1
|
Wang Y, Zhang W, Peng M. E2F1-Dependent CDCA5 overexpression drives cervical cancer progression and correlates with poor prognosis. J Mol Histol 2025; 56:80. [PMID: 39907709 DOI: 10.1007/s10735-025-10356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Cervical cancer (CC) remains a leading cause of cancer-related mortality in women worldwide, highlighting the urgent need for novel therapeutic strategies. This study investigates the molecular mechanisms and clinical significance of Cell Division Cycle Associated 5 (CDCA5) in cervical cancer progression. We performed comprehensive analyses of CDCA5 expression in cervical cancer and normal tissues, correlating expression levels with clinicopathological features and patient outcomes. Functional studies using CC cell lines (SiHa, HeLa, and CaSki) examined the effects of CDCA5 manipulation on tumor cell behavior. We identified E2F1 as a key transcriptional regulator of CDCA5 and validated our findings using in vivo xenograft models. CDCA5 was significantly upregulated in CC tissues and correlated with advanced disease stages and poor survival outcomes. Mechanistically, CDCA5 depletion in SiHa and HeLa cells suppressed proliferation, migration, and invasion, while its overexpression in CaSki cells enhanced these malignant properties. We identified E2F1 as a transcriptional activator of CDCA5. Importantly, CDCA5 knockdown significantly inhibited tumor growth in nude mouse models. Our findings establish CDCA5 as a critical E2F1-regulated oncogenic factor in cervical cancer progression. The strong correlation between CDCA5 expression and poor clinical outcomes suggests its potential as both a prognostic biomarker and therapeutic target in cervical cancer treatment.
Collapse
Affiliation(s)
- Youhui Wang
- Tumor Radiotherapy and Chemotherapy Center, Ningbo University Affiliated People's Hospital, No. 251, Baizhang East Road, Ningbo, 315040, Zhejiang, China.
| | - Wuguang Zhang
- Tumor Radiotherapy and Chemotherapy Center, Ningbo University Affiliated People's Hospital, No. 251, Baizhang East Road, Ningbo, 315040, Zhejiang, China
| | - Min Peng
- Tumor Radiotherapy and Chemotherapy Center, Ningbo University Affiliated People's Hospital, No. 251, Baizhang East Road, Ningbo, 315040, Zhejiang, China
| |
Collapse
|
2
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Koh YW, Hwang Y, Lee SK, Han JH, Haam S, Lee HW. The impact of CDCA5 expression on the immune microenvironment and its potential utility as a biomarker for PD-L1/PD-1 inhibitors in lung adenocarcinoma. Transl Oncol 2024; 46:102024. [PMID: 38838437 PMCID: PMC11214526 DOI: 10.1016/j.tranon.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Studies have highlighted the important role of cell division cycle associated 5 (CDCA5) in tumor-associated immune dysfunction. We studied immune dysfunction based on CDCA5 expression in lung adenocarcinoma and investigated its potential as a biomarker for patients undergoing anti-programmed death protein-1/ programmed death ligand-1 (PD-1/PD-L1) inhibitor therapy. METHODS We used the CIBERSORTx algorithm to investigate the immune cell distribution based on CDCA5 and explored its potential as a biomarker for PD-1/PD-L1 therapy using Tumor Immune Dysfunction and Exclusion in three lung adenocarcinoma datasets. Thus, we validated the role of CDCA5 as a biomarker in patients treated with PD-1/PD-L1 inhibitors. We also investigated the pathways through which CDCA5 regulates PD-L1 expression in a cell line. RESULTS The high CDCA5 expression group showed elevated interferon gamma signature, CD274 expression, CD8+ T cell levels, tumor mutation burden, and microsatellite instability. Higher CDCA5 expression was associated with poorer prognosis in patients not treated with PD-1/PD-L1 inhibitors. However, in patients treated with PD-1/PD-L1 inhibitors, higher CDCA5 expression correlated with better response rates and prognosis. CDCA5 expression positively correlated with inhibitory immune checkpoint molecules. CDCA5 regulated the expression of PD-L1 through the ANXA/AKT pathway, and combined suppression of CDCA5 and PD-L1 synergistically inhibited cell proliferation. CONCLUSIONS CDCA5 served as a promising biomarker for patients undergoing PD-L1/PD-1 inhibitor treatment, and co-inhibition of CDCA5 and PD-L1 could serve as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea.
| | - Yoonjung Hwang
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seul-Ki Lee
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| |
Collapse
|
4
|
Li Y, Wu Z, Ding T, Zhang W, Guo H, Huang F. Comprehensive bioinformatics analysis and cell line experiments revealed the important role of CDCA3 in sarcoma. Heliyon 2024; 10:e32785. [PMID: 39035484 PMCID: PMC11259814 DOI: 10.1016/j.heliyon.2024.e32785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background Sarcoma mainly originate from bone and soft tissue and are highly aggressive malignant tumors. Cell division cycle-related protein 3 (CDCA3) is a protein involved in the regulation of the cell cycle, which is highly expressed in a variety of malignant tumors. However, its role in sarcoma remains unclear. This study aims to investigate the function and potential mechanism of CDCA3 in sarcoma and to elucidate its importance in sarcoma. Methods We first studied the expression and prognosis of CDCA family members in sarcoma by Oncomine and the Gene Expression Profiling Interactive Analysis (GEPIA). The role of CDCA3 protein in sarcoma was further analyzed by the Cancer Genome Atlas Program (TCGA), the Cancer Cell Lineage Encyclopedia (CCLE), and Linke-dOmics. In addition, immunohistochemistry and Western blot were used to verify the expression of CDCA3 protein in clinical samples as well as sarcoma cell lines (U2OS, SAOS2, MG63, and HOS). Subsequently, in vitro experiments (cloning and scratching experiments) were performed using sh-NC as well as sh-CDCA3 group cells to reveal the biological functions of CDCA3. Results We found that the CDCA family (CDCA3, CDCA4, and CDCA8) is highly expressed in sarcoma, and the expression level of CDCA3, CDCA4, and CDCA8 negatively correlates with the prognosis of sarcoma patients. CDCA3 mRNA was highly expressed in pan-cancer by CCLE and TCGA database analysis. KEGG analysis showed that CDCA3 was mainly enriched in the cell cycle signaling pathway (It promoted the transition of the cell cycle from the G0/G1 phase to the S phase). In the level of immune infiltration, CDCA3 was negatively correlated with pDC cells, CD8+T cells, and cytotoxic cells. Finally, patients with high CDCA3 expression in sarcoma were analyzed for resistance to NU7441 and others, while sensitive to Fulvestrant and Dihydrorotenone. Furthermore, we demonstrated high expression of CDCA3 protein in sarcoma tissues and cell lines by immunohistochemistry and Western blot experiments. Cloning, EDU, scratching, and migration experiments showed that the knockdown of CDCA3 inhibited the Proliferation and progression of sarcoma cells. Conclusion These results suggest for the first time that knockdown of CDCA3 may inhibit sarcoma progression. CDCA3 may be an effective target for the treatment of sarcoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhiwei Wu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tao Ding
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wenbiao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Fei Huang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
5
|
Yu K, Tian Q, Feng S, Zhang Y, Cheng Z, Li M, Zhu H, He J, Li M, Xiong X. Integration analysis of cell division cycle-associated family genes revealed potential mechanisms of gliomagenesis and constructed an artificial intelligence-driven prognostic signature. Cell Signal 2024; 119:111168. [PMID: 38599441 DOI: 10.1016/j.cellsig.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cell division cycle-associated (CDCA) gene family members are essential cell proliferation regulators and play critical roles in various cancers. However, the function of the CDCA family genes in gliomas remains unclear. This study aims to elucidate the role of CDCA family members in gliomas using in vitro and in vivo experiments and bioinformatic analyses. We included eight glioma cohorts in this study. An unsupervised clustering algorithm was used to identify novel CDCA gene family clusters. Then, we utilized multi-omics data to elucidate the prognostic disparities, biological functionalities, genomic alterations, and immune microenvironment among glioma patients. Subsequently, the scRNA-seq analysis and spatial transcriptomic sequencing analysis were carried out to explore the expression distribution of CDCA2 in glioma samples. In vivo and in vitro experiments were used to investigate the effects of CDCA2 on the viability, migration, and invasion of glioma cells. Finally, based on ten machine-learning algorithms, we constructed an artificial intelligence-driven CDCA gene family signature called the machine learning-based CDCA gene family score (MLCS). Our results suggested that patients with the higher expression levels of CDCA family genes had a worse prognosis, more activated RAS signaling pathways, and more activated immunosuppressive microenvironments. CDCA2 knockdown inhibited the proliferation, migration, and invasion of glioma cells. In addition, the MLCS had robust and favorable prognostic predictive ability and could predict the response to immunotherapy and chemotherapy drug sensitivity.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ziqi Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianying He
- Department of Orthopedics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
6
|
Zhang Q, Zhang R, Li Y, Yang X. CDCA5 promoted cell invasion and migration by activating TGF-β1 pathway in human ovarian cancer cells. J Ovarian Res 2024; 17:68. [PMID: 38539247 PMCID: PMC10967103 DOI: 10.1186/s13048-024-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The gene cell division cycle associated 5 (CDCA5), also called sororin, has oncogenic characteristics and is upregulated in various carcinomas. Nevertheless, the involvement of CDCA5 in ovarian cancer (OC), a highly aggressive form of cancer, and the underlying mechanism of metastasis remain inadequately investigated. RESULTS The bioinformatics data revealed a negative correlation between the patient's survival and CDCA5 expression, which was overexpressed in OC. Functional assays also confirmed high expression levels of CDCA5 in OC tissues and cells. This suggests that CDCA5 may potentially enhance the motility, migration, and proliferation of OC cells invitro. It impedes DNA damage and apoptosis in OC cells, inhibiting xenograft development in nude mice. The RNA sequencing results suggest CDCA5 is majorly associated with biological functions related to the extracellular matrix (ECM) and influences the transforming growth factor (TGF) signaling pathway. Moreover, subsequent functional investigations elucidated that CDCA5 facilitated the migration and invasion of OC cells viathe TGF-β1/Smad2/3 signaling pathway activation. CONCLUSIONS CDCA5 may be a strong potential therapeutic target for the treatment and management of OC.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Rong Zhang
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Yuzhi Li
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Li W, Wang Z. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochem Biophys 2024; 82:77-90. [PMID: 37847340 PMCID: PMC10866789 DOI: 10.1007/s12013-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/30/2023] [Indexed: 10/18/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor in men, when the disease progresses to the advanced stage, most patients will develop distant metastasis and develop into castration-resistant prostate cancer (CRPC), resulting in increased mortality. Ubiquitination is a widespread protein post-translational modification process in the biological world, and it plays an important role in the development and transfer of PCa. E3 ubiquitin ligase plays an important role in the specific selection and role of substrates in the process of ubiquitination ligase. This review will briefly introduce the ubiquitination process and E3 ubiquitin ligase, focus on the recently discovered multiple mechanisms by which ubiquitination affects PCa development and metastasis, and a summary of the current emerging proteolysis-targeting chimeras (PROTAC) in the treatment of PCa.
Collapse
Affiliation(s)
- Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Chen X, Zhou M, Ma S, Wu H, Cai H. KLF5-mediated CDCA5 expression promotes tumor development and progression of epithelial ovarian carcinoma. Exp Cell Res 2023; 429:113645. [PMID: 37247719 DOI: 10.1016/j.yexcr.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Cell division cycle associated 5 (CDCA5) is correlated with the development and progression of many malignant tumors. However, little is known about its role in epithelial ovarian cancer (EOC) progression. In this study, the clinical value, biological function and underlying mechanisms of CDCA5 in EOC were evaluated. CDCA5 mRNA and protein levels were substantially upregulated in EOC and had a significant positive correlation with adverse clinicopathological characteristics and a poor prognosis. CDCA5 facilitated proliferation, invasion, and metastasis and disrupted mitochondrial-mediated endogenous apoptosis by activating the cell cycle pathway and inhibiting the P53 pathway in EOC cells. Conversely, knockdown of CDCA5 expression blocked the malignant activities of EOC cells and suppressed the growth of xenograft tumors in vivo. Mechanistically, the transcription factor KLF5 bound to a specific site in the CDCA5 promoter and promoted CDCA5 expression. Moreover, KLF5 overexpression rescued the negative regulation of inhibited CDCA5 expression on EOC cell proliferation. In conclusion, our findings revealed that CDCA5 promoted tumor progression of EOC via the KLF5/CDCA5/cell cycle and P53 axes, which might provide new insights into the roles of CDCA5 in EOC.
Collapse
Affiliation(s)
- Xiaohong Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Meiying Zhou
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shouye Ma
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Huifang Wu
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Gao Y, Liu S, Yang J, Su M, Xu J, Wang H, Zhang J. The Comprehensive Analysis Illustrates the Role of CDCA5 in Breast Cancer: An Effective Diagnosis and Prognosis Biomarker. Int J Genomics 2023; 2023:7150141. [PMID: 37287817 PMCID: PMC10243952 DOI: 10.1155/2023/7150141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Background Several studies have been conducted to investigate the role of cell division cycle-associated 5 (CDCA5) in cancer. Its role in breast cancer, however, remains unknown. Methods The Gene Expression Omnibus and Cancer Genome Atlas Program databases provided the open-access information needed for the research. The CCK8 and colony formation assays were used to measure cell proliferation. The capacity of breast cancer cells to invade and migrate was assessed using the transwell assay. Results In our study, CDCA5 was identified as the interested gene through a series of bioinformatics analysis. We found a higher CDCA5 expression level in tissue and cells of breast cancer. Meanwhile, CDCA5 has been linked to increased proliferation, invasion, and migration of breast cancer cells, which was also associated with worse clinical features. The biochemical pathways, in which CDCA5 was engaged, were identified using biological enrichment analysis. Immune infiltration research revealed that CDCA5 was linked to enhanced activity of several immune function terms. Meanwhile, DNA methylation might be responsible for the aberrant level of CDCA5 in tumor tissue. In addition, CDCA5 could significantly increase the paclitaxel and docetaxel sensitivity, indicating that it has the potential for clinical application. Also, we found that CDCA5 is mainly localized in cell nucleoplasm. Moreover, in the breast cancer microenvironment, we found that CDCA5 is mainly expressed in malignant cells, proliferation T cells, and neutrophils. Conclusion Overall, our findings suggest that CDCA5 is a potential prognostic indicator and target for breast cancer, which can indicate the direction of the relevant research.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuting Liu
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jingjing Xu
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jingwei Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Di X, Xiang L, Jian Z. YAP-mediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag. Front Genet 2023; 14:1106927. [PMID: 36741311 PMCID: PMC9895788 DOI: 10.3389/fgene.2023.1106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Yes-associated protein (YAP) is an important transcriptional coactivator binding to transcriptional factors that engage in many downstream gene transcription. Partial bladder outlet obstruction (pBOO) causes a massive burden to patients and finally leads to bladder fibrosis. Several cell types engage in the pBOO pathological process, including urothelial cells, smooth muscle cells, and fibroblasts. To clarify the function of YAP in bladder fibrosis, we performed the RNA-seq and CUT&Tag of the bladder smooth muscle cell to analyze the YAP ablation of human bladder smooth muscle cells (hBdSMCs) and immunoprecipitation of YAP. 141 differentially expressed genes (DEGs) were identified through RNA-seq between YAP-knockdown and nature control. After matching with the results of CUT&Tag, 36 genes were regulated directly by YAP. Then we identified the hub genes in the DEGs, including CDCA5, CENPA, DTL, NCAPH, and NEIL3, that contribute to cell proliferation. Thus, our study provides a regulatory network of YAP in smooth muscle proliferation. The possible effects of YAP on hBdSMC might be a vital target for pBOO-associated bladder fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Zhongyu Jian,
| |
Collapse
|
14
|
Zhu Y, Wang Y, Hu M, Lu X, Sun G. Identification of oncogenes and tumor-suppressor genes with hepatocellular carcinoma: A comprehensive analysis based on TCGA and GEO datasets. Front Genet 2023; 13:934883. [PMID: 36685860 PMCID: PMC9845404 DOI: 10.3389/fgene.2022.934883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Aim: Existing targeted therapies for hepatocellular carcinoma (HCC) are resistant and have limitations. It is crucial to find new HCC-related target genes. Methods: RNA-sequencing data of HCC were gathered from The Cancer Genome Atlas and Gene Expression Omnibus datasets. Initially, differentially expressed genes between normal and tumor tissues were identified from four Gene Expression Omnibus datasets, GSE36376, GSE102079, GSE54236, and GSE45267. GO terms and KEGG pathway enrichment analyses were performed to explore the potential biological functions of differentially expressed genes. A PPI network was constructed by using the STRING database, and up-regulated and down-regulated hub genes were defined through 12 topological approaches. Subsequently, the correlation bounded by up-regulated genes and down-regulated genes in the diagnosis, prognosis, and clinicopathological features of HCC was analyzed. Beyond a shadow of doubt, the key oncogene PBK and tumor suppressor gene F9 were screened out, and the specific mechanism was investigated through GSEA enrichment analysis and immune correlation analysis. The role of PBK in HCC was further verified by western blot, CCK8, transwell, and tube formation experiments. Results: CDCA5, CDC20, PBK, PRC1, TOP2A, and NCAPG are good indicators of HCC diagnosis and prognosis. The low expressions of F9, AFM, and C8B indicate malignant progression and poor prognosis of HCC. PBK was found to be closely related to VEGF, VEGFR, and PDGFR pathways. Experiments showed that PBK promotes HCC cell proliferation, migration, invasion, and tube formation in HUVEC cells. F9 was negatively correlated with the degree of immune infiltration, and low expression of F9 suggested a poor response to immunotherapy. Conclusion: The role of HCC-related oncogenes and tumor-suppressor genes in diagnosis and prognosis was identified. In addition, we have found that PBK may promote tumor proliferation through angiogenesis and F9 may be a predictor of tumor immunotherapy response.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanfei Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mengyao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoting Lu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
He J, Zhou X, Wang X, Zhang Q, Zhang L, Wang T, Zhu W, Liu P, Zhu M. Prognostic and Immunological Roles of Cell Cycle Regulator CDCA5 in Human Solid Tumors. Int J Gen Med 2022; 15:8257-8274. [DOI: 10.2147/ijgm.s389275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
|
17
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|