1
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Deng Z, Liu L, Xie G, Zheng Z, Li J, Tan W, Deng Y, Zhang J, Liang M, Wu Y, Zhou Z, Li Y, Chen Y, Huang Y, Su H, Wu G, Shi X, Cen S, Liao Y, Liu Y, Zou F, Chen X. Hsp90α promotes lipogenesis by stabilizing FASN and promoting FASN transcription via LXRα in hepatocellular carcinoma. J Lipid Res 2025; 66:100721. [PMID: 39645039 PMCID: PMC11745951 DOI: 10.1016/j.jlr.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Excessive lipid accumulation promotes the occurrence and progression of hepatocellular carcinoma (HCC), accompanied by high levels of fatty acid synthetase (FASN) and more active lipogenesis. Heat shock protein 90 (Hsp90) acts as a chaperone to maintain the stability and activity of the client proteins. Studies have revealed that Hsp90 regulates the lipid metabolism of HCC, but the effect of Hsp90 on FASN still remains unknown. This study aims to discover the mechanism of Hsp90 inhibition on lipid accumulation and investigate the different effects of Hsp90 N-terminal domain inhibitor STA9090 and C-terminal domain inhibitor novobiocin on FASN protein stability and transcription pathway in HCC. We found that HCC cells tended to store lipids, which could be disrupted by Hsp90 inhibitors in vivo and in vitro. High levels of Hsp90α and FASN in tumor tissue had correlation with poor prognosis of HCC patients, and Hsp90α interacted with FASN to maintain its protein stability. Furthermore, N-terminal domain of Hsp90α was essential for process of sterol regulatory element binding protein 1 to activate FASN transcription and Hsp90α prevented proteasomal degradation of liver X receptor α to upregulate FASN transcription via liver X receptor α/sterol regulatory element binding protein 1 axis. Our data reveal that Hsp90α promotes lipid accumulation by increasing the protein stability and FASN mRNA transcription, and can be alleviated by Hsp90 inhibitors, which provides a theoretical basis for Hsp90-targeted therapy on lipid metabolism in HCC.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingxia Wu
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, China
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yukui Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaling Huang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairou Su
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guibing Wu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongjie Shi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shengpei Cen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yandan Liao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yilin Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang S, Cheng H, Huang Y, Li M, Gao D, Chen H, Su R, Guo K. HSP90a promotes the resistance to oxaliplatin in HCC through regulating IDH1-induced cell competition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119680. [PMID: 38280407 DOI: 10.1016/j.bbamcr.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi 530021, China
| | - Ruxiong Su
- Puning People's Hospital, Southern Medical University, Guangdong 515300, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|