1
|
Lv Z, Xu C, Wang Z, Liu Z, Jiao J. Excessive activation?induced cytidine deaminase accumulated by proteasome inhibitors rescues abnormal class switch in activated B?cell?like diffuse large B?cell lymphoma. Exp Ther Med 2025; 29:113. [PMID: 40242597 PMCID: PMC12000863 DOI: 10.3892/etm.2025.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 04/18/2025] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that plays a crucial role in mediating somatic hypermutation and class-switch recombination (CSR). It has been found to be associated with aberrant immunoglobulin CSR in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL). In the present study, MG132, a potent proteasome and calpain inhibitor, induced significant cell death in ABC-DLBCL cells and inhibited the growth of ABC-DLBCL cell xenograft tumors. The results also showed that MG132 induced AID accumulation by impairing proteasome degradation of AID. Excessive endogenous AID accumulation was observed in both AID-deficient and C57/BL6 wild-type mice treated with MG132, and apparent CSR of IgM to IgG1, IgG3 and IgE. Upon stimulation of cytokines such as LPS and/or IL-4, ABC-DLBCL cells also showed a noticeable increase in CSR of IgM to IgG1, IgG3 and IgE with decreased AID protein levels. The present study demonstrates that MG132 can induce AID accumulation, which in turn restores dysfunctional CSR in ABC-DLBCL. Using MG132 as a tool, the present study elucidates the anti-lymphoma effect of proteasome inhibitors on ABC-DLBCL by rescuing the abnormal AID-induced CSR.
Collapse
Affiliation(s)
- Zhuangwei Lv
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chen Xu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenzhen Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zixian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junna Jiao
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
2
|
Lv Z, Jiao J, Xue W, Shi X, Wang R, Wu J. Activation-induced cytidine deaminase in tertiary lymphoid structures: dual roles and implications in cancer prognosis. Front Oncol 2025; 15:1555491. [PMID: 40270606 PMCID: PMC12014437 DOI: 10.3389/fonc.2025.1555491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Activation-induced cytidine deaminase (AID) serves as a critical molecular orchestrator in the germinal center (GC) reaction within secondary lymphoid organs (SLOs), driving the production of high-affinity antibodies through somatic hypermutation. While its pathological implications are well-documented - including ectopic expression in non-B cell populations and transcriptional dysregulation linked to hematological malignancies and solid tumorigenesis - the cellular provenance of AID in solid tumors remains an unresolved paradox. This review advances two principal hypotheses: (1) AID may derive from tertiary lymphoid structures (TLSs), ectopic immune niches mirroring SLO organization, and (2) exhibits context-dependent transcriptional duality, capable of both potentiating and suppressing gene expression based on microenvironmental cues. Through systematic analysis of AID/GC involvement across cancer subtypes, we delineate mechanistic connections between lymphoid neogenesis and tumor progression. Our examination extends to TLS architecture, revealing three critical dimensions: (i) structural organization and cellular heterogeneity, (ii) developmental trajectories, and (iii) bidirectional interactions with tumor microenvironments. Crucially, we establish functional parallels between tumor-infiltrating B cells (TIL-Bs) in SLOs versus TLSs, while elucidating the differential roles of AID in canonical GC versus TLS-associated GC formation. This synthesis ultimately proposes that AID's functional dichotomy - acting as both oncogenic collaborator and tumor suppressor - underlies the paradoxical prognostic associations observed with TLS presence across malignancies. The review thereby provides a conceptual framework reconciling AID's dual functionality with the context-dependent immunobiology of tumor-associated lymphoid structures.
Collapse
Affiliation(s)
- Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Wuyang Xue
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyu Shi
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruihan Wang
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinhua Wu
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Caloian AD, Cristian M, Calin E, Pricop AR, Mociu SI, Seicaru L, Deacu S, Ciufu N, Suceveanu AI, Suceveanu AP, Mazilu L. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025; 13:853. [PMID: 40299416 PMCID: PMC12024808 DOI: 10.3390/biomedicines13040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
DLBCL is a testament to the complexity of nature. It is characterized by remarkable diversity in its molecular and pathological subtypes and clinical manifestations. Despite the strides made in DLBCL treatment and the introduction of innovative drugs, around one-third of patients face a relapse or develop refractory disease. Recent findings over the past ten years have highlighted the critical interplay between the evolution of DLBCL and various epigenetic mechanisms, including chromatin remodeling, DNA methylation, histone modifications, and the regulatory roles of non-coding RNAs. These epigenetic alterations are integral to the pathways of oncogenesis, tumor progression, and the development of therapeutic resistance. In the past decade, the identification of dysregulated epigenetic mechanisms in lymphomas has paved the way for an exciting field of epigenetic therapies. Crucially, these epigenetic transformations span beyond tumor cells to include the sophisticated network within the tumor microenvironment (TME). While the exploration of epigenetic dysregulation in lymphoma cells is thriving, the mechanisms affecting the functions of immune cells in the TME invite further investigation. This review is dedicated to weaving together the narrative of epigenetic alterations impacting both lymphoma cells with a focus on their infiltrating immune companions.
Collapse
Affiliation(s)
- Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Forensic Medicine, “Sf. Apostol Andrei” Emergency County Hospital, 900439 Constanta, Romania
| | - Elena Calin
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andreea-Raluca Pricop
- Department of Dermatology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Stelian-Ilie Mociu
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Liliana Seicaru
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Sorin Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Nicolae Ciufu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andra-Iulia Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Adrian-Paul Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Laura Mazilu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| |
Collapse
|
4
|
Jiao J, Shao K, Liu Z, Liu L, Nie Z, Wu J, Shi X, Wang R, Qian Z, Yang A, Lv Z. Epigenetic activation of JAG1 by AID contributes to metastasis of hepatocellular carcinoma. J Biol Chem 2025; 301:108078. [PMID: 39675704 PMCID: PMC11758938 DOI: 10.1016/j.jbc.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients. Moreover, we observed that depletion of either AID or JAG1 leads to a reduction in HCC metastasis. Secondly, we have identified AID acts as a transcriptional regulator that regulates JAG1 transcription by interacting with histone acetyltransferase 1 (HAT1) in metastatic HCC cells. Furthermore, our results demonstrate that any domains of AID can cooperate with HAT1 to enhance JAG1 transcription. Importantly, we have determined that the AID/HAT1 complex directly binds to specific regions within the JAG1 gene body, specifically -1.504 kb to -1.104 kb region, thereby influencing the epigenetic state of the JAG1 promoter through modulating histone methylation, histone acetylation, and DNA methylation. Furthermore, we have elucidated that the AID-JAG1/NOTCH-c-FOS axis plays a pivotal role in facilitating HCC metastasis. Consequently, the inhibitory effects of MG149 on both AID and JAG1 significantly mitigate the progression of HCC. This investigation uncovers a heretofore unappreciated function of AID as a transcriptional regulator in the metastasis of HCC, heralding a promising therapeutic approach.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kun Shao
- Department of Pathology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Zixian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lulu Liu
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziru Nie
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinhua Wu
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoyu Shi
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruihan Wang
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuang Qian
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China; Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|
6
|
Samareh Salavatipour M, Tavakoli S, Halimi A, Tavoosi S, Baghsheikhi AH, Talebi-Taheri A, Niloufari M, Salehi Z, Verdi J, Rahgozar S, Mosavi-Jarrahi A, Ahmadvand M. Ubiquitin-specific peptidases in lymphoma: a path to novel therapeutics. Front Pharmacol 2024; 15:1356634. [PMID: 39664521 PMCID: PMC11632177 DOI: 10.3389/fphar.2024.1356634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 12/13/2024] Open
Abstract
Background Ubiquitin-specific peptidases (USPs), also known as deubiquitinating enzymes (DUBs), play a crucial role in maintaining cellular homeostasis by selectively removing ubiquitin molecules from targeted proteins. This process affects protein stability, subcellular localization, and activity, thereby influencing processes such as DNA repair, cell cycle regulation, and apoptosis. Abnormal USP activities have been linked to various diseases, including cancer. Emerging evidence in lymphoma studies highlights the significance of USPs in controlling signaling pathways related to cancer initiation and progression and presents them as potential therapeutic targets. Aim This study aimed to elucidate the multifaceted roles of USPs in lymphoma. Methods This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published in English up to May 2023 were retrieved from PubMed, Web of Science, and Scopus. The inclusion criteria focused on studies investigating the role of USPs in lymphoma cancer, involving human subjects or relevant lymphoma cell lines, exploring molecular mechanisms and signaling pathways, and assessing diagnostic or prognostic value. Results After the selection process, 23 studies were selected for analysis. USPs were found to affect various aspects of lymphoma development and progression. Specific USPs were identified with roles in cell-cycle regulation, apoptosis modulation, drug resistance, DNA repair, and influence of key oncogenic pathways, such as B cell receptor (BCR) signaling. Conclusion This systematic review underscores the emerging role of USPs in lymphoma and their potential as therapeutic targets. Inhibitors of USPs, such as USP14 inhibitors, show promise in overcoming drug resistance. The dynamic interplay between USPs and lymphoma biology presents an exciting opportunity for future research and the development of more effective treatments for patients with lymphoma. Understanding the intricate functions of USPs in lymphoma offers new insights into potential therapeutic strategies, emphasizing the significance of these enzymes in the context of cancer biology.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Halimi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Tavoosi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Abdolkarim Talebi-Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Niloufari
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Wang N, Shi S, Li M, Yu X, Ma G. Development and validation of a combined cuproptosis and immunogenic cell death prognostic model for diffuse large B-cell lymphoma. Aging (Albany NY) 2024; 16:1218-1236. [PMID: 38284893 PMCID: PMC10866411 DOI: 10.18632/aging.205399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide with a high degree of heterogeneity. Cuproptosis and immunogenic cell death (ICD) have been considered to be vital for tumor progression. However, current understanding of cuproptosis and immunogenic cell death in DLBCL is still very limited. We aim to explore a prognostic model combining cuproptosis and immunogenic cell death in DLBCL. METHODS Pearson's correlation analysis was utilized to acquire lncRNAs associated with cuproptosis and immunogenic cell death. Prognostic biomarker identification and model construction involved the use of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox regression. We assessed the predictive capability of the risk model by conducting Kaplan-Meier analysis and time-dependent ROC analysis. The analysis and comparison of immune infiltration and drug sensitivity were conducted in this study. Moreover, RT-qPCR was employed to validate the expression of lncRNAs associated with cuproptosis and immunogenic cell death in DLBCL cell lines. RESULTS We identified 4 prognosis-related lncRNAs (ANKRD10-IT1, HOXB-AS1, LINC00520 and LINC01165) that were correlated with cuproptosis and immunogenic cell death. The model was verified to have a good and independent predictive ability in the prognostic prediction of DLBCL patients. Moreover, significant difference was observed in immune infiltration and drug sensitivity between high- and low-risk groups. CONCLUSION Our discoveries could enhance the comprehension of the role of cuproptosis and ICD in DLBCL, potentially offering novel viewpoints and knowledge for personalized and precise treatment of DLBCL individuals.
Collapse
Affiliation(s)
- Nana Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shanshan Shi
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Moran Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoning Yu
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guangxin Ma
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Shao D, Liu C, Wang Y, Lin J, Cheng X, Han P, Li Z, Jian D, Nie J, Jiang M, Wei Y, Xing J, Guo Z, Wang W, Yi X, Tang H. DNMT1 determines osteosarcoma cell resistance to apoptosis by associatively modulating DNA and mRNA cytosine-5 methylation. FASEB J 2023; 37:e23284. [PMID: 37905981 DOI: 10.1096/fj.202301306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Cellular apoptosis is a central mechanism leveraged by chemotherapy to treat human cancers. 5-Methylcytosine (m5C) modifications installed on both DNA and mRNA are documented to regulate apoptosis independently. However, the interplay or crosstalk between them in cellular apoptosis has not yet been explored. Here, we reported that promoter methylation by DNMT1 coordinated with mRNA methylation by NSun2 to regulate osteosarcoma cell apoptosis. DNMT1 was induced during osteosarcoma cell apoptosis triggered by chemotherapeutic drugs, whereas NSun2 expression was suppressed. DNMT1 was found to repress NSun2 expression by methylating the NSun2 promoter. Moreover, DNMT1 and NSun2 regulate the anti-apoptotic genes AXL, NOTCH2, and YAP1 through DNA and mRNA methylation, respectively. Upon exposure to cisplatin or doxorubicin, DNMT1 elevation drastically reduced the expression of these anti-apoptotic genes via enhanced promoter methylation coupled with NSun2 ablation-mediated attenuation of mRNA methylation, thus rendering osteosarcoma cells to apoptosis. Collectively, our findings establish crosstalk of importance between DNA and RNA cytosine methylations in determining osteosarcoma resistance to apoptosis during chemotherapy, shedding new light on future treatment of osteosarcoma, and adding additional layers to the control of gene expression at different epigenetic levels.
Collapse
Affiliation(s)
- Dongxing Shao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Cihang Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Lin
- Department of Laboratory Medicine, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Pei Han
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Dongdong Jian
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junwei Nie
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | | | - Yuanzhi Wei
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Jiao J, Lv Z, Wang Y, Fan L, Yang A. The off-target effects of AID in carcinogenesis. Front Immunol 2023; 14:1221528. [PMID: 37600817 PMCID: PMC10436223 DOI: 10.3389/fimmu.2023.1221528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yurong Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liye Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
13
|
Jiang Y, Jin X, Chi Z, Bai Y, Manthiram K, Mudd P, Zhu K, Wang L, Schwartzberg PL, Han Y, Gao X, Lu L, Xu Q. Protein phosphatase 2A propels follicular T helper cell development in lupus. J Autoimmun 2023; 136:103028. [PMID: 37001432 PMCID: PMC10327577 DOI: 10.1016/j.jaut.2023.103028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Follicular helper T (Tfh) cells are important for generating humoral immune responses by helping B cells form germinal centers (GCs) and the production of high-affinity antibodies. However, aberrant Tfh cell expansion also contributes to the generation of self-reactive autoantibodies and promotes autoantibody-mediated autoimmune diseases such as systemic lupus erythematosus (SLE). Protein phosphatase 2A catalytic subunit alpha isoform (PP2A Cα) expression levels are elevated in peripheral T cells of SLE patients and positively correlate with autoantibody titers and disease activity. Here, we demonstrate a critical role of PP2A in Tfh differentiation by using T cell restricted PP2A Cα deficient mice. We observed impaired Tfh differentiation and GC response in two different classical Tfh induction models. Mechanistic studies revealed that downregulation of protein translation of the Tfh lineage transcription factor BCL6 in PP2A deficient T cells. Importantly, we found that PP2A deficiency by either gene knockout or chemical inhibition alleviated lupus severity in mice. Lastly, we confirmed a positive correlation between PP2A Cα and BCL6 protein levels in human CD4+ T cells from patients with SLE. In summary, our study revealed a critical role of PP2A in regulating Tfh cells and suggests it is a potential therapeutic target for lupus.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xuexiao Jin
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Zhexu Chi
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yadan Bai
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA; Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kaixiang Zhu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Lie Wang
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yongmei Han
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of the Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, 210061, PR China
| | - Linrong Lu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| | - Qin Xu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
14
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
15
|
Synthesis and Biological Evaluation of PEGylated MWO 4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217143. [PMID: 36363970 PMCID: PMC9654119 DOI: 10.3390/molecules27217143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
Sonodynamic therapy (SDT) triggered by ultrasound (US) has attracted increasing attention owing to its ability to overcome critical limitations, including low tissue-penetration depth and phototoxicity in photodynamic therapy (PDT). Biogenic metal oxide nanoparticles (NPs) have been used as anti-cancer drugs due to their biocompatibility properties with most biological systems. Here, sonosensitizer MWO4-PEG NPs (M = Fe Mn Co Ni) were synthesized as inhibitors to activation-induced cytidine deaminase (AID), thus neutralizing the extensive carcinogenesis of AID in diffuse large B-cell lymphoma (DLBCL). The physiological properties of these nanomaterials were examined using transmission electron microscopy (TEM). The inhibition of NPs to AID was primarily identified by the affinity interaction prediction between reactive oxygen species (ROS) and AID through molecular dynamics and molecular docking technology. The cell apoptosis and ROS generation in US-triggered NPs treated DLBCL cells (with high levels of AID) were also detected to indicate the sonosensitivity and toxicity of MWO4-PEG NPs to DLBCL cells. The anti-lymphoma studies using DLBCL and AID-deficient DLBCL cell lines indicated a concentration-dependent profile. The synthesized MWO4-PEG NPs in this study manifested good sonodynamic inhibitory effects to AID and well treatment for AID-positive hematopoietic cancers.
Collapse
|
16
|
Expression and Clinical Significance of HER2 Gene and DNMT1 in Non-Small-Cell Lung Cancer. DISEASE MARKERS 2022; 2022:8426384. [PMID: 35996715 PMCID: PMC9392629 DOI: 10.1155/2022/8426384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Objective To explore the expression and clinical significance of HER2 and DNMT1 in non-small-cell lung cancer. Methods The patients with non-small-cell lung cancer treated in the First Affiliated Hospital of Jiamusi University between 2018 and 2020 were enrolled in this study. The serum DNMT1 concentration and the expression of HER2 protein in lung cancer and adjacent tissues of the two groups were analyzed. Results The DNMT1 protein concentration was significantly correlated with gender, age, and smoking history of patients. HER2-positive expression was significantly related to tumor type, tumor size, tumor differentiation degree, and lymph node metastasis. However, HER2 levels were not related to the gender and smoking history of patients. Conclusion High expression of DNMT1 protein in serum may increase the risk of non-small-cell lung cancer and may play an important role in the early development of lung cancer. HER2-positive expression may promote the development of advanced and metastatic non-small-cell lung cancer.
Collapse
|
17
|
Yan Z, Ao X, Liang X, Chen Z, Liu Y, Wang P, Wang D, Liu Z, Liu X, Zhu J, Zhou S, Zhou P, Gu Y. Transcriptional inhibition of miR-486-3p by BCL6 upregulates Snail and induces epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis. Respir Res 2022; 23:104. [PMID: 35484551 PMCID: PMC9052631 DOI: 10.1186/s12931-022-02024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT. Methods The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR. Western blot was used to detect the changes of cellular epithelial marker protein E-cadherin, mesenchymal marker N-cadherin, Vimentin and other proteins. The target gene of miR-486-3p was predicted by bioinformatics method and the binding site was verified by dual luciferase reporter system. In vivo experiments, adeno-associated virus (AAV) was used to carry miR-486-3p mimic to lung. Radiation-induced pulmonary fibrosis (RIPF) model was constructed by 25Gy60Co γ-rays. The structural changes of mouse lung were observed by HE and Masson staining. The expression of relevant proteins in mice was detected by immunohistochemistry. Results IR could decrease the miR-486-3p levels in vitro and in vivo, and that effect was closely correlated to the occurrence of RIPF. The expression of Snail, which induces EMT, was shown to be restrained by miR-486-3p. Therefore, knockdown of Snail blocked the EMT process induced by radiation or knockdown of miR-486-3p. In addition, the molecular mechanism underlying the IR-induced miRNA level reduction was explored. The increased in BCL6 could inhibit the formation of pri-miR-486-3p, thereby reducing the levels of miR-486-3p in the alveolar epithelial cells, which would otherwise promote EMT and contribute to RIPF by targeting Snail. Conclusion IR can exacerbate RIPF in mice by activating the transcription factor BCL6, which inhibits the transcription of miR-486-3p and decreases its content, which in turn increases the content of the target gene slug and triggers EMT.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xingkun Ao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xinxin Liang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongmin Chen
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ping Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Duo Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zheng Liu
- School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shenghui Zhou
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China. .,Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
18
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
19
|
Liu ZH, Zhang L, Jing FJ, Xiao SX, Gao Y, Bian HY, Zhao X. Genetic Polymorphisms in NLRP3 Inflammasome-Associated Genes in Patients with B-Cell Non-Hodgkin's Lymphoma. J Inflamm Res 2021; 14:5687-5697. [PMID: 34754215 PMCID: PMC8570379 DOI: 10.2147/jir.s329090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose The role of NLRP3 inflammasome in the progression of many diseases has been increasingly recognized. However, the function of this molecular assembly in the development and progression of B-cell non-Hodgkin's lymphoma remains unclear. Patients and Methods In this study, we investigated the polymorphisms in the NLRP3 inflammasome associated genes in 281 patients with B-cell non-Hodgkin's lymphoma and 385 age- and gender-matched healthy controls. Results We found that IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) contributed to susceptibility to B-cell non-Hodgkin's lymphoma. Specifically, the allele "G" in IL-18 (rs1946518) and allele "ins" in NFκB-94 ins/del (rs28362491) were significantly associated with the risk of disease. The AA genotype of CARD8 (rs2043211) and the higher level of serum lactate dehydrogenase (LDH) led to statistically poorer B-cell non-Hodgkin's lymphoma survival. Less frequent genotype TT of CARD8 (rs2043211) was observed in patients with higher LDH level, clinical stages III-IV of disease, and IPI 3-5, although the relationship did not reach statistical significance. However, IPI is an independent prognostic factor for B-cell non-Hodgkin's lymphoma. Conclusion IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) gene polymorphisms appear to be the factors influencing the risk of B-cell non-Hodgkin's lymphoma. CARD8 (rs2043211) polymorphisms are important factors for the survival of patients with this disease.
Collapse
Affiliation(s)
- Zhi-He Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Fan-Jing Jing
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Shu-Xin Xiao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Hai-Yan Bian
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Xia Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
20
|
APOBECs orchestrate genomic and epigenomic editing across health and disease. Trends Genet 2021; 37:1028-1043. [PMID: 34353635 DOI: 10.1016/j.tig.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
APOBEC proteins can deaminate cytosine residues in DNA and RNA. This can lead to somatic mutations, DNA breaks, RNA modifications, or DNA demethylation in a selective manner. APOBECs function in various cellular compartments and recognize different nucleic acid motifs and structures. They orchestrate a wide array of genomic and epigenomic modifications, thereby affecting various cellular functions positively or negatively, including immune editing, viral and retroelement restriction, DNA damage responses, DNA demethylation, gene expression, and tissue homeostasis. Furthermore, the cumulative increase in genomic and epigenomic editing with aging could also, at least in part, be attributed to APOBEC function. We synthesize our cumulative understanding of APOBEC activity in a unifying overview and discuss their genomic and epigenomic impact in physiological, pathological, and technological contexts.
Collapse
|
21
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
22
|
A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother 2021; 138:111355. [DOI: 10.1016/j.biopha.2021.111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
|
23
|
A Hyper-IgM Syndrome Mutation in Activation-Induced Cytidine Deaminase Disrupts G-Quadruplex Binding and Genome-wide Chromatin Localization. Immunity 2020; 53:952-970.e11. [PMID: 33098766 DOI: 10.1016/j.immuni.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.
Collapse
|
24
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|