1
|
Rocchi A, Wollebo HS, Khalili K. Neurotropic Viruses as Acute and Insidious Drivers of Aging. Biomolecules 2025; 15:514. [PMID: 40305226 PMCID: PMC12025245 DOI: 10.3390/biom15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Aging is the result of various compounding stresses that gradually overcome the homeostatic regulation of the cell, resulting in irreversible damage. This manifests as many acute and chronic conditions, the most common of which are neurodegeneration and dementia. Epidemiological studies have shown significant, strong correlations between viral infection and neurodegenerative diseases. This review overlays the characteristics of viral pathogenesis with the hallmarks of aging to discuss how active and latent viruses contribute to aging. Through our contextualization of myriad basic science papers, we offer explanations for premature aging via viral induction of common stress response pathways. Viruses induce many stresses: dysregulated homeostasis by exogenous viral proteins and overwhelmed protein quality control mechanisms, DNA damage through direct integration and epigenetic manipulation, immune-mediated oxidative stress and immune exhaustion, and general energy theft that is amplified in an aging system. Overall, this highlights the long-term importance of vaccines and antivirals in addition to their acute benefits.
Collapse
Affiliation(s)
| | - Hassen S. Wollebo
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
2
|
Santos LS, Tonel MZ, Martins MO, dos Santos CL. Theoretical Exploration of Chitosan Nanoparticles Associated with Platinum Compounds for Cancer Treatment: Insights from DFT and Molecular Docking Analyses. BIONANOSCIENCE 2025; 15:79. [DOI: 10.1007/s12668-024-01728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 01/04/2025]
|
3
|
Modabber N, Mahboub SS, Khoshravesh S, Karimpour F, Karimi A, Goodarzi V. Evaluation of Long Non-coding RNA (LncRNA) in the Pathogenesis of Chemotherapy Resistance in Cervical Cancer: Diagnostic and Prognostic Approach. Mol Biotechnol 2024; 66:2751-2768. [PMID: 37804407 DOI: 10.1007/s12033-023-00909-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Cervical cancer (CC), caused by human papillomavirus (HPV), is a leading cause of female malignancies worldwide. Therefore, understanding the underlying mechanisms of CC development and identifying novel therapeutic targets are significantly important. Cisplatin resistance is a significant challenge in the management of CC. Recent studies highlighted the critical role of long non-coding RNAs (lncRNAs) in modulation of cisplatin resistance. This comprehensive review aims to collect the current understanding roles of lncRNAs and their involvement in cisplatin resistance in CC by highlighting key processes of cancer progression, including apoptosis, proliferation, angiogenesis and epithelial-to-mesenchymal transition (EMT). We discussed the role of lncRNA in CC resistance to cisplatin through molecular pathways and examined gene expression changes. We also discussed treatment strategies and factors that reduce CC resistance to cisplatin by targeting them.
Collapse
Affiliation(s)
- Noushin Modabber
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Sadat Mahboub
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karimpour
- Cancer Reserch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anita Karimi
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Wan M, Yang X, He L, Meng H. Elucidating the clonal relationship of esophageal second primary tumors in patients with laryngeal squamous cell carcinoma. Infect Agent Cancer 2023; 18:75. [PMID: 38017473 PMCID: PMC10685475 DOI: 10.1186/s13027-023-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Laryngeal cancer ranks as the second most prevalent upper airway malignancy, following Lung cancer. Although some progress has been made in managing laryngeal cancer, the 5-year survival rate is disappointing. The gradual increase in the incidence of second primary tumors (SPTs) plays a crucial role in determining survival outcomes during long-term follow-up, and the esophagus was the most common site with a worse prognosis. In clinical practice, the treatment of esophageal second primary tumors (ESPT) in patients with laryngeal squamous cell carcinoma (LSCC) has always been challenging. For patients with synchronous tumors, several treatment modalities, such as radiotherapy, chemotherapy and potentially curative surgery are necessary but are typically poorly tolerated. Secondary cancer therapy options for metachronous patients are always constrained by index cancer treatment indications. Therefore, understanding the clonal origin of the second primary tumor may be an important issue in the treatment of patients. LSCC cells demonstrate genetic instability because of two distinct aetiologies (human papillomavirus (HPV)-negative and HPV-positive) disease. Various etiologies exhibit distinct oncogenic mechanisms, which subsequently impact the tissue microenvironment. The condition of the tissue microenvironment plays a crucial role in determining the destiny and clonal makeup of mutant cells during the initial stages of tumorigenesis. This review focuses on the genetic advances of LSCC, the current research status of SPT, and the influence of key carcinogenesis of HPV-positive and HPV-negative LSCC on clonal evolution of ESPT cells. The objective is to gain a comprehensive understanding of the molecular basis underlying the clonal origins of SPT, thereby offering novel perspectives for future investigations in this field.
Collapse
Affiliation(s)
- Meixuan Wan
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lin He
- Department of Stomatology, Heilongjiang Province Hospital, Harbin, 150081, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
5
|
Xiong J, Li G, Mei X, Ding J, Shen H, Zhu D, Wang H. Co-Delivery of p53 Restored and E7 Targeted Nucleic Acids by Poly (Beta-Amino Ester) Complex Nanoparticles for the Treatment of HPV Related Cervical Lesions. Front Pharmacol 2022; 13:826771. [PMID: 35185576 PMCID: PMC8855959 DOI: 10.3389/fphar.2022.826771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The p53 gene has the highest mutation frequency in tumors, and its inactivation can lead to malignant transformation, such as cell cycle arrest and apoptotic inhibition. Persistent high-risk human papillomavirus (HR-HPV) infection is the leading cause of cervical cancer. P53 was inactivated by HPV oncoprotein E6, promoting abnormal cell proliferation and carcinogenesis. To study the treatment of cervical intraepithelial neoplasia (CIN) and cervical cancer by restoring p53 expression and inactivating HPV oncoprotein, and to verify the effectiveness of nano drugs based on nucleic acid delivery in cancer treatment, we developed poly (beta-amino ester)537, to form biocompatible and degradable nanoparticles with plasmids (expressing p53 and targeting E7). In vitro and in vivo experiments show that nanoparticles have low toxicity and high transfection efficiency. Nanoparticles inhibited the growth of xenograft tumors and successfully reversed HPV transgenic mice’s cervical intraepithelial neoplasia. Our work suggests that the restoration of p53 expression and the inactivation of HPV16 E7 are essential for blocking the development of cervical cancer. This study provides new insights into the precise treatment of HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guannan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| |
Collapse
|
6
|
Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett 2021; 523:111-120. [PMID: 34627949 DOI: 10.1016/j.canlet.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
While platinum-based chemotherapy, radiation therapy and or surgery are effective in reducing human papillomavirus (HPV) driven cancer tumours, they have some significant drawbacks, including low specificity for tumour, toxicity, and severe adverse effects. Though current therapies for HPV-driven cancers are effective, severe late toxicity associated with current treatments contributes to the deterioration of patient quality of life. This warrants the need for novel therapies for HPV derived cancers. In this short review, we examined RNA-based therapies targeting the major HPV oncogenes, including short-interfering RNAs (siRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) as putative treatment modalities. We also explore other potential RNA-based targeting approaches such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and mRNA vaccines as future treatment modalities for HPV cancers. Some of these technologies have already been approved for clinical use for a range of other human diseases but not for HPV cancers. Here we explore the emerging evidence supporting the effectiveness of some of these gene-based therapies for HPV malignancies. In short, the evidence sheds promising light on the feasibility of translating these technologies into a clinically relevant treatment modality for HPV derived cancers and potentially other virally driven human cancers.
Collapse
Affiliation(s)
- Ana María Salinas-Montalvo
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Ren C, Gao C, Li X, Xiong J, Shen H, Wang L, Zhu D, Wu P, Ding W, Wang H. The Antitumor Efficiency of Zinc Finger Nuclease Combined with Cisplatin and Trichostatin A in Cervical Cancer Cells. Anticancer Agents Med Chem 2021; 20:2125-2135. [PMID: 32753022 DOI: 10.2174/1871520620666200804102300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. OBJECTIVE Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). METHODS SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. RESULTS Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. CONCLUSION Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.
Collapse
Affiliation(s)
- Ci Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Gao
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Li
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Xiong
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
9
|
Szymonowicz KA, Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol Med 2020; 17:864-878. [PMID: 33299640 PMCID: PMC7721094 DOI: 10.20892/j.issn.2095-3941.2020.0370] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer-related diseases represent the second overall cause of death worldwide. Human papilloma virus (HPV) is an infectious agent which is mainly sexually transmitted and may lead to HPV-associated cancers in both men and women. Almost all cervical cancers are HPV-associated, however, an increasing number of head and neck cancers (HNCs), especially oropharyngeal cancer, can be linked to HPV infection. Moreover, anogenital cancers, including vaginal, vulvar, penial, and anal cancers, represent a subset of HPV-related cancers. Whereas testing and prevention of cervical cancer have significantly improved over past decades, anogenital cancers remain more difficult to confirm. Current clinical trials including patients with HPV-related cancers focus on finding proper testing for all HPV-associated cancers as well as improve the currently applied treatments. The HPV viral oncoproteins, E6 and E7, lead to degradation of, respectively, p53 and pRb resulting in entering the S phase without G1 arrest. These high-risk HPV viral oncogenes alter numerous cellular processes, including DNA repair, angiogenesis, and/or apoptosis, which eventually result in carcinogenesis. Additionally, a comprehensive analysis of gene expression and alteration among a panel of DNA double strand breaks (DSB) repair genes in HPV-negative and HPV-positive HNC cancers reveals differences pointing to HPV-dependent modifications of DNA repair processes in these cancers. In this review, we discuss the current knowledge regarding HPV-related cancers, current screening, and treatment options as well as DNA damage response-related biological aspects of the HPV infection and clinical trials.
Collapse
Affiliation(s)
- Klaudia Anna Szymonowicz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today 2019; 24:2044-2057. [DOI: 10.1016/j.drudis.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
|
11
|
Jayamohan S, Kannan M, Moorthy RK, Rajasekaran N, Jung HS, Shin YK, Arockiam AJV. Dysregulation of miR-375/AEG-1 Axis by Human Papillomavirus 16/18-E6/E7 Promotes Cellular Proliferation, Migration, and Invasion in Cervical Cancer. Front Oncol 2019; 9:847. [PMID: 31552174 PMCID: PMC6746205 DOI: 10.3389/fonc.2019.00847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Cervical Cancer (CC) is a highly aggressive tumor and is one of the leading causes of cancer-related deaths in women. miR-375 was shown to be significantly down-regulated in cervical cancer cells. However, the precise biological functions of miR-375 and the molecular mechanisms underlying its action in CC are largely unknown. miR-375 targets were predicted by bioinformatics target prediction tools and validated using luciferase reporter assay. Herein, we investigated the functional significance of miR-375 and its target gene in CC to identify potential new therapeutic targets. We found that miR-375 expression was significantly downregulated in CC, and astrocyte elevated gene-1 (AEG-1) was identified as a target of miR-375. Our results also showed that ectopic expression of miR-375 suppressed CC cell proliferation, migration, invasion and angiogenesis, and increased the 5-fluorouracil-induced apoptosis and cell cycle arrest in vitro. In contrast, inhibition of miR-375 expression significantly enhanced these functions. Furthermore, HPV - 16 E6/E7 and HPV - 18 E6/E7 significantly down-regulates miR-375 expression in CC. HPV 16/18-E6/E7/miR-375/AEG-1 axis plays an important role in the regulation of cell proliferation, migration, and invasion in CC. Therefore, targeting miR-375/AEG-1 mediated axis could serve as a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Sridharan Jayamohan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Maheshkumar Kannan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Rajesh Kannan Moorthy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Nirmal Rajasekaran
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
12
|
Song W, Wang J, Liu H, Zhu C, Xu F, Qian L, Shen Z, Zhu J, Yin S, Qin J, Chen L, Wu D, Nashan B, Shan G, Xiao W, Zhou Y. Effects of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in a human cervical cancer cell line. Cytokine 2019; 120:165-175. [PMID: 31085454 DOI: 10.1016/j.cyto.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
This study explored the effect of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in the human cervical cancer (HCC) cell line SiHa. SiHa cells had the lowest expression of Lnc-LIF-AS in the 4 human cervical cancer cell lines (SiHa, ME-180, C-33A and HeLa) and were transfected and divided into the SiHa/con (transfected with pMIGRI) cell group, SiHa/Lnc-LIF-AS (transfected with pMIGRI-Lnc-LIF-AS) cell group, and SiHa/Lnc-LIF-AS-DN (transfected with pMIGRI-Lnc-LIF-AS-DN, in which the sequences overlapping with LIF mRNA was deleted) cell group. Overexpression of Lnc-LIF-AS could promote the proliferation, colony formation, invasion and migration in SiHa and ME-180 cells. And the low expression of Lnc-LIF-AS suppress the proliferation, colony formation invasion and migration in HeLa cells when the Lnc-LIF-AS expression has been suppressed. In the SiHa/Lnc-LIF-AS cells group, the cell cycle was mainly halted in the S phase and overexpression of Lnc-LIF-AS had no effect on the apoptosis of SiHa cells. Overexpression of Lnc-LIF-AS could promote the secretion of LIF in SiHa cells, and the supernatant from SiHa/Lnc-LIF-AS cells could promote cell proliferation in the SiHa/con cells. The STAT3 inhibitor could inhibit cell proliferation in the SiHa/Lnc-LIF-AS cells. The expression level of Lnc-LIF-AS in cervical cancer tissues was higher than that in normal tissues and the expression level of Lnc-LIF-AS was positively correlated with the level of LIF. In the SiHa/con and SiHa/Lnc-LIF-AS-DN cell groups, there were no significant differences in cell proliferation, cell migration and cell invasion. The overexpression of Lnc-LIF-AS can promote cell proliferation, migration and invasion in cervical cancer cells, and the core function domain of this lncRNA was located in the overlapping a 3'-UTR base sequence of LIF mRNA.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Chenchen Zhu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Fei Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Shuai Yin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Jiwei Qin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Liang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Björn Nashan
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Ge Shan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Weihua Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China.
| |
Collapse
|