1
|
Berkel C, Keskin A, Cacan E. Chemo-sensitive and chemo-resistant ovarian cancer cells show differences in cellular processes leading to pyroptotic cell death. Pathol Res Pract 2025; 269:155911. [PMID: 40112594 DOI: 10.1016/j.prp.2025.155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Tumor immunology in ovarian cancer is not completely understood. Chemoresistance limits the success of available treatment options for patients with ovarian cancer. Pyroptosis, pro-inflammatory programmed cell death characterized by membrane pore formation by gasdermin proteins, is important for both immunogenicity and drug resistance. Here, we showed that estrogen increases GSDMC and GSDMD mRNA levels in chemo-sensitive ovarian cancer cells; but, not in chemo-resistant ovarian cancer cells in vitro. GSDMC or GSDMD overexpression increases cell viability in chemo-sensitive ovarian cancer cells; but, not in chemo-resistant ovarian cancer cells. Silencing of GSDMD in chemo-sensitive ovarian cancer cells and silencing of GSDMC in chemo-resistant ovarian cancer cells limit the effect of nigericin, a pyroptosis inducer, on cell viability. Inhibition of caspase-1, -4, -6 or -8 blocks nigericin-induced cell death (pyroptosis) in chemo-sensitive ovarian cancer cells; however, only the inhibition of caspase-1 blocks nigericin-induced cell death in chemo-resistant ovarian cancer cells, showing that caspases participating in pyroptosis might differ between ovarian cancer cells based on their chemo-sensitivity profiles. Treatment with disulfiram, a GSDMD pore formation inhibitor, decreases cell viability in both cell lines. Lastly, we found that in chemo-resistant ovarian cancer cell line, disulfiram and nigericin combination treatment decreases cell viability even more compared to only disulfiram or only nigericin treatment. Combined, our study points that ovarian cancer cells with different chemosensitivity profiles might have certain differences in pyroptotic cell death.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey.
| | - Aysun Keskin
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey
| | - Ercan Cacan
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey.
| |
Collapse
|
2
|
Bao X, Chen Y, Chang J, Du J, Yang C, Wu Y, Sha Y, Li M, Chen S, Yang M, Liu SB. Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia. BMC Cancer 2025; 25:273. [PMID: 39955536 PMCID: PMC11830216 DOI: 10.1186/s12885-025-13658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-related molecular markers can provide a basis for prognosis prediction and targeted drug design in AML patients. METHODS A total of 1394 genes representing 13 different PCD pathways were examined in AML patients and healthy donors. The upregulated genes were analyzed for their ability to predict overall survival (OS) individually, and these prognostic genes were subsequently combined to construct a PCD-related prognostic signature via an integrated approach consisting of 101 models based on ten machine learning algorithms. RNA transcriptome and clinical data from multiple AML cohorts (TCGA-AML, GSE106291, GSE146173 and Beat AML) were obtained to develop and validate the AML prognostic model. RESULTS A total of 214 upregulated PCD-related genes were identified in AML patients, 39 of which were proven to be prognostic genes in the training cohort. On the basis of the average C-index and number of model genes identified from the machine learning combinations, a PCD index was developed and validated for predicting AML OS. A prognostic nomogram was then generated and validated on the basis of the PCD index, age and ELN risk stratification in the Beat AML cohort and the GSE146173 cohort, revealing satisfactory predictive power (AUC values ≥ 0.7). With different mutation patterns, a higher PCD index was associated with a worse OS. The PCD index was significantly related to higher scores for immunosuppressive cells and mature leukemia cell subtypes. As the gene most closely related to the PCD index, the expression of SMAD3 was further validated in vitro. AML cells harboring KMT2A rearrangements were more sensitive to the SMAD3 inhibitor SIS3, and the expression of the autophagy-related molecular marker LC3 was increased in KMT2A-rearranged cell lines after SIS3 monotherapy and combined treatment. CONCLUSION The PCD index and SMAD3 gene expression levels have potential prognostic value and can be used in targeted therapy for AML, and these findings can lead to the development of effective strategies for the combined treatment of high-risk AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Jie Chang
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Chen Yang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Ming Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Minfeng Yang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226019, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
3
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
4
|
Chen XY, Liu Y, Zhu WB, Li SH, Wei S, Cai J, Lin Y, Liang JK, Yan GM, Guo L, Hu C. Arming oncolytic M1 virus with gasdermin E enhances antitumor efficacy in breast cancer. iScience 2024; 27:111148. [PMID: 39555415 PMCID: PMC11565026 DOI: 10.1016/j.isci.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Pyroptosis, driven by the N-terminal domain of gasdermin proteins (GSDM), promotes antitumor immunity by attracting lymphocytes to the tumor microenvironment (TME). However, current pyroptosis-inducing therapies like drug injections and phototherapy are limited to localized treatments, making them unsuitable for widespread or microscopic metastatic lesions. This study engineered oncolytic M1 viruses (rM1-mGSDME_FL and rM1-mGSDME_NT) to selectively deliver GSDME to tumor cells. These modified viruses enhanced tumor cell death in breast cancer models, suppressed tumor growth, extended survival in mice, and boosted immune cell infiltration, demonstrating significant anticancer potential through pyroptosis induction.
Collapse
Affiliation(s)
- Xiao-yu Chen
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Wen-bo Zhu
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Shu-hao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Song Wei
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Jing Cai
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Yuan Lin
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Elderly Chronic Diseases, Ministry of Education, Guangzhou, China
| | - Jian-kai Liang
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Guang-mei Yan
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Guo
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| |
Collapse
|
5
|
Bhatt DK, Daemen T. Molecular Circuits of Immune Sensing and Response to Oncolytic Virotherapy. Int J Mol Sci 2024; 25:4691. [PMID: 38731910 PMCID: PMC11083234 DOI: 10.3390/ijms25094691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.
Collapse
Affiliation(s)
- Darshak K. Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
7
|
Lin J, Sun S, Zhao K, Gao F, Wang R, Li Q, Zhou Y, Zhang J, Li Y, Wang X, Du L, Wang S, Li Z, Lu H, Lan Y, Song D, Guo W, Chen Y, Gao F, Zhao Y, Fan R, Guan J, He W. Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun 2023; 14:224. [PMID: 36641456 PMCID: PMC9840172 DOI: 10.1038/s41467-023-35917-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The advantage of oncolytic viruses (OV) in cancer therapy is their dual effect of directly killing tumours while prompting anti-tumour immune response. Oncolytic parapoxvirus ovis (ORFV) and other OVs are thought to induce apoptosis, but apoptosis, being the immunogenically inert compared to other types of cell death, does not explain the highly inflamed microenvironment in OV-challenged tumors. Here we show that ORFV and its recombinant therapeutic derivatives are able to trigger tumor cell pyroptosis via Gasdermin E (GSDME). This effect is especially prominent in GSDME-low tumor cells, in which ORFV-challenge pre-stabilizes GSDME by decreasing its ubiquitination and subsequently initiates pyroptosis. Consistently, GSDME depletion reduces the proportion of intratumoral cytotoxic T lymphocytes, pyroptotic cell death and the success of tumor ORFV virotherapy. In vivo, the OV preferentially accumulates in the tumour upon systemic delivery and elicits pyroptotic tumor killing. Consequentially, ORFV sensitizes immunologically 'cold' tumors to checkpoint blockade. This study thus highlights the critical role of GSDME-mediated pyroptosis in oncolytic ORFV-based antitumor immunity and identifies combinatorial cancer therapy strategies.
Collapse
Affiliation(s)
- Jing Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Shihui Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, 130062, Changchun, China
| | - Renling Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Qi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yanlong Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yue Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Xinyue Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Le Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Wei Guo
- Department of Hematology, The first hospital of Jilin University, 130021, Changchun, China
| | - Yujia Chen
- Department of Gastrointestinal Surgery, The first hospital of Jilin University, 130021, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, 130017, Changchun, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062, Changchun, China.
| |
Collapse
|
8
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
9
|
Hu H, Xia Q, Hu J, Wang S. Oncolytic Viruses for the Treatment of Bladder Cancer: Advances, Challenges, and Prospects. J Clin Med 2022; 11:jcm11236997. [PMID: 36498574 PMCID: PMC9738443 DOI: 10.3390/jcm11236997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer is one of the most prevalent cancers. Despite recent advancements in bladder cancer therapy, new strategies are still required for improving patient outcomes, particularly for those who experienced Bacille Calmette-Guerin failure and those with locally advanced or metastatic bladder cancer. Oncolytic viruses are either naturally occurring or purposefully engineered viruses that have the ability to selectively infect and lyse tumor cells while avoiding harming healthy cells. In light of this, oncolytic viruses serve as a novel and promising immunotherapeutic strategy for bladder cancer. A wide diversity of viruses, including adenoviruses, herpes simplex virus, coxsackievirus, Newcastle disease virus, vesicular stomatitis virus, alphavirus, and vaccinia virus, have been studied in many preclinical and clinical studies for their potential as oncolytic agents for bladder cancer. This review aims to provide an overview of the advances in oncolytic viruses for the treatment of bladder cancer and highlights the challenges and research directions for the future.
Collapse
Affiliation(s)
| | | | - Jia Hu
- Correspondence: (J.H.); (S.W.)
| | | |
Collapse
|
10
|
Alphaviruses in Immunotherapy and Anticancer Therapy. Biomedicines 2022; 10:biomedicines10092263. [PMID: 36140364 PMCID: PMC9496634 DOI: 10.3390/biomedicines10092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses have been engineered as expression vectors for vaccine development and gene therapy. Due to the feature of RNA self-replication, alphaviruses can provide exceptional direct cytoplasmic expression of transgenes based on the delivery of recombinant particles, naked or nanoparticle-encapsulated RNA or plasmid-based DNA replicons. Alphavirus vectors have been utilized for the expression of various antigens targeting different types of cancers, and cytotoxic and antitumor genes. The most common alphavirus vectors are based on the Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, but the oncolytic M1 alphavirus has also been used. Delivery of immunostimulatory cytokine genes has been the basis for immunotherapy demonstrating efficacy in different animal tumor models for brain, breast, cervical, colon, lung, ovarian, pancreatic, prostate and skin cancers. Typically, therapeutic effects including tumor regression, tumor eradication and complete cure as well as protection against tumor challenges have been observed. Alphavirus vectors have also been subjected to clinical evaluations. For example, therapeutic responses in all cervical cancer patients treated with an alphavirus vector expressing the human papilloma virus E6 and E7 envelope proteins have been achieved.
Collapse
|
11
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol 2022; 11:761015. [PMID: 35004284 PMCID: PMC8728693 DOI: 10.3389/fonc.2021.761015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The global rate of cancer has increased in recent years, and cancer is still a threat to human health. Recent developments in cancer treatment have yielded the understanding that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a promising approach in the treatment of malignant tumors. OVs can achieve their targeted treatment effects through selective cell death and induction of specific antitumor immunity. Targeting tumors and the mechanism for killing cancer cells are among the critical roles of OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the mechanisms of their effects on cancer cells.
Collapse
Affiliation(s)
- Wesam Kooti
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|