1
|
Zhu T, Fu H, Wang Z, Guo S, Zhang S. Identification of exosomal ceRNA networks as prognostic markers in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e40167. [PMID: 39470474 PMCID: PMC11521039 DOI: 10.1097/md.0000000000040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Aggressive clear cell renal cell carcinoma (ccRCC) has a bad prognosis. We seek new ccRCC biomarkers for diagnosis and treatment. We used exoRBase and The Cancer Genome Atlas Database to compare DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs in ccRCC and normal renal tissues. CircRNAs and circRNAs targeting microRNAs (miRNAs) were anticipated and taken intersections, and several databases assessed the targeted link between common miRNAs and messenger RNAs (mRNAs). The Cancer Genome Atlas database was used to create a predictive mRNA signature that was validated in E-MTAB-1980. Finally, we examined competing endogenous RNA network miRNAs and long noncoding RNAs for ccRCC predictive biomarkers using overall survival analysis. We built the first competing endogenous RNA regulation network of circRNA-lncRNA-miRNA-mRNA and found that it substantially correlates with ccRCC prognosis. We unveiled ccRCC's posttranscriptional regulation mechanism in greater detail. Our findings identified novel biomarkers for ccRCC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong Province, China
| | - Haizhu Fu
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA
| | - Shidong Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
5
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Deciphering intratumor heterogeneity in clear cell renal cell carcinoma utilizing clinicopathologic and molecular platforms. Hum Pathol 2022; 130:95-109. [PMID: 36511267 DOI: 10.1016/j.humpath.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
Abstract
Clear cell renal cell carcinoma (CCRCC) is a common renal malignancy known for its lethality and chromosome 3p aberrancies associated with loss of VHL. It has been shown that additional prognostic molecular markers exist in other transcriptional modifiers such as BAP1 and SETD2. Molecular heterogeneity has been described between primary and metastatic sites as well as genetic diversity in spatial tumor analysis; however, morphologic and proteogenomic heterogeneity information is lacking. We assessed 77 nephrectomy specimens with a diagnosis of CCRCC for morphologic architectural patterns including nodular growth patterns and variations in WHO/ISUP grade. Evaluation of highly heterogeneous areas with immunohistochemical (IHC) staining for BAP1, UCHL1, SETD2, and CAIX was performed and correlated with morphologic and histology data. Ultimately, high variability in the morphologic and histological findings matched the complexity of the IHC findings. Alterations in expression of CAIX and UCHL1 correlated with alterations in transcriptional regulators BAP1 and SETD2 within the tumor. High-grade morphology, such as eosinophilia, were areas enriched for alteration of biomarker expression. This highly complex data set of morphologic and biomarker characteristics highlights the heterogeneity of morphology amongst high-grade CCRCC tumors.
Collapse
|
7
|
Bhattacharya S, Reddy D, Zhang N, Li H, Workman JL. Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes. Front Cell Dev Biol 2022; 10:945668. [PMID: 36035998 PMCID: PMC9399737 DOI: 10.3389/fcell.2022.945668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The methyltransferase SETD2 regulates cryptic transcription, alternative splicing, and the DNA damage response. It is mutated in a variety of cancers and is believed to be a tumor suppressor. Counterintuitively, despite its important role, SETD2 is robustly degraded by the proteasome keeping its levels low. Here we show that SETD2 accumulation results in a non-canonical deposition of the functionally important H3K36me3 histone mark, which includes its reduced enrichment over gene bodies and exons. This perturbed epigenetic landscape is associated with widespread changes in transcription and alternative splicing. Strikingly, contrary to its role as a tumor suppressor, excessive SETD2 results in the upregulation of cell cycle-associated pathways. This is also reflected in phenotypes of increased cell proliferation and migration. Thus, the regulation of SETD2 levels through its proteolysis is important to maintain its appropriate function, which in turn regulates the fidelity of transcription and splicing-related processes.
Collapse
Affiliation(s)
| | | | | | | | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, MO, United States
| |
Collapse
|
8
|
Tian Z, Meng L, Wang X, Diao T, Hu M, Wang M, Zhang Y, Liu M, Wang J. CGN Correlates With the Prognosis and Tumor Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Front Mol Biosci 2022; 9:758974. [PMID: 35223987 PMCID: PMC8865610 DOI: 10.3389/fmolb.2022.758974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
This study aimed to screen and verify the important prognostic genes related to clear cell renal cell carcinoma (ccRCC) and further analyze their relationship with the immune microenvironment. Gene expression profiles from the TCGA-KIRC, GSE46699, GSE36895, and GSE16449 datasets were utilized to explore differentially co-expressed genes in ccRCC. We screened 124 differentially co-expressed genes using a weighted gene co-expression network and differential gene expression analyses. Univariate and multivariate Cox survival analyses revealed that the expressions of genes CGN, FECH, UCHL1, and WT1 were independently related to the overall survival of ccRCC patients. Kaplan–Meier survival analysis was performed, and CGN was found to have the strongest correlation with the prognosis of ccRCC patients and was consequently selected for further analyses and experimental verification. The results showed that NK cell activation, resting dendritic cells, resting monocytes, and resting mast cells were positively correlated with CGN expression; CD4+ memory activated T cells, regulatory T cells, and M0 macrophages were negatively correlated with CGN expression. Finally, using western blotting and reverse transcription polymerase chain reaction, we verified that the CGN protein level was down-regulated in ccRCC samples, which was consistent with the mRNA levels. CGN was thus identified as diagnosis and prognosis biomarker for ccRCC and is related to the immune microenvironment.
Collapse
Affiliation(s)
- Zijian Tian
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tongxiang Diao
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Maolin Hu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jianye Wang, ; Ming Liu, ; Yaqun Zhang,
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jianye Wang, ; Ming Liu, ; Yaqun Zhang,
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jianye Wang, ; Ming Liu, ; Yaqun Zhang,
| |
Collapse
|
9
|
The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297:101075. [PMID: 34391778 PMCID: PMC8405934 DOI: 10.1016/j.jbc.2021.101075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.
Collapse
|
10
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
11
|
Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition. Epigenetics Chromatin 2020; 13:40. [PMID: 33023640 PMCID: PMC7542105 DOI: 10.1186/s13072-020-00362-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The histone H3K36me3 mark regulates transcription elongation, pre-mRNA splicing, DNA methylation, and DNA damage repair. However, knowledge of the regulation of the enzyme SETD2, which deposits this functionally important mark, is very limited. Results Here, we show that the poorly characterized N-terminal region of SETD2 plays a determining role in regulating the stability of SETD2. This stretch of 1–1403 amino acids contributes to the robust degradation of SETD2 by the proteasome. Besides, the SETD2 protein is aggregate prone and forms insoluble bodies in nuclei especially upon proteasome inhibition. Removal of the N-terminal segment results in the stabilization of SETD2 and leads to a marked increase in global H3K36me3 which, uncharacteristically, happens in a Pol II-independent manner. Conclusion The functionally uncharacterized N-terminal segment of SETD2 regulates its half-life to maintain the requisite cellular amount of the protein. The absence of SETD2 proteolysis results in a Pol II-independent H3K36me3 deposition and protein aggregation.
Collapse
|
12
|
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11:3349-3356. [PMID: 32231741 PMCID: PMC7097956 DOI: 10.7150/jca.38391] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of malignant tumors; and a great deal of attention has been paid to the histone methylation level in recent years. As a 230-kD epigenetic regulator, the histone H3 lysine 36 histone (H3K36) methyltransferase SETD2 is a key enzyme of the nuclear receptor SET domain-containing (NSD) family, which is associated with a specific hyperphosphorylated domain, a large subunit of RNA polymerase II (RNAPII), named RNAPII subunit B1 (RPB1), and SETD2 which methylates the ly-36 position of dimethylated histone H3 (H3K36me2) to generate trimethylated H3K36 (H3K36me3). SETD2 is involved in various cellular processes, including transcriptional regulation, DNA damage repair, non-histone protein-related functions and some other processes. Great efforts of high-throughput sequencing have revealed that SETD2 is mutated or its function is lost in a range of solid cancers, including renal cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, osteosarcoma, and so on. Mutation, or functional loss, of the SETD2 gene produces dysfunction in corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemotherapy resistance, and unfavorable prognosis, suggesting that SETD2 possibly acts as a tumor suppressor. However, its underlying mechanism remains largely unexplored. In the present study, we summarized the latest advances of effects of SETD2 expression at the mRNA and protein levels in solid cancers, and its potential molecular and cellular functions as well as clinical applications were also reviewed.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Wei-Qing Zhao
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Cheng Fang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Xin Yang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Mei Ji
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| |
Collapse
|
13
|
Liu S, Li S, Wang Y, Wang F, Zhang L, Xian S, Yang D, Yuan M, Dai F, Zhao X, Liu Y, Jin Y, Zeng Z, Mahgoub OKA, Zhou C, Cheng Y. Prognostic value of infiltrating immune cells in clear cell renal cell carcinoma (ccRCC). J Cell Biochem 2019; 121:2571-2581. [PMID: 31823423 DOI: 10.1002/jcb.29479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023]
Abstract
In this study, we attempted to evaluate the prognostic value of infiltrating immune/stromal cells in clear cell renal cell carcinoma (ccRCC), by using the immune scores and stromal scores based on the "Estimation of STromal and Immune cells in MAlignant Tumours using Expression data" algorithm to represent the levels of infiltrating immune cells and stromal cells. We found that the infiltrating immune cells were associated with poor prognosis of ccRCC. To assess the role of infiltrating immune cells in ccRCC cells, first, we performed differentially expressed genes analysis and functional analysis for validation. The results showed that the underlying mechanism by which infiltrating immune cells promoted cancer progression involved in regulating the nuclear division, angiogenesis, and immune response. Next, we investigated the relationship between infiltrating immune cells and mutations in ccRCC cells. We found that the infiltrating immune cells have certain effects on genetic mutations. In conclusion, infiltrating immune cells within the tumor microenvironment can be used to predict prognosis in ccRCC.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Saijiao Li
- Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Feiyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Xin Zhao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Yuping Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Yumeng Jin
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Zihang Zeng
- Department of Tumor center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, P. R. C
| | - Omer Kamal Ahmed Mahgoub
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Chenliang Zhou
- Department Critical Care Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. C
| |
Collapse
|
14
|
Risk Factors for Development of Canine and Human Osteosarcoma: A Comparative Review. Vet Sci 2019; 6:vetsci6020048. [PMID: 31130627 PMCID: PMC6631450 DOI: 10.3390/vetsci6020048] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common primary tumor of bone. Osteosarcomas are rare in humans, but occur more commonly in dogs. A comparative approach to studying osteosarcoma has highlighted many clinical and biologic aspects of the disease that are similar between dogs and humans; however, important species-specific differences are becoming increasingly recognized. In this review, we describe risk factors for the development of osteosarcoma in dogs and humans, including height and body size, genetics, and conditions that increase turnover of bone-forming cells, underscoring the concept that stochastic mutational events associated with cellular replication are likely to be the major molecular drivers of this disease. We also discuss adaptive, cancer-protective traits that have evolved in large, long-lived mammals, and how increasing size and longevity in the absence of natural selection can account for the elevated bone cancer risk in modern domestic dogs.
Collapse
|
15
|
Kim SH, Park WS, Chung J. SETD2, GIGYF2, FGFR3, BCR, KMT2C, and TSC2 as candidate genes for differentiating multilocular cystic renal neoplasm of low malignant potential from clear cell renal cell carcinoma with cystic change. Investig Clin Urol 2019; 60:148-155. [PMID: 31098421 PMCID: PMC6495037 DOI: 10.4111/icu.2019.60.3.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/24/2019] [Indexed: 01/06/2023] Open
Abstract
Purpose Multilocular cystic renal neoplasm of low malignant potential (MCRNLMP) and clear cell renal cell carcinoma with cystic change (MCRCC) have different prognoses despite similar histologic characteristics. The aim of this study was to identify differentially mutated genes in resected tumor specimens from patients diagnosed with MCRNLMP and MCRCC using a kidney cancer gene panel. Materials and Methods Between 2009 and 2016, 13 MCRNLMP and 17 MCRCC cases were selected. Tumor tissues from 5 MCRNLMP and 16 MCRCC cases were subjected to gene sequencing to detect mutations among 88 genes selected from a kidney cancer gene panel after quality control. Fisher's exact test was used to compare gene mutation profiles between the two diseases. Genes were considered to be positive for mutation according to the presence of an in-frame/frameshift deletion or insertion, missense/nonsense mutation, or multi-hit mutation. Results During a median follow-up period of 66.2 months, there was only one case of MCRCC recurrence among all 30 patients. Target gene sequencing showed that 35 genes tended to be more frequently positive in either disease group, with six genes showing a significantly different frequency of mutation between the groups: GIGYF2 (odds ratio [OR], 5.735), FGFR3 (OR, 6.787), SETD2 (OR, 4.588), BCR (OR, 6.266), KMT2C (OR, 8.167), and TSC2 (OR, 4.474). Conclusions Six candidate genes showed significantly different mutation patterns between MCRNLMP and MCRCC, providing insight into their pathogenic mechanisms and differential prognoses.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of Urology, Center for Prostate Cancer, Research Institute and National Cancer Center, Goyang, Korea
| | - Weon Seo Park
- Department of Pathology, Center for Prostate Cancer, Research Institute and National Cancer Center, Goyang, Korea
| | - Jinsoo Chung
- Department of Urology, Center for Prostate Cancer, Research Institute and National Cancer Center, Goyang, Korea
| |
Collapse
|
16
|
Yan L, Zhang Y, Ding B, Zhou H, Yao W, Xu H. Genetic alteration of histone lysine methyltransferases and their significance in renal cell carcinoma. PeerJ 2019; 7:e6396. [PMID: 30755832 PMCID: PMC6368835 DOI: 10.7717/peerj.6396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022] Open
Abstract
Background Histone lysine methyltransferases (HMTs), a category of enzymes, play essential roles in regulating transcription, cellular differentiation, and chromatin construction. The genomic landscape and clinical significance of HMTs in renal cell carcinoma (RCC) remain uncovered. Methods We conducted an integrative analysis of 50 HMTs in RCC and discovered the internal relations among copy number alterations (CNAs), expressive abundance, mutations, and clinical outcome. Results We confirmed 12 HMTs with the highest frequency of genetic alterations, including seven HMTs with high-level amplification, two HMTs with somatic mutation, and three HMTs with putative homozygous deletion. Patterns of copy number and expression varied among different subtypes of RCC, including clear cell renal cell carcinoma, papillary cell carcinoma, and chromophobe renal carcinoma. Kaplan-Meier survival analysis and multivariate analysis identified that CNA or mRNA expression in some HMTs were significantly associated with shorter overall patient survival. Systematic analysis identified six HMTs (ASH1L, PRDM6, NSD1, EZH2, WHSC1L1, SETD2) which were dysregulated by genetic alterations as candidate therapeutic targets. Discussion In summary, our findings strongly evidenced that genetic alteration of HMTs may play an important role in generation and development of RCC, which lays a solid foundation for the mechanism for further research in the future.
Collapse
Affiliation(s)
- Libin Yan
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| | - Yangjun Zhang
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| | - Beichen Ding
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| | - Hui Zhou
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| | - Weimin Yao
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| | - Hua Xu
- Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China.,Institute of Urology of Hubei Province, Wuhan, China
| |
Collapse
|
17
|
Bihr S, Ohashi R, Moore AL, Rüschoff JH, Beisel C, Hermanns T, Mischo A, Corrò C, Beyer J, Beerenwinkel N, Moch H, Schraml P. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Neoplasia 2019; 21:247-256. [PMID: 30660076 PMCID: PMC6355619 DOI: 10.1016/j.neo.2018.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bi-allelic inactivation of the VHL gene on chromosome 3p is the characteristic feature in most clear cell renal cell carcinomas (ccRCC). Frequent gene alterations were also identified in SETD2, BAP1 and PBRM1, all of which are situated on chromosome 3p and encode histone/chromatin regulators. The relationship between gene mutation, loss of protein expression and the correlations with clinicopathological parameters is important for the understanding of renal cancer progression. We analyzed PBRM1 and BAP1 protein expression as well as the tri-methylation state of H3K36 as a surrogate marker for SETD2 activity in more than 700 RCC samples. In ccRCC loss of nuclear PBRM1 (68%), BAP1 (40%) and H3K36me3 (47%) expression was significantly correlated with each other, advanced tumor stage, poor tumor differentiation (P < .0001 each), and necrosis (P < .005) Targeted next generation sequencing of 83 ccRCC samples demonstrated a significant association of genetic mutations in PBRM1, BAP1, and SETD2 with absence of PBRM1, BAP1, and HEK36me3 protein expression (P < .05, each). By assigning the protein expression patterns to evolutionary subtypes, we revealed similar clinical phenotypes as suggested by TRACERx Renal. Given their important contribution to tumor suppression, we conclude that combined functional inactivation of PBRM1, BAP1, SETD2 and pVHL is critical for ccRCC progression.
Collapse
Affiliation(s)
- Svenja Bihr
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Riuko Ohashi
- Histopathology Core Facility, Niigata University Faculty of Medicine, Niigata, Japan
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Axel Mischo
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Jörg Beyer
- Department of Oncology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Transcriptomic analysis of the heat stress response for a commercial baker's yeast Saccharomyces cerevisiae. Genes Genomics 2018; 40:137-150. [PMID: 29892925 DOI: 10.1007/s13258-017-0616-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study is to explore the effects of heat stresses on global gene expression profiles and to identify the candidate genes for the heat stress response in commercial baker's yeast (Saccharomyces cerevisiae) by using microarray technology and comparative statistical data analyses. The data from all hybridizations and array normalization were analyzed using the GeneSpringGX 12.1 (Agilent) and the R 2.15.2 program language. In the analysis, all required statistical methods were performed comparatively. For the normalization step, among alternatives, the RMA (Robust Microarray Analysis) results were used. To determine differentially expressed genes under heat stress treatments, the fold-change and the hypothesis testing approaches were executed under various cut-off values via different multiple testing procedures then the up/down regulated probes were functionally categorized via the PAMSAM clustering. The results of the analysis concluded that the transcriptome changes under the heat shock. Moreover, the temperature-shift stress treatments show that the number of differentially up-regulated genes among the heat shock proteins and transcription factors changed significantly. Finally, the change in temperature is one of the important environmental conditions affecting propagation and industrial application of baker's yeast. This study statistically analyzes this affect via one-channel microarray data.
Collapse
|
19
|
Argonaute 2 RNA Immunoprecipitation Reveals Distinct miRNA Targetomes of Primary Burkitt Lymphoma Tumors and Normal B Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1289-1299. [DOI: 10.1016/j.ajpath.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
|
20
|
Hou W, Ji Z. Generation of autochthonous mouse models of clear cell renal cell carcinoma: mouse models of renal cell carcinoma. Exp Mol Med 2018; 50:1-10. [PMID: 29651023 PMCID: PMC5938055 DOI: 10.1038/s12276-018-0059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the 10 most common cancers worldwide, and to date, a strong systemic therapy has not been developed to treat RCC, even with the remarkable modern advances in molecular medicine mostly due to our incomplete understanding of its tumorigenesis. There is a dire unmet need to understand the etiology and progression of RCC, especially the most common subtype, clear cell RCC (ccRCC), and to develop new treatments for RCC. Genetically engineered mouse (GEM) models are able to mimic the initiation, progression, and metastasis of cancer, thus providing valuable insights into tumorigenesis and serving as perfect preclinical platforms for drug testing and biomarker discovery. Despite substantial advances in the molecular investigation of ccRCC and monumental efforts that have been performed to try to establish autochthonous animal models of ccRCC, this goal has not been achieved until recently. Here we present a review of the most exciting progress relevant to GEM models of ccRCC.
Collapse
Affiliation(s)
- Weibin Hou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
21
|
Fahey CC, Davis IJ. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Cold Spring Harb Perspect Med 2017; 7:a026468. [PMID: 28159833 PMCID: PMC5411680 DOI: 10.1101/cshperspect.a026468] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The H3 lysine 36 histone methyltransferase SETD2 is mutated across a range of human cancers. Although other enzymes can mediate mono- and dimethylation, SETD2 is the exclusive trimethylase. SETD2 associates with the phosphorylated carboxy-terminal domain of RNA polymerase and modifies histones at actively transcribed genes. The functions associated with SETD2 are mediated through multiple effector proteins that bind trimethylated H3K36. These effectors directly mediate multiple chromatin-regulated processes, including RNA splicing, DNA damage repair, and DNA methylation. Although alterations in each of these processes have been associated with SETD2 loss, the relative role of each in the development of cancer is not fully understood. Critical vulnerabilities resulting from SETD2 loss may offer a strategy for potential therapeutics.
Collapse
Affiliation(s)
- Catherine C Fahey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
- Departments of Genetics and Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| |
Collapse
|