (2) Why are they not available yet? and (3) How can we produce them? We summarize the literature data supporting the claim that the immune system is behind the efficacy of most successful glioblastoma therapies but, unfortunately, there are no current short-term imaging biomarkers of its activity. We also discuss how using an immunocompetent murine model of glioblastoma, allowing the cure of mice and the generation of immune memory, provides a suitable framework for glioblastoma therapy response biomarker studies. Both magnetic resonance imaging and magnetic resonance-based metabolomic data (i.e., magnetic resonance spectroscopic imaging) can provide non-invasive assessments of such a system. A predictor based in nosological images, generated from magnetic resonance spectroscopic imaging analyses and their oscillatory patterns, should be translational to clinics. We also review hurdles that may explain why such an oscillatory biomarker was not reported in previous imaging glioblastoma work. Single shot explorations that neglect short-term oscillatory behavior derived from immune system attack on tumors may mislead actual response extent detection. Finally, we consider improvements required to properly predict immune system-mediated early response (1–2 weeks) to therapy. The sensible use of improved biomarkers may enable translatable evidence-based therapeutic protocols, with the possibility of extending preclinical results to human patients.
Collapse
Affiliation(s)
- Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
10
|
Gazaille C, Sicot M, Saulnier P, Eyer J, Bastiat G. Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:791596. [PMID: 35047971 PMCID: PMC8757870 DOI: 10.3389/fmedt.2021.791596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | |
Collapse
|
11
|
Abstract
Macrophages are an abundant population in the tumor-infiltrating immune cells. The transcription factor NF-κB plays an important role in the response of tumor-associated macrophages (TAMs) to the tumor environmental cues. Detecting NF-κB activity in TAMs will help define the functional status of the TAMs. In this article, we describe several methods to detect NF-κB activity in TAM populations.
Collapse
|
12
|
Valtorta S, Lo Dico A, Raccagni I, Martelli C, Pieri V, Rainone P, Todde S, Zinnhardt B, De Bernardi E, Coliva A, Politi LS, Viel T, Jacobs AH, Galli R, Ottobrini L, Vaira V, Moresco RM. Imaging Metformin Efficacy as Add-On Therapy in Cells and Mouse Models of Human EGFR Glioblastoma. Front Oncol 2021; 11:664149. [PMID: 34012924 PMCID: PMC8126706 DOI: 10.3389/fonc.2021.664149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor of the brain. Despite the efforts, response to current therapies is poor and 2-years survival rate ranging from 6-12%. Here, we evaluated the preclinical efficacy of Metformin (MET) as add-on therapy to Temozolomide (TMZ) and the ability of [18F]FLT (activity of thymidine kinase 1 related to cell proliferation) and [18F]VC701 (translocator protein, TSPO) Positron Emission Tomography (PET) radiotracers to predict tumor response to therapy. Indeed, TSPO is expressed on the outer mitochondrial membrane of activated microglia/macrophages, tumor cells, astrocytes and endothelial cells. TMZ-sensitive (Gli36ΔEGFR-1 and L0627) or -resistant (Gli36ΔEGFR-2) GBM cell lines representative of classical molecular subtype were tested in vitro and in vivo in orthotopic mouse models. Our results indicate that in vitro, MET increased the efficacy of TMZ on TMZ-sensitive and on TMZ-resistant cells by deregulating the balance between pro-survival (bcl2) and pro-apoptotic (bax/bad) Bcl-family members and promoting early apoptosis in both Gli36ΔEGFR-1 and Gli36ΔEGFR-2 cells. In vivo, MET add-on significantly extended the median survival of tumor-bearing mice compared to TMZ-treated ones and reduced the rate of recurrence in the TMZ-sensitive models. PET studies with the cell proliferation radiopharmaceutical [18F]FLT performed at early time during treatment were able to distinguish responder from non-responder to TMZ but not to predict the duration of the effect. On the contrary, [18F]VC701 uptake was reduced only in mice treated with MET plus TMZ and levels of uptake negatively correlated with animals’ survival. Overall, our data showed that MET addition improved TMZ efficacy in GBM preclinical models representative of classical molecular subtype increasing survival time and reducing tumor relapsing rate. Finally, results from PET imaging suggest that the reduction of cell proliferation represents a common mechanism of TMZ and combined treatment, whereas only the last was able to reduce TSPO. This reduction was associated with the duration of treatment response. TSPO-ligand may be used as a complementary molecular imaging marker to predict tumor microenvironment related treatment effects.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Isabella Raccagni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano - Bicocca, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sergio Todde
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy
| | - Angela Coliva
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Department of Neuroradiology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Thomas Viel
- PARCC, INSERM, Université de Paris, Paris, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Ochocka N, Kaminska B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci 2021; 22:3027. [PMID: 33809675 PMCID: PMC8002227 DOI: 10.3390/ijms22063027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) that have distinct ontogeny from other tissue macrophages and play a pivotal role in health and disease. Microglia rapidly react to the changes in their microenvironment. This plasticity is attributed to the ability of microglia to adapt a context-specific phenotype. Numerous gene expression profiling studies of immunosorted CNS immune cells did not permit a clear dissection of their phenotypes, particularly in diseases when peripheral cells of the immune system come to play. Only recent advances in single-cell technologies allowed studying microglia at high resolution and revealed a spectrum of discrete states both under homeostatic and pathological conditions. Single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (Cytometry by Time-Of-Flight, CyTOF) enabled determining entire transcriptomes or the simultaneous quantification of >30 cellular parameters of thousands of individual cells. Single-cell omics studies demonstrated the unforeseen heterogeneity of microglia and immune infiltrates in brain pathologies: neurodegenerative disorders, stroke, depression, and brain tumors. We summarize the findings from those studies and the current state of knowledge of functional diversity of microglia under physiological and pathological conditions. A precise definition of microglia functions and phenotypes may be essential to design future immune-modulating therapies.
Collapse
Affiliation(s)
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| |
Collapse
|
14
|
Liaw K, Sharma R, Sharma A, Salazar S, Appiani La Rosa S, Kannan RM. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J Control Release 2021; 329:434-444. [PMID: 33290796 PMCID: PMC7904646 DOI: 10.1016/j.jconrel.2020.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Novel delivery strategies are necessary to effectively address glioblastoma without systemic toxicities. Triptolide is a therapy derived from the thunder god vine that has shown potent anti-proliferative and immunosuppressive properties but exhibits significant adverse systemic effects. Dendrimer-based nanomedicines have shown great potential for clinical translation of systemic therapies targeting neuroinflammation and brain tumors. Here we present a novel dendrimer-triptolide conjugate that specifically targets tumor-associated macrophages (TAMs) in glioblastoma from systemic administration and exhibits triggered release under intracellular and intratumor conditions. This targeted delivery improves phenotype switching of TAMs from pro- towards anti-tumor expression in vitro. In an orthotopic model of glioblastoma, dendrimer-triptolide achieved significantly improved amelioration of tumor burden compared to free triptolide. Notably, the triggered release mechanism of dendrimer-mediated triptolide delivery significantly reduced triptolide-associated hepatic and cardiac toxicities. These results demonstrate that dendrimers are a promising targeted delivery platform to achieve effective glioblastoma treatment by improving efficacy while reducing systemic toxicities.
Collapse
Affiliation(s)
- Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sebastian Salazar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Santiago Appiani La Rosa
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Huang L, Wang Z, Chang Y, Wang K, Kang X, Huang R, Zhang Y, Chen J, Zeng F, Wu F, Zhao Z, Li G, Huang H, Jiang T, Hu H. EFEMP2 indicates assembly of M0 macrophage and more malignant phenotypes of glioma. Aging (Albany NY) 2020; 12:8397-8412. [PMID: 32396873 PMCID: PMC7244085 DOI: 10.18632/aging.103147] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 02/19/2020] [Indexed: 05/11/2023]
Abstract
Immune response mediated by macrophages is critical in tumor progression and implicates new targets in potential efficient immunotherapies. Tumor associated macrophages (TAM) are divided into either polarized M1 or M2 phenotype depending on different regulators of polarization and pro- or anti-oncogenic roles they play. Glioma-infiltrated TAMs have been newly reported contrary to the current polarization dogma. Instead, macrophages in glioma exhibit a continuum phenotype between the M1- and M2-like TAM that resembling M0 macrophage. Here we proposed an OS (overall survival)-correlated gene EFEMP2 (EGF containing fibulin-like extracellular matrix protein 2) via screening with transcriptional expression levels and methylation data in two glioma databases. EFEMP2 was found highly expressed in glioma of higher WHO grade and Mesenchymal subtype glioma, and its transcriptional level could predict OS efficiently in validation datasets. EFEMP2 exhibited a remarkable preference of intercellular expression. In vitro assay showed that EFEMP2's level in medium was closely related to glioma cells' growth. Moreover, EFEMP2 expression level was remarkably correlated with immunological responses. M0-like macrophage as a feature of malignancy of glioblastoma revealed distinct assembly in glioma with high level of EFEMP2. These results revealed EFEMP2's role as a potential characteristic marker of malignant glioma, which are enriched of M0 macrophage.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Xun Kang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Hua Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| |
Collapse
|
16
|
Bailey K, Furman B, Zeitlin J, Kimmerling K, Wu CL, Guilak F, Olson S. Intra-articular depletion of macrophages increases acute synovitis and alters macrophage polarity in the injured mouse knee. Osteoarthritis Cartilage 2020; 28:626-638. [PMID: 32044353 PMCID: PMC8963860 DOI: 10.1016/j.joca.2020.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Acute synovial inflammation following joint trauma is associated with posttraumatic arthritis. Synovial macrophages have been implicated in degenerative changes. In this study, we sought to elucidate the role of intra-articular macrophages in the acute inflammatory response to fracture in the mouse knee. METHOD A closed articular fracture was induced in two models of synovial macrophage depletion: genetically-modified MaFIA mice administered AP20187 to induce programmed macrophage apoptosis, and wild-type C57BL/6 mice administered clodronate liposomes, both via intra-articular injection. Synovial inflammation, bone morphology, and levels of F4/80+ macrophages, NOS2+ M1 macrophages, and CD206+ M2 macrophages were quantified 7 days after fracture using histology and micro-computed tomography. RESULTS Intra-articular macrophage depletion with joint injury did not reduce acute synovitis or the number of synovial macrophages 7 days after fracture in either macrophage-depleted MaFIA mice or in clodronate-treated C57BL/6 mice. In macrophage-depleted MaFIA mice, macrophage polarity shifted to a dominance of M1 macrophages and a reduction of M2 macrophages in the synovial stroma, indicating a shift in M1/M2 macrophage ratio in the joint following injury. Interestingly, MaFIA mice depleted 2 days prior to fracture demonstrated increased synovitis (P = 0.003), reduced bone mineral density (P = 0.0004), higher levels of M1 macrophages (P = 0.013), and lower levels of M2 macrophages (not statistically significant, P=0.084) compared to control-treated MaFIA mice. CONCLUSION Our findings indicate that macrophages play a critical immunomodulatory role in the acute inflammatory response surrounding joint injury and suggest that inhibition of macrophage function can have prominent effects on joint inflammation and bone homeostasis after joint trauma.
Collapse
Affiliation(s)
- K.N. Bailey
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA, Department of Orthopaedic Surgery, University of California San Francisco, CA, 94143, USA
| | - B.D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - J. Zeitlin
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - K.A. Kimmerling
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - C.-L. Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA, Shriners Hospitals for Children – St. Louis, St. Louis, MO, 63110, USA
| | - F. Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA, Shriners Hospitals for Children – St. Louis, St. Louis, MO, 63110, USA
| | - S.A. Olson
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA,Address correspondence and reprint requests to: S.A. Olson, Duke University Medical Center, Box 3389, Durham, NC, 27710, USA. Tel.: (919) 668 3000; fax: (919) 668 2933. (S.A. Olson)
| |
Collapse
|
17
|
Georgieva PB, Mathivet T, Alt S, Giese W, Riva M, Balcer M, Gerhardt H. Long-lived tumor-associated macrophages in glioma. Neurooncol Adv 2020; 2:vdaa127. [PMID: 33205045 PMCID: PMC7649962 DOI: 10.1093/noajnl/vdaa127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The tumor microenvironment plays a major tumor-supportive role in glioma. In particular, tumor-associated macrophages (TAMs), which can make up to one-third of the tumor mass, actively support tumor growth, invasion, and angiogenesis. Predominantly alternatively activated (M2-polarized) TAMs are found in late-stage glioma in both human and mouse tumors, as well as in relapse samples from patients. However, whether tumor-educated M2 TAMs can actively contribute to the emergence and growth of relapse is currently debated. METHODS To investigate whether tumor-educated stromal cells remaining in the brain after surgical removal of the primary tumor can be long-lived and retain their tumor-supporting function, we developed a transplantation mouse model and performed lineage-tracing. RESULTS We discovered that macrophages can survive transplantation and stay present in the tumor much longer than previously suggested, while sustaining an M2-polarized protumorigenic phenotype. Transplanted tumors showed a more aggressive growth and faster polarization of the TAMs toward an M2 phenotype compared with primary tumors, a process dependent on the presence of few cotransplanted macrophages. CONCLUSIONS Overall, we propose a new way for tumor-educated TAMs to contribute to glioma aggressiveness by long survival and stable protumorigenic features. These properties could have a relapse-supporting effect.
Collapse
Affiliation(s)
- Petya B Georgieva
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Silvanus Alt
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolfgang Giese
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marly Balcer
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Department of Vascular Biomedicine, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
18
|
Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ, Weissleder R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Am J Cancer Res 2018; 8:5842-5854. [PMID: 30613266 PMCID: PMC6299430 DOI: 10.7150/thno.26888] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAM) have attracted attention as they can modulate key cancer-related activities, yet TAM represent a heterogenous group of cells that remain incompletely characterized. In growing tumors, TAM are often referred to as M2-like macrophages, which are cells that display immunosuppressive and tumorigenic functions and express the enzyme arginase 1 (Arg1). Methods: Here we combined high resolution intravital imaging with single cell RNA seq to uncover the topography and molecular profiles of immunosuppressive macrophages in mice. We further assessed how immunotherapeutic interventions impact these cells directly in vivo. Results: We show that: i) Arg1+ macrophages are more abundant in tumors compared to other organs; ii) there exist two morphologically distinct subsets of Arg1 TAM defined by previously unknown markers (Gbp2b, Bst1, Sgk1, Pmepa1, Ms4a7); iii) anti-Programmed Cell Death-1 (aPD-1) therapy decreases the number of Arg1+ TAM while increasing Arg1- TAM; iv) accordingly, pharmacological inhibition of arginase 1 does not synergize with aPD-1 therapy. Conclusion: Overall, this research shows how powerful complementary single cell analytical approaches can be used to improve our understanding of drug action in vivo.
Collapse
|
19
|
Yang DC, Chen CH. Cigarette Smoking-Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications. JOURNAL OF NATURE AND SCIENCE 2018; 4:e539. [PMID: 30801020 PMCID: PMC6383770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macrophages, the mature form of the monocytes, play a significant role in tissue homeostasis and immunity. In response to environmental cues, they can undergo classical or alternative activation, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by cigarette smoking. Although the contribution of cigarette smoke to various cellular processes has been extensively studied, its roles in macrophage polarization have been conflicting. This review discusses the molecular and functional differences of cigarette smoke-exposed macrophages that exist between pro-inflammatory and anti-inflammatory states. We also highlight the most recent advances in therapeutic potential of targeting signaling molecules associated with smoking to modulate macrophage plasticity and polarized activation.
Collapse
Affiliation(s)
- David C Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, California, USA
- Comprehensive Cancer Center, University of California Davis, Davis, California, USA
| |
Collapse
|
20
|
Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine (Lond) 2018; 13:2579-2596. [DOI: 10.2217/nnm-2018-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood–brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy. Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB–LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB–LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment. Results: AKB silencing, cytotoxicity and cell cycle arrest by these LfNPs were shown to be effective on GL261 cells. Tumor growth was significantly lower in AKB–LfNPs alone and in combination with TMZ treated mice and increased the survival by 2.5-times. Conclusion: Treatment of AKB–LfNPs to GBM mice improves life expectancy and has potential to combine with conventional chemotherapy.
Collapse
Affiliation(s)
- Sonali Kumari
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Dwaipayan Bhattacharya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| | - Nandini Rangaraj
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Sumana Chakarvarty
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Nalam M Rao
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| |
Collapse
|
21
|
Pereira MB, Barros LRC, Bracco PA, Vigo A, Boroni M, Bonamino MH, Lenz G. Transcriptional characterization of immunological infiltrates and their relation with glioblastoma patients overall survival. Oncoimmunology 2018; 7:e1431083. [PMID: 29872555 DOI: 10.1080/2162402x.2018.1431083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022] Open
Abstract
Introduction: Several cell populations from the peripheral immune system interact to create a complex immunologic status during glioblastoma growth and response to therapy. The aim of this study was to integrate the impact of different immune cell populations present in glioblastoma tumor microenvironment on overall survival. Methodology: Gene expression and clinical data were generated by The Cancer Genome Atlas and previously reported meta-signatures representing cells of the immune system were used. The relationship between meta-signatures was evaluated through Pearson's correlation analyses. Survival analyses were performed through Kaplan-Meier plots and Cox regression model. Results and discussion: Meta-signatures corresponding to infiltrating immune cells with immunosuppressive roles, such as macrophages, NK and NK T cells, MDSCs and Tregs, correlated with poorer patient prognosis. Meta-signatures related to CD8+ T cells predicted improved survival only in patients with low immunosuppressive meta-signatures. By clustering the meta-signatures we found that the cluster containing high meta-signatures of macrophages, MDSCs and Tregs demonstrated the worst prognosis. Conclusion: Integrating the information provided by transcriptional signatures of immunological aspects is fundamental in understanding the impact of the immune system on patient survival. We found a predictive impact on survival with positive role for CD8 and negative roles for macrophages, MDSC, Tregs, NK and NK-T in glioblastoma patients. Understanding these regulatory and stimulatory factors of patients' immune system is essential to delineate an effective strategy to increase the anti-tumor immune response and to generate potential clinical benefits.
Collapse
Affiliation(s)
- Mariana Brutschin Pereira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Paula A Bracco
- Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alvaro Vigo
- Departament of Statistics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Boroni
- Bioinformatics and Computacional Biology Lab, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Martín Hernán Bonamino
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.,FIOCRUZ - Oswaldo Cruz Foundation Institute, Rio de Janeiro, RJ, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Abstract
Macrophages are a heterogeneous population of innate immune cells and are distributed in most adult tissues. Certain tissue-resident macrophages with a prenatal origin, together with postnatal monocyte-derived macrophages, serve as the host scavenger system to eliminate invading pathogens, malignant cells, senescent cells, dead cells, cellular debris, and other foreign substances. As a key member of the mononuclear phagocyte system, macrophages play essential roles in regulation of prenatal development, tissue homeostasis, and disease progression. Over the past two decades, considerable efforts have been made to generate genetic models of macrophage ablation in mice. These models support investigations of the precise functions of tissue-specific macrophages under physiological and pathological conditions. Herein, we overview the currently available mouse strains for in vivo genetic ablation of macrophages and discuss their respective advantages and limitations.
Collapse
Affiliation(s)
- Li Hua
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | |
Collapse
|
23
|
Gieryng A, Pszczolkowska D, Bocian K, Dabrowski M, Rajan WD, Kloss M, Mieczkowski J, Kaminska B. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci Rep 2017; 7:17556. [PMID: 29242629 PMCID: PMC5730558 DOI: 10.1038/s41598-017-17752-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, with ineffective anti-tumor responses and a poor prognosis despite aggressive treatments. GBM immune microenvironment is heterogenous and activation of specific immune populations in GBM is not fully characterized. Reliable animal models are critical for defining mechanisms of anti-tumor immunity. First we analyzed the immune subpopulations present in rat C6 gliomas. Using flow cytometry we determined kinetics of infiltration of myeloid cells and T lymphocytes into glioma-bearing brains. We found significant increases of the amoeboid, pro-tumorigenic microglia/macrophages, T helper (Th) and T regulatory (Treg) cells in tumor-bearing brains, and rare infiltrating T cytotoxic (Tc) cells. Transcriptomic analyses of glioma-bearing hemispheres revealed overexpression of invasion and immunosuppression-related genes, reflecting the immunosuppressive microenvironment. Microglia, sorted as CD11b+CD45low cells from gliomas, displayed the pro-invasive and immunosuppressive type of activation. Accumulation of Th and Treg cells combined with the reduced presence of Tc lymphocytes in rat gliomas may result in the lack of effective anti–tumor responses. Transcriptional profiles of CD11b+ cells and composition of immune infiltrates in C6 gliomas indicate that rat C6 gliomas employ similar immune system evasion strategies as human GBMs.
Collapse
Affiliation(s)
- Anna Gieryng
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Dominika Pszczolkowska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Bocian
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Wenson David Rajan
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Kloss
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
24
|
Cortes-Santiago N, Hossain MB, Gabrusiewicz K, Fan X, Gumin J, Marini FC, Alonso MM, Lang F, Yung WK, Fueyo J, Gomez-Manzano C. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas. Oncotarget 2017; 7:16146-57. [PMID: 26910374 PMCID: PMC4941303 DOI: 10.18632/oncotarget.7550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma recurrence after treatment with the anti–vascular endothelial growth factor (VEGF) agent bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. Our group has previously reported that Tie2-expressing monocytes (TEMs) are aberrantly present at the tumor/normal brain interface after anti-VEGF therapies and their significant role in the invasive outgrowth of these tumors. Here, we aimed to further understand the mechanisms leading to this pro-invasive tumor microenvironment. Examination of a U87MG xenogeneic glioma model and a GL261 murine syngeneic model showed increased tumor expression of angiopoietin 2 (Ang2), a natural ligand of Tie2, after anti-angiogenesis therapies targeting VEGF or VEGF receptor (VEGFR), as assessed by immunohistochemical analysis, immunofluorescence analysis, and enzyme-linked immunosorbent assays of tumor lysates. Migration and gelatinolytic assays showed that Ang2 acts as both a chemoattractant of TEMs and an enhancing signal for their tumor-remodeling properties. Accordingly, in vivo transduction of Ang2 into intracranial gliomas increased recruitment of TEMs into the tumor. To reduce invasive tumor outgrowth after anti-angiogenesis therapy, we targeted the Ang-Tie2 axis using a Tie2 decoy receptor. Using syngeneic models, we observed that overexpression of soluble Tie2 within the tumor prevented the recruitment of TEMs to the tumor and the development of invasion after anti-angiogenesis treatment. Taken together, these data indicate an active role for the Ang2-Tie2 pathway in invasive glioma recurrence after anti-angiogenesis treatment and provide a rationale for testing the combined targeting of VEGF and Ang-Tie2 pathways in patients with glioblastoma.
Collapse
Affiliation(s)
- Nahir Cortes-Santiago
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Mohammad B Hossain
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Konrad Gabrusiewicz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank C Marini
- Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC, USA
| | - Marta M Alonso
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Frederick Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
25
|
Li TF, Li K, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Control Release 2017; 268:128-146. [PMID: 29051064 DOI: 10.1016/j.jconrel.2017.10.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most frequent and malignant brain tumor with a high mortality rate. The presence of a large population of macrophages (Mφ) in the tumor microenvironment is a prominent feature of GBM and these so-called tumor-associated Mφ (TAM) closely interact with the GBM cells to promote the survival, progression and therapy resistance of the GBM. Various therapeutic strategies have been devised either targeting the GBM cells or the TAM but few have addressed the cross-talks between the two cell populations. The present study was carried out to explore the possibility of exploiting the cross-talks between the GBM cells (GC) and TAM for modulation of the GBM microenvironment through using Nano-DOX, a drug composite based on nanodiamonds bearing doxorubicin. In the in vitro work on human cell models, Nano-DOX-loaded TAM were first shown to be viable and able to infiltrate three-dimensional GC spheroids and release cargo drug therein. GC were then demonstrated to encourage Nano-DOX-loaded TAM to unload Nano-DOX back into GC which consequently emitted damage-associated molecular patterns (DAMPs) that are powerful immunostimulatory agents as well as indicators of cell damage. Nano-DOX was next proven to be a more potent inducer of GC DAMPs emission than doxorubicin. As a result, Nano-DOX-damaged GC exhibited an enhanced ability to attract both TAM and Nano-DOX-loaded TAM. Most remarkably, Nano-DOX-damaged GC reprogrammed the TAM from a pro-GBM phenotype to an anti-GBM phenotype that suppressed GC growth. Finally, the in vivo relevance of the in vitro findings was tested in animal study. Mice bearing orthotopic human GBM xenografts were intravenously injected with Nano-DOX-loaded mouse TAM which were found releasing drug in the GBM xenografts 24h after injection. GC damage was evidenced by the induction of DAMPs emission within the xenografts and a shift of TAM phenotype was detected as well. Taken together, our results demonstrate a novel way with therapeutic potential to harness the cross-talk between GBM cells and TAM for modulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Tong-Fei Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xin Liu
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Wen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Quan Zhang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Qiu-Ya Zhao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ming Shao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yan-Ze Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Zhao
- School of Radiation Medicine and Protection (SRMP), School of Radiation and Multidisciplinary Sciences (RAD-X), Medical College, Soochow University, Suzhou 215123, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
26
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Bondoc A, Golbar HM, Pervin M, Katou-Ichikawa C, Tanaka M, Izawa T, Kuwamura M, Yamate J. Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells. CANCER MICROENVIRONMENT 2017. [PMID: 28623530 DOI: 10.1007/s12307-017-0193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor progression is often influenced by infiltration of myeloid cells; depending on the M1- or M2-like activation status, these cells may have either inhibitory or promoting effects on tumor growth. We investigated the properties of tumor-associated myeloid cells in a previously established homotransplantable amelanotic melanoma (RMM tumor line) in F344 rats. RMM tumor nodules were allowed to reach the sizes of 0.5, 1, 2 and 3 cm, respectively. Immunohistochemistry and flow cytometry was performed for macrophage markers CD68 and CD163, and for the antigen-presenting cell marker, MHC class II. Although no significant change was observed in the number of CD68+ and CD163+ macrophages during RMM progression, the number of MHC class II+ antigen-presenting cells was reduced in 3 cm nodules. Real-time RT-PCR of laser microdissection samples obtained from RMM regions rich in MHC class II+ cells demonstrated high expressions of M1-like factors: IFN-γ, GM-CSF and IL-12a. Furthermore, fluorescence-activated cell sorting, followed by real-time RT-PCR for CD11b+ MHC class II+ (myeloid antigen-presenting cells), CD11b+ CD163+ (M2 type myeloid cells), CD11b+ CD80+ (M1 type myeloid cells) and CD11b+ CD11c+ (dendritic cells) cells was performed. Based on the levels of inflammation- and tumor progression-related factors, MHC class II+ antigen-presenting cells showed polarization towards M1, while CD163+ macrophages, towards M2. CD80+ and CD11c+ myeloid cells did not show clear functional polarization. Our results provide novel information on tumor-associated myeloid cells in amelanotic melanoma, and may become useful in further research on melanoma immunity.
Collapse
Affiliation(s)
- A Bondoc
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - H M Golbar
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Pervin
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - C Katou-Ichikawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - T Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - J Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
28
|
Immune microenvironment of gliomas. J Transl Med 2017; 97:498-518. [PMID: 28287634 DOI: 10.1038/labinvest.2017.19] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
Collapse
|
29
|
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors and precursors at different stages of differentiation into granulocytes, macrophages, and dendritic cells. Blockade of their differentiation into mature myeloid cells in cancer results in an expansion of this population. High-grade gliomas are the most common malignant tumours of the central nervous system (CNS), with a poor prognosis despite intensive radiation and chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed the extensive heterogeneity of immune cells infiltrating gliomas and their microenvironment. Immune cell infiltrates consist of: resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells, and T lymphocytes. Intratumoural density of glioma-associated MDSCs correlates positively with the histological grade of gliomas and patient’s survival. MDSCs have the ability to attract T regulatory lymphocytes to the tumour, but block the activation of tumour-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. Immunomodulatory mechanisms employed by malignant gliomas pose an appalling challenge to brain tumour immunotherapy. In this mini-review we describe phenotypic and functional characteristics of MDSCs in humans and rodents, and their occurrence and potential roles in glioma progression. While understanding the complexity of immune cell interactions in the glioma microenvironment is far from being accomplished, there is significant progress that may lead to the development of immunotherapy for gliomas.
Collapse
|
30
|
Michelson N, Rincon-Torroella J, Quiñones-Hinojosa A, Greenfield JP. Exploring the role of inflammation in the malignant transformation of low-grade gliomas. J Neuroimmunol 2016; 297:132-40. [DOI: 10.1016/j.jneuroim.2016.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
|
31
|
De I, Steffen MD, Clark PA, Patros CJ, Sokn E, Bishop SM, Litscher S, Maklakova VI, Kuo JS, Rodriguez FJ, Collier LS. CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages. Cancer Res 2016; 76:2552-60. [PMID: 27013192 DOI: 10.1158/0008-5472.can-15-2386] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
Current therapies for high-grade gliomas extend survival only modestly. The glioma microenvironment, including glioma-associated microglia/macrophages (GAM), is a potential therapeutic target. The microglia/macrophage cytokine CSF1 and its receptor CSF1R are overexpressed in human high-grade gliomas. To determine whether the other known CSF1R ligand IL34 is expressed in gliomas, we examined expression array data of human high-grade gliomas and performed RT-PCR on glioblastoma sphere-forming cell lines (GSC). Expression microarray analyses indicated that CSF1, but not IL34, is frequently overexpressed in human tumors. We found that while GSCs did express CSF1, most GSC lines did not express detectable levels of IL34 mRNA. We therefore studied the impact of modulating CSF1 levels on gliomagenesis in the context of the GFAP-V12Ha-ras-IRESLacZ (Ras*) model. Csf1 deficiency deterred glioma formation in the Ras* model, whereas CSF1 transgenic overexpression decreased the survival of Ras* mice and promoted the formation of high-grade gliomas. Conversely, CSF1 overexpression increased GAM density, but did not impact GAM polarization state. Regardless of CSF1 expression status, most GAMs were negative for the M2 polarization markers ARG1 and CD206; when present, ARG1(+) and CD206(+) cells were found in regions of peripheral immune cell invasion. Therefore, our findings indicate that CSF1 signaling is oncogenic during gliomagenesis through a mechanism distinct from modulating GAM polarization status. Cancer Res; 76(9); 2552-60. ©2016 AACR.
Collapse
Affiliation(s)
- Ishani De
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Megan D Steffen
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul A Clark
- Department of Neurological Surgery and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Clayton J Patros
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emily Sokn
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M Bishop
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Suzanne Litscher
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vilena I Maklakova
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - John S Kuo
- Department of Neurological Surgery and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fausto J Rodriguez
- Division of Neuropathology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Lara S Collier
- School of Pharmacy, Carbone Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
32
|
Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, Thomas G, Zhou S, Wang Q, Elakkad A, Liebelt BD, Yaghi NK, Ezhilarasan R, Huang N, Weinberg JS, Prabhu SS, Rao G, Sawaya R, Langford LA, Bruner JM, Fuller GN, Bar-Or A, Li W, Colen RR, Curran MA, Bhat KP, Antel JP, Cooper LJ, Sulman EP, Heimberger AB. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 2016; 1:85841. [PMID: 26973881 DOI: 10.1172/jci.insight.85841] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.
Collapse
Affiliation(s)
- Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin Rodriguez
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | - Qianghu Wang
- Department of Bioinformatics and Computational Biology
| | | | - Brandon D Liebelt
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nasser K Yaghi
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Neal Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Amit Bar-Or
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack P Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|