1
|
Caumanns JJ, Li S, Meersma GJ, Duiker EW, van der Zee AGJ, Wisman GBA, de Jong S. Establishment and characterization of ovarian clear cell carcinoma patient-derived xenografts. Sci Rep 2025; 15:4434. [PMID: 39910133 PMCID: PMC11799314 DOI: 10.1038/s41598-025-86384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
Interest in understanding the high chemoresistance and poor prognosis of advanced ovarian clear cell carcinoma (OCCC) is rising. Patient-derived xenografts (PDX) are widely used in vivo models because of their supposedly accurate morphologic and (epi)genetic representation of patient tumors. Here, we established five subcutaneous OCCC PDXs. The PDX.F1 engraftment success rate was over 30% with similar latency time and growth speed of PDX.F2. ARID1A, PTEN, ATM, BRCA1 and PIK3CA mutations were found in matched tumors and PDXs. ARID1A protein loss was further verified by immunohistochemical staining. Cyclophilin A staining depicted the replacement of human stroma by mouse stroma in PDX.F2, while PAS/PAS-D staining confirmed cellular glycogen accumulation in OCCC tumors and PDXs. SNP array and Infinium MethylationEPIC BeadChip array data analysis demonstrated the copy number alterations and DNA methylation signatures of genome-wide and tumor-driver genes in PDXs generally resembled their patients' tumors. Promoter CpG islands of a small number of genes, enriched in PRC2/histone methylation related gene-sets, gained methylation (△β-value > 0.4) in PDXs vs patient tumors. In conclusion, the high phenotypic and molecular similarity allows the established PDXs to serve as potential preclinical models for future translational research of OCCC.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Shang Li
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gert J Meersma
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Evelien W Duiker
- Department of Pathology and Medical Biology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
2
|
Okada S, Boonnate P, Panaampon J, Saisuwan K, Ogata-Aoki H, Abe M, Hirabayashi K, Nakagawa R, Kikuta K. Establishment of Biobank and Patient-Derived Xenograft of Soft Tissue and Bone Tumors. Cureus 2024; 16:e74781. [PMID: 39737254 PMCID: PMC11684544 DOI: 10.7759/cureus.74781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Soft tissue and bone tumors are rare, and their low frequency and diverse histological types make conducting large-scale clinical trials challenging. Patient-derived xenografts (PDX), entailing implantation of cancer specimens in immunocompromised mice, are emerging as a valuable translational model because PDX keeps the original tumors' character and drug sensitivity. We sequentially transplanted 166 surgical and biopsy specimens from orthopedic surgeries, including 138 soft tissue and bone tumors (81 malignant, 23 intermediate, and 34 benign), 16 metastatic bone tumors, 9 hematological malignancies, and 3 non-tumor tissues. Every specimen was cutaneously transplanted into both flanks of BALB/c Rag-2/Jak3 double deficient (BRJ) mice, and tumor formation was observed for up to 6 months. We defined PDX models as successfully generated if the tumors were passaged more than three times while retaining the histological characteristics of the original tumor. The rates of PDX generation were 28.1% (39/138) for all soft tissue and bone tumors, 42.6% (35/81) for malignant tumors, 4.3% (1/23) for intermediate tumors, and 8.8% (3/34) for benign tumors. Our models of PDX would be a useful platform for soft tissue and bone tumor precision medicine.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Piyanard Boonnate
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, THA
| | - Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Krittamate Saisuwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Hiromi Ogata-Aoki
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Makoto Abe
- Division of Diagnostic Pathology, Tochigi Cancer Center, Utsunomiya, JPN
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Utsunomiya, JPN
| | - Rumi Nakagawa
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, Utsunomiya, JPN
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, Utsunomiya, JPN
| |
Collapse
|
3
|
Saha S, Bapat S, Vijayasarathi D, Vyas R. Exploring potential biomarkers and lead molecules in gastric cancer by network biology, drug repurposing and virtual screening strategies. Mol Divers 2024:10.1007/s11030-024-10995-6. [PMID: 39348085 DOI: 10.1007/s11030-024-10995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Gastric cancer poses a significant global health challenge, necessitating innovative approaches for biomarker discovery and therapeutic intervention. This study employs a multifaceted strategy integrating network biology, drug repurposing, and virtual screening to elucidate and expand the molecular landscape of gastric cancer. We identified and prioritized key genes implicated in gastric cancer by utilizing data from diverse databases and text-mining techniques. Network analysis underscored intricate gene interactions, emphasizing potential therapeutic targets such as CTNNB1, BCL2, TP53, etc, and highlighted ACTB among the top hub genes crucial in disease progression. Drug repurposing on 626 FDA-approved drugs for digestive system-related cancers revealed Norgestimate and Nimesulide as likely top candidates for gastric cancer, validated by molecular docking and dynamics simulations. Further, combinatorial synthesis of scaffold libraries derived from known chemotypes generated 56,160 virtual compounds, of which 76 new compounds were prioritized based on promising binding affinities and interactions at critical residues. Hotspot residue analysis identified GLU 214 and others as essential for ligand binding stability, enhancing compound efficacy and specificity. These findings support the therapeutic potential of targeting beta-actin protein in gastric cancer treatment, suggesting a future for further experimental validation and clinical translation. In conclusion, this study highlights the potential of repurposable drugs and virtual screening which can be used in combination with existing anti-gastric cancer drugs for gastric cancer therapy, emphasizing the role of computational methodologies in drug discovery.
Collapse
Affiliation(s)
- Sagarika Saha
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Sanket Bapat
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Durairaj Vijayasarathi
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Liang F, Xu H, Cheng H, Zhao Y, Zhang J. Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer. Cancer Gene Ther 2023; 30:1443-1455. [PMID: 37537209 DOI: 10.1038/s41417-023-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.
Collapse
Affiliation(s)
- Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongyan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongwei Cheng
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yabo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Imai T, Yoshida H, Machida Y, Kuramochi M, Ichikawa H, Kubo T, Takahashi M, Kato T. Alteration in molecular properties during establishment and passaging of endometrial carcinoma patient-derived xenografts. Sci Rep 2023; 13:8511. [PMID: 37231035 DOI: 10.1038/s41598-023-35703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Patient-derived xenograft (PDX) tumor models are known to maintain the genomic and phenotypic profiles, including the histopathological structures, of the parental tumors. On the other hand, unique enrichment of single-nucleotide variants or copy number aberrations has been reported in several types of tumors. However, an understanding of endometrial carcinoma PDXs is limited. The purpose of the present study was to clarify the presence or absence of the molecular properties of endometrial carcinomas in PDXs passaged up to eight times. Established PDXs of endometrioid carcinomas maintained their histopathological characteristics, but those of carcinosarcomas predominantly consisted of sarcomatous components when compared to the parental tumors. Alterations in the proportion of cells with positive/negative immunohistochemical staining for estrogen receptor, PTEN, PAX8, and PAX2 were observed, whereas the proportions of cells with AE1/AE3, TP53, ARID1A, PMS2, and MSH6 staining were unchanged. Variants of cancer-associated genes were compared between PDXs and parental tumors. Mutations in POLE and a frameshift deletion in BRCA1 were observed in the parental tumor tissue in each of the six cases, and additional genomic alterations, which were not apparently related to histopathological and immunohistochemical alterations, were found in the PDXs of these cases. The genomic and phenotypic alterations observed between endometrial carcinoma PDXs and parental tumors were partly associated with endometrial cancer-specific characteristics related to cellular differentiation and gene mutations.
Collapse
Affiliation(s)
- Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukino Machida
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mizuki Kuramochi
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Long Y, Xie B, Shen HC, Wen D. Translation Potential and Challenges of In Vitro and Murine Models in Cancer Clinic. Cells 2022; 11:cells11233868. [PMID: 36497126 PMCID: PMC9741314 DOI: 10.3390/cells11233868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
As one of the leading causes of death from disease, cancer continues to pose a serious threat to human health globally. Despite the development of novel therapeutic regimens and drugs, the long-term survival of cancer patients is still very low, especially for those whose diagnosis is not caught early enough. Meanwhile, our understanding of tumorigenesis is still limited. Suitable research models are essential tools for exploring cancer mechanisms and treatments. Herein we review and compare several widely used in vitro and in vivo murine cancer models, including syngeneic tumor models, genetically engineered mouse models (GEMM), cell line-derived xenografts (CDX), patient-derived xenografts (PDX), conditionally reprogrammed (CR) cells, organoids, and MiniPDX. We will summarize the methodology and feasibility of various models in terms of their advantages and limitations in the application prospects for drug discovery and development and precision medicine.
Collapse
Affiliation(s)
- Yuan Long
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Bin Xie
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Hong C. Shen
- China Innovation Center of Roche, Roche R & D Center, Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| | - Danyi Wen
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| |
Collapse
|
7
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, Wei Y, Zhao L. Patient-Derived Xenograft: A More Standard "Avatar" Model in Preclinical Studies of Gastric Cancer. Front Oncol 2022; 12:898563. [PMID: 35664756 PMCID: PMC9161630 DOI: 10.3389/fonc.2022.898563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains the third most common cause of cancer-related death in humans. The establishment of relevant animal models of gastric cancer is critical for further research. Due to the complexity of the tumor microenvironment and the genetic heterogeneity of gastric cancer, the commonly used preclinical animal models fail to adequately represent clinically relevant models of gastric cancer. However, patient-derived models are able to replicate as much of the original inter-tumoral and intra-tumoral heterogeneity of gastric cancer as possible, reflecting the cellular interactions of the tumor microenvironment. In addition to implanting patient tissues or primary cells into immunodeficient mouse hosts for culture, the advent of alternative hosts such as humanized mouse hosts, zebrafish hosts, and in vitro culture modalities has also facilitated the advancement of gastric cancer research. This review highlights the current status, characteristics, interfering factors, and applications of patient-derived models that have emerged as more valuable preclinical tools for studying the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yonggen Zou
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing, China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Karalis JD, Yoon LY, Hammer STG, Hong C, Zhu M, Nassour I, Ju MR, Xiao S, Castro-Dubon EC, Agrawal D, Suarez J, Reznik SI, Mansour JC, Polanco PM, Yopp AC, Zeh HJ, Hwang TH, Zhu H, Porembka MR, Wang SC. Lenvatinib inhibits the growth of gastric cancer patient-derived xenografts generated from a heterogeneous population. J Transl Med 2022; 20:116. [PMID: 35255940 PMCID: PMC8900296 DOI: 10.1186/s12967-022-03317-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lenvatinib is a multitargeted tyrosine kinase inhibitor that is being tested in combination with immune checkpoint inhibitors to treat advanced gastric cancer; however, little data exists regarding the efficacy of lenvatinib monotherapy. Patient-derived xenografts (PDX) are established by engrafting human tumors into immunodeficient mice. The generation of PDXs may be hampered by growth of lymphomas. In this study, we compared the use of mice with different degrees of immunodeficiency to establish PDXs from a diverse cohort of Western gastric cancer patients. We then tested the efficacy of lenvatinib in this system. METHODS PDXs were established by implanting gastric cancer tissue into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) or Foxn1nu (nude) mice. Tumors from multiple passages from each PDX line were compared histologically and transcriptomically. PDX-bearing mice were randomized to receive the drug delivery vehicle or lenvatinib. After 21 days, the percent tumor volume change (%Δvtumor) was calculated. RESULTS 23 PDX models were established from Black, non-Hispanic White, Hispanic, and Asian gastric cancer patients. The engraftment rate was 17% (23/139). Tumors implanted into NSG (16%; 18/115) and nude (21%; 5/24) mice had a similar engraftment rate. The rate of lymphoma formation in nude mice (0%; 0/24) was lower than in NSG mice (20%; 23/115; p < 0.05). PDXs derived using both strains maintained histologic and gene expression profiles across passages. Lenvatinib treatment (mean %Δvtumor: -33%) significantly reduced tumor growth as compared to vehicle treatment (mean %Δvtumor: 190%; p < 0.0001). CONCLUSIONS Nude mice are a superior platform than NSG mice for generating PDXs from gastric cancer patients. Lenvatinib showed promising antitumor activity in PDXs established from a diverse Western patient population and warrants further investigation in gastric cancer.
Collapse
Affiliation(s)
- John D Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lynn Y Yoon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suntrea T G Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ibrahim Nassour
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Michelle R Ju
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shu Xiao
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Esther C Castro-Dubon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Agrawal
- Department of Internal Medicine, University of Texas at Austin, Austin, TX, USA
| | - Jorge Suarez
- Department of Gastroenterology and Hepatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott I Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John C Mansour
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricio M Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam C Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew R Porembka
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sam C Wang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Ughetto S, Migliore C, Pietrantonio F, Apicella M, Petrelli A, D'Errico L, Durando S, Moya-Rull D, Bellomo SE, Rizzolio S, Capelôa T, Ribisi S, Degiuli M, Reddavid R, Rapa I, Fumagalli U, De Pascale S, Ribero D, Baronchelli C, Sgroi G, Rausa E, Baiocchi GL, Molfino S, Manenti S, Bencivenga M, Sacco M, Castelli C, Siena S, Sartore-Bianchi A, Tosi F, Morano F, Raimondi A, Prisciandaro M, Gloghini A, Marsoni S, Sottile A, Sarotto I, Sapino A, Marchiò C, Cassoni P, Guarrera S, Corso S, Giordano S. Personalized therapeutic strategies in HER2-driven gastric cancer. Gastric Cancer 2021; 24:897-912. [PMID: 33755862 DOI: 10.1007/s10120-021-01165-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Trastuzumab is the only approved targeted therapy in patients with HER2-amplified metastatic gastric cancer (GC). Regrettably, in clinical practice, only a fraction of them achieves long-term benefit from trastuzumab-based upfront strategy. To advance precision oncology, we investigated the therapeutic efficacy of different HER2-targeted strategies, in HER2 "hyper"-amplified (≥ 8 copies) tumors. METHODS We undertook a prospective evaluation of HER2 targeting with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates, in a selected subgroup of HER2 "hyper"-amplified gastric patient-derived xenografts (PDXs), through the design of ad hoc preclinical trials. RESULTS Despite the high level of HER2 amplification, trastuzumab elicited a partial response only in 2 out of 8 PDX models. The dual-HER2 blockade with trastuzumab plus either pertuzumab or lapatinib led to complete and durable responses in 5 (62.5%) out of 8 models, including one tumor bearing a concomitant HER2 mutation. In a resistant PDX harboring KRAS amplification, the novel antibody-drug conjugate trastuzumab deruxtecan (but not trastuzumab emtansine) overcame KRAS-mediated resistance. We also identified a HGF-mediated non-cell-autonomous mechanism of secondary resistance to anti-HER2 drugs, responsive to MET co-targeting. CONCLUSION These preclinical randomized trials clearly indicate that in HER2-driven gastric tumors, a boosted HER2 therapeutic blockade is required for optimal efficacy, leading to complete and durable responses in most of the cases. Our results suggest that a selected subpopulation of HER2-"hyper"-amplified GC patients could strongly benefit from this strategy. Despite the negative results of clinical trials, the dual blockade should be reconsidered for patients with clearly HER2-addicted cancers.
Collapse
Affiliation(s)
- Stefano Ughetto
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Apicella
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Laura D'Errico
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Stefania Durando
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Daniel Moya-Rull
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Sara E Bellomo
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Sabrina Rizzolio
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Tania Capelôa
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Salvatore Ribisi
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | | | | | - Ida Rapa
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Uberto Fumagalli
- Chirurgia Generale 2, Spedali Civili, Brescia, Italy
- Digestive Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefano De Pascale
- Chirurgia Generale 2, Spedali Civili, Brescia, Italy
- Digestive Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Ribero
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | | | - Giovanni Sgroi
- Surgical Oncology Unit, Surgical Science Department, ASST Bergamo Ovest, Treviglio, BG, Italy
| | - Emanuele Rausa
- Surgical Oncology Unit, Surgical Science Department, ASST Bergamo Ovest, Treviglio, BG, Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | | | - Maria Bencivenga
- Section of Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Michele Sacco
- Section of Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Claudia Castelli
- Section of Pathology, Department of Diagnostics and Public Health University of Verona, Verona, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Annunziata Gloghini
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Marsoni
- Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Antonino Sottile
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Ivana Sarotto
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Candiolo, 10060, Turin, Italy.
| |
Collapse
|
12
|
Yagishita S, Kato K, Takahashi M, Imai T, Yatabe Y, Kuwata T, Suzuki M, Ochiai A, Ohtsu A, Shimada K, Nishida T, Hamada A, Mano H. Characterization of the large-scale Japanese patient-derived xenograft (J-PDX) library. Cancer Sci 2021; 112:2454-2466. [PMID: 33759313 PMCID: PMC8177812 DOI: 10.1111/cas.14899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The use of patient‐derived xenografts (PDXs) has recently attracted attention as a drug discovery platform with a high predictive clinical efficacy and a preserved tumor heterogeneity. Given the racial differences in genetic variations, it would be desirable to establish a PDX library from Japanese cancer patients on a large scale. We thus tried to construct the Japanese PDX (J‐PDX) library with a detailed clinical information for further clinical utilization. Between August 2018 and May 2020, a total of 1126 cancer specimens from 1079 patients were obtained at the National Cancer Center Hospital and National Cancer Center Hospital East, Japan, and were immediately transplanted to immunodeficient mice at the National Cancer Center Research Institute. A total of 298 cross‐cancer PDXs were successfully established. The time to engraftment varied greatly by cancer subtypes, especially in the first passage. The engraftment rate was strongly affected by the clinical stage and survival time of the original patients. Approximately 1 year was needed from tumor collection to the time when coclinical trials were conducted to test the clinical utility. The 1‐year survival rates of the patients who were involved in establishing the PDX differed significantly, from 95.6% for colorectal cancer to 56.3% for lung cancer. The J‐PDX library consisting of a wide range of cancer subtypes has been successfully established as a platform for drug discovery and development in Japan. When conducting coclinical trials, it is necessary to consider the target cancer type, stage, and engraftment rate in light of this report.
Collapse
Affiliation(s)
- Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Chuo-ku, Japan.,Biobank Translational Research Support Section, Clinical Research Support Office, National Cancer Center Hospital, Chuo-ku, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa-shi, Japan
| | - Mikiko Suzuki
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa-shi, Japan
| | - Atsushi Ohtsu
- National Cancer Center Hospital East, Kashiwa-shi, Japan
| | - Kazuaki Shimada
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Japan.,National Cancer Center Hospital, Chuo-ku, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, Japan.,Department of Surgery, Japan Community Health care Organization Osaka Hospital, Osaka, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Hiroyuki Mano
- National Cancer Center Research Institute, Chuo-ku, Japan
| |
Collapse
|
13
|
Corso S, Pietrantonio F, Apicella M, Migliore C, Conticelli D, Petrelli A, D'Errico L, Durando S, Moya-Rull D, Bellomo SE, Ughetto S, Degiuli M, Reddavid R, Fumagalli U, De Pascale S, Sgroi G, Rausa E, Baiocchi GL, Molfino S, De Manzoni G, Bencivenga M, Siena S, Sartore-Bianchi A, Morano F, Corallo S, Prisciandaro M, Di Bartolomeo M, Gloghini A, Marsoni S, Sottile A, Sapino A, Marchiò C, Dahle-Smith A, Miedzybrodzka Z, Lee J, Ali SM, Ross JS, Alexander BM, Miller VA, Petty R, Schrock AB, Giordano S. Optimized EGFR Blockade Strategies in EGFR Addicted Gastroesophageal Adenocarcinomas. Clin Cancer Res 2021; 27:3126-3140. [PMID: 33542076 DOI: 10.1158/1078-0432.ccr-20-0121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastric and gastroesophageal adenocarcinomas represent the third leading cause of cancer mortality worldwide. Despite significant therapeutic improvement, the outcome of patients with advanced gastroesophageal adenocarcinoma is poor. Randomized clinical trials failed to show a significant survival benefit in molecularly unselected patients with advanced gastroesophageal adenocarcinoma treated with anti-EGFR agents. EXPERIMENTAL DESIGN We performed analyses on four cohorts: IRCC (570 patients), Foundation Medicine, Inc. (9,397 patients), COG (214 patients), and the Fondazione IRCCS Istituto Nazionale dei Tumori (206 patients). Preclinical trials were conducted in patient-derived xenografts (PDX). RESULTS The analysis of different gastroesophageal adenocarcinoma patient cohorts suggests that EGFR amplification drives aggressive behavior and poor prognosis. We also observed that EGFR inhibitors are active in patients with EGFR copy-number gain and that coamplification of other receptor tyrosine kinases or KRAS is associated with worse response. Preclinical trials performed on EGFR-amplified gastroesophageal adenocarcinoma PDX models revealed that the combination of an EGFR mAb and an EGFR tyrosine kinase inhibitor (TKI) was more effective than each monotherapy and resulted in a deeper and durable response. In a highly EGFR-amplified nonresponding PDX, where resistance to EGFR drugs was due to inactivation of the TSC2 tumor suppressor, cotreatment with the mTOR inhibitor everolimus restored sensitivity to EGFR inhibition. CONCLUSIONS This study underscores EGFR as a potential therapeutic target in gastric cancer and identifies the combination of an EGFR TKI and a mAb as an effective therapeutic approach. Finally, it recognizes mTOR pathway activation as a novel mechanism of primary resistance that can be overcome by the combination of EGFR and mTOR inhibitors.See related commentary by Openshaw et al., p. 2964.
Collapse
Affiliation(s)
- Simona Corso
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Apicella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Daniela Conticelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | - Laura D'Errico
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | | | - Sara E Bellomo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Stefano Ughetto
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Maurizio Degiuli
- Department of Oncology, University of Torino, Orbassano, Torino, Italy
| | - Rossella Reddavid
- Department of Oncology, University of Torino, Orbassano, Torino, Italy
| | | | | | - Giovanni Sgroi
- Surgical Oncology Unit, Department of Surgical Science, ASST Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Emanuele Rausa
- Surgical Oncology Unit, Department of Surgical Science, ASST Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Giovanni De Manzoni
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
| | - Maria Bencivenga
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Marsoni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | | | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Asa Dahle-Smith
- Tayside Cancer Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | | | - Jessica Lee
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts
- Department of Pathology, Upstate Medical University, Syracuse, New York
| | | | | | - Russell Petty
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | | | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
14
|
Jung HY, Kim TH, Lee JE, Kim HK, Cho JH, Choi YS, Shin S, Lee SH, Rhee H, Lee HK, Choi HJ, Jang HY, Lee S, Kang JH, Choi YA, Lee S, Lee J, Choi YL, Kim J. PDX models of human lung squamous cell carcinoma: consideration of factors in preclinical and co-clinical applications. J Transl Med 2020; 18:307. [PMID: 32762722 PMCID: PMC7409653 DOI: 10.1186/s12967-020-02473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Treatment of human lung squamous cell carcinoma (LUSC) using current targeted therapies is limited because of their diverse somatic mutations without any specific dominant driver mutations. These mutational diversities preventing the use of common targeted therapies or the combination of available therapeutic modalities would require a preclinical animal model of this tumor to acquire improved clinical responses. Patient-derived xenograft (PDX) models have been recognized as a potentially useful preclinical model for personalized precision medicine. However, whether the use of LUSC PDX models would be appropriate enough for clinical application is still controversial. Methods In the process of developing PDX models from Korean patients with LUSC, the authors investigated the factors influencing the successful initial engraftment of tumors in NOD scid gamma mice and the retainability of the pathological and genomic characteristics of the parental patient tumors in PDX tumors. Conclusions The authors have developed 62 LUSC PDX models that retained the pathological and genomic features of parental patient tumors, which could be used in preclinical and co-clinical studies. Trial registration Tumor samples were obtained from 139 patients with LUSC between November 2014 and January 2019. All the patients provided signed informed consents. This study was approved by the institutional review board (IRB) of Samsung Medical Center (2018-03-110)
Collapse
Affiliation(s)
- Hae-Yun Jung
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae Ho Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sumin Shin
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | - Jung Hee Kang
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Ae Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sanghyuk Lee
- Ewha Research Center for Systems Biology (ERCSB) and Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Jinseon Lee
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Yoon La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Corso S, Isella C, Bellomo SE, Apicella M, Durando S, Migliore C, Ughetto S, D'Errico L, Menegon S, Moya-Rull D, Cargnelutti M, Capelôa T, Conticelli D, Giordano J, Venesio T, Balsamo A, Marchiò C, Degiuli M, Reddavid R, Fumagalli U, De Pascale S, Sgroi G, Rausa E, Baiocchi GL, Molfino S, Pietrantonio F, Morano F, Siena S, Sartore-Bianchi A, Bencivenga M, Mengardo V, Rosati R, Marrelli D, Morgagni P, Rausei S, Pallabazzer G, De Simone M, Ribero D, Marsoni S, Sottile A, Medico E, Cassoni P, Sapino A, Pectasides E, Thorner AR, Nag A, Drinan SD, Wollison BM, Bass AJ, Giordano S. A Comprehensive PDX Gastric Cancer Collection Captures Cancer Cell-Intrinsic Transcriptional MSI Traits. Cancer Res 2019; 79:5884-5896. [PMID: 31585941 DOI: 10.1158/0008-5472.can-19-1166] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/05/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is the world's third leading cause of cancer mortality. In spite of significant therapeutic improvements, the clinical outcome for patients with advanced gastric cancer is poor; thus, the identification and validation of novel targets is extremely important from a clinical point of view. We generated a wide, multilevel platform of gastric cancer models, comprising 100 patient-derived xenografts (PDX), primary cell lines, and organoids. Samples were classified according to their histology, microsatellite stability, Epstein-Barr virus status, and molecular profile. This PDX platform is the widest in an academic institution, and it includes all the gastric cancer histologic and molecular types identified by The Cancer Genome Atlas. PDX histopathologic features were consistent with those of patients' primary tumors and were maintained throughout passages in mice. Factors modulating grafting rate were histology, TNM stage, copy number gain of tyrosine kinases/KRAS genes, and microsatellite stability status. PDX and PDX-derived cells/organoids demonstrated potential usefulness to study targeted therapy response. Finally, PDX transcriptomic analysis identified a cancer cell-intrinsic microsatellite instability (MSI) signature, which was efficiently exported to gastric cancer, allowing the identification, among microsatellite stable (MSS) patients, of a subset of MSI-like tumors with common molecular aspects and significant better prognosis. In conclusion, we generated a wide gastric cancer PDX platform, whose exploitation will help identify and validate novel "druggable" targets and optimize therapeutic strategies. Moreover, transcriptomic analysis of gastric cancer PDXs allowed the identification of a cancer cell-intrinsic MSI signature, recognizing a subset of MSS patients with MSI transcriptional traits, endowed with better prognosis. SIGNIFICANCE: This study reports a multilevel platform of gastric cancer PDXs and identifies a MSI gastric signature that could contribute to the advancement of precision medicine in gastric cancer.
Collapse
Affiliation(s)
- Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | | | | | | | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Stefano Ughetto
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Laura D'Errico
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Daniel Moya-Rull
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Tânia Capelôa
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniela Conticelli
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jessica Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | | | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Italy
| | | | | | | | | | - Giovanni Sgroi
- Surgical Oncology Unit, Surgical Science Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Emanuele Rausa
- Surgical Oncology Unit, Surgical Science Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Italy
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Bencivenga
- First Department of General Surgery, Borgo Trento Hospital, University of Verona, Verona, Italy
| | - Valentina Mengardo
- First Department of General Surgery, Borgo Trento Hospital, University of Verona, Verona, Italy
| | - Riccardo Rosati
- Gastroenterological Surgery Unit, IRCCS San Raffaele Hospital, Vita-Salute University, Milan, Italy
| | - Daniele Marrelli
- Department of Medicine, Surgery and Neurosciences, Unit of General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - Paolo Morgagni
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Stefano Rausei
- Department of Surgery, University of Insubria, Varese, Italy
| | | | | | - Dario Ribero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | | | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Italy
| | - Eirini Pectasides
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aaron R Thorner
- Center for Cancer Genome Discovery (CCGD) Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anwesha Nag
- Center for Cancer Genome Discovery (CCGD) Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Samantha D Drinan
- Center for Cancer Genome Discovery (CCGD) Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce M Wollison
- Center for Cancer Genome Discovery (CCGD) Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
16
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Jeon J, Cheong JH. Clinical Implementation of Precision Medicine in Gastric Cancer. J Gastric Cancer 2019; 19:235-253. [PMID: 31598369 PMCID: PMC6769368 DOI: 10.5230/jgc.2019.19.e25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.
Collapse
Affiliation(s)
- Jaewook Jeon
- Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Tischfield DJ, Ackerman D, Noji M, Chen JX, Johnson O, Perkons NR, Nadolski GJ, Hunt SJ, Soulen MC, Furth EE, Gade TP. Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies. Sci Rep 2019; 9:10546. [PMID: 31332214 PMCID: PMC6646301 DOI: 10.1038/s41598-019-47104-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
While patient-derived xenograft (PDX) models of hepatocellular carcinoma (HCC) have been successfully generated from resected tissues, no reliable methods have been reported for the generation of PDXs from patients who are not candidates for resection and represent the vast majority of patients with HCC. Here we compare two methods for the creation of PDXs from HCC biopsies and find that implantation of whole biopsy samples without the addition of basement membrane matrix favors the formation of PDX tumors that resemble Epstein-Barr virus (EBV)-driven B-cell lymphomas rather than HCC tumors. In contrast, implantation with Matrigel supports growth of HCC cells and leads to a high rate of HCC tumor formation from these biopsies. We validate the resulting PDXs, confirm their fidelity to the patients’ disease and conclude that minimally invasive percutaneous liver biopsies can be used with relatively high efficiency to generate PDXs of HCC.
Collapse
Affiliation(s)
- David J Tischfield
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Daniel Ackerman
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Michael Noji
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - James X Chen
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Omar Johnson
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Nicholas R Perkons
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Bioengineering, 210S 33rd St., Suite 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Gregory J Nadolski
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Stephen J Hunt
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Michael C Soulen
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Terence P Gade
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA. .,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts. Cells 2019; 8:cells8060585. [PMID: 31207870 PMCID: PMC6627523 DOI: 10.3390/cells8060585] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been recognized as being more suitable for predicting therapeutic efficacy than cell-culture models. However, there are several limitations in applying PDX models in preclinical studies, including their availability—especially for cancers such as gastric cancer—that are not frequently encountered in Western countries. In addition, the differences in morphology between primary, PDX, and tumor cell line-derived xenograft (CDX) models have not been well established. In this study, we aimed to establish a series of gastric cancer PDXs and cell-lines from a relatively large number of gastric cancer patients. We also investigated the clinicopathological factors associated with the establishment of PDX and CDX models, and compared the histology between the primary tumor, PDX, and CDX that originated from the same patient. We engrafted 232 gastric cancer tissues into immune-deficient mice subcutaneously and successfully established 35 gastric cancer PDX models (15.1% success rate). Differentiated type adenocarcinomas (DAs, 19.4%) were more effectively established than poorly differentiated type adenocarcinomas (PDAs, 10.8%). For establishing CDXs, the success rate was less influenced by histological differentiation grade (DA vs. PDA, 12.1% vs. 9.8%). In addition, concordance of histological differentiation grade between primary tumors and PDXs was significant (p < 0.01), while concordance between primary tumors and CDXs was not. Among clinicopathological factors investigated, pathological nodal metastasis status (pN) was significantly associated with the success rate of PDX establishment. Although establishing cell lines from ascites fluid was more efficient (41.2%, 7/17) than resected tissues, it should be noted that all CDXs from ascites fluid had the PDA phenotype. In conclusion, we established 35 PDX and 32 CDX models from 249 gastric cancer patients; among them, 21 PDX/CDX models were established from the same patients. Our findings may provide helpful insights for establishing PDX and CDX models not only from gastric but from other cancer types, as well as select preclinical models for developing new therapeutics.
Collapse
|
20
|
Evaluation of pyrrole-2,3-dicarboxylate derivatives: Synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|