1
|
Dama D, Sharma SK. Crebinostat facilitates memory formation. Biochem Biophys Res Commun 2024; 710:149872. [PMID: 38593621 DOI: 10.1016/j.bbrc.2024.149872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.
Collapse
Affiliation(s)
- Deepti Dama
- National Brain Research Centre, Manesar, 122052, Haryana, India
| | - Shiv K Sharma
- National Brain Research Centre, Manesar, 122052, Haryana, India.
| |
Collapse
|
2
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
3
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath 2022; 27:893-902. [DOI: 10.1007/s11325-022-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
|
5
|
Barth M, Toto Nienguesso A, Navarrete Santos A, Schmidt C. Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Commun Biol 2022; 5:551. [PMID: 35672350 PMCID: PMC9174471 DOI: 10.1038/s42003-022-03478-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The neuroblastoma cell line SH-SY5Y is commonly employed to study neuronal function and disease. This includes cells grown under standard conditions or differentiated to neuron-like cells by administration of chemical reagents such as retinoic acid (RA) or phorbol-12-myristate-13-acetate (PMA). Even though SH-SY5Y cells are widely explored, a complete description of the resulting proteomes and cellular reorganisation during differentiation is still missing. Here, we relatively quantify the proteomes of cells grown under standard conditions and obtained from two differentiation protocols employing RA or a combination of RA and PMA. Relative quantification and KEGG pathway analysis of the proteins reveals the presence of early differentiating cells and provides a list of marker proteins for undifferentiated and differentiated cells. For characterisation of neuronal sub-types, we analyse expression of marker genes and find that RA-differentiated cells are acetylcholinergic and cholinergic, while RA/PMA-differentiated cells show high expression of acetylcholinergic and dopaminergic marker genes. In-cell cross-linking further allows capturing protein interactions in different cellular organelles. Specifically, we observe structural reorganisation upon differentiation involving regulating protein factors of the actin cytoskeleton. Quantitative proteomic analyses are employed to explore the changes in the proteome that occur upon neuronal differentiation in the SH-SY5Y cell line.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alicia Toto Nienguesso
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
6
|
Sulfotransferase activity contributes to long-term potentiation and long-term memory. Learn Mem 2022; 29:155-159. [PMID: 35589338 DOI: 10.1101/lm.053538.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
A critical role of protein modifications such as phosphorylation and acetylation in synaptic plasticity and memory is well documented. Tyrosine sulfation plays important roles in several biological processes. However, its role in synaptic plasticity and memory is not well understood. Here, we show that sulfation contributes to long-term potentiation (LTP) in the hippocampal slices. In addition, inhibition of sulfation impairs long-term memory in a spatial memory task without affecting acquisition or short-term memory. Furthermore, LTP-inducing stimulus enhances protein tyrosine sulfation. These results suggest an important role for tyrosine sulfation in LTP and memory.
Collapse
|
7
|
Histone Deacetylase Inhibitors Ameliorate Morphological Defects and Hypoexcitability of iPSC-Neurons from Rubinstein-Taybi Patients. Int J Mol Sci 2021; 22:ijms22115777. [PMID: 34071322 PMCID: PMC8197986 DOI: 10.3390/ijms22115777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder caused by mutations in CREBBP or EP300 genes encoding CBP/p300 lysine acetyltransferases. We investigated the efficacy of the histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) in ameliorating morphological abnormalities of iPSC-derived young neurons from P149 and P34 CREBBP-mutated patients and hypoexcitability of mature neurons from P149. Neural progenitors from both patients’ iPSC lines were cultured one week with TSA 20 nM and, only P149, for 6 weeks with TSA 0.2 nM, in parallel to neural progenitors from controls. Immunofluorescence of MAP2/TUJ1 positive cells using the Skeletonize Image J plugin evidenced that TSA partially rescued reduced nuclear area, and decreased branch length and abnormal end points number of both 45 days patients’ neurons, but did not influence the diminished percentage of their neurons with respect to controls. Patch clamp recordings of TSA-treated post-mitotic P149 neurons showed complete/partial rescue of sodium/potassium currents and significant enhancement of neuron excitability compared to untreated replicas. Correction of abnormalities of P149 young neurons was also affected by valproic acid 1 mM for 72 h, with some variation, with respect to TSA, on the morphological parameter. These findings hold promise for development of an epigenetic therapy to attenuate RSTS patients cognitive impairment.
Collapse
|
8
|
Karisetty BC, Bhatnagar A, Armour EM, Beaver M, Zhang H, Elefant F. Amyloid-β Peptide Impact on Synaptic Function and Neuroepigenetic Gene Control Reveal New Therapeutic Strategies for Alzheimer's Disease. Front Mol Neurosci 2020; 13:577622. [PMID: 33304239 PMCID: PMC7693454 DOI: 10.3389/fnmol.2020.577622] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Amyloid-β (Aβ) peptides can form protease-resistant aggregates within and outside of neurons. Accumulation of these aggregates is a hallmark of Alzheimer's disease (AD) neuropathology and contributes to devastating cognitive deficits associated with this disorder. The primary etiological factor for Aβ aggregation is either an increase in Aβ production or a decrease in its clearance. Aβ is produced by the sequential activity of β- and γ-secretase on the amyloid precursor protein (APP) and the clearance is mediated by chaperone-mediated mechanisms. The Aβ aggregates vary from soluble monomers and oligomers to insoluble senile plaques. While excess intraneuronal oligomers can transduce neurotoxic signals into neurons causing cellular defects like oxidative stress and neuroepigenetic mediated transcriptional dysregulation, extracellular senile plaques cause neurodegeneration by impairing neural membrane permeabilization and cell signaling pathways. Paradoxically, senile plaque formation is hypothesized to be an adaptive mechanism to sequester excess toxic soluble oligomers while leaving native functional Aβ levels intact. This hypothesis is strengthened by the absence of positive outcomes and side effects from immunotherapy clinical trials aimed at complete Aβ clearance, and support beneficial physiological roles for native Aβ in cellular function. Aβ has been shown to modulate synaptic transmission, consolidate memory, and protect against excitotoxicity. We discuss the current understanding of beneficial and detrimental roles for Aβ in synaptic function and epigenetic gene control and the future promising prospects of early therapeutic interventions aimed at mediating Aβ induced neuroepigenetic and synaptic dysfunctions to delay AD onset.
Collapse
Affiliation(s)
| | | | | | | | | | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Gao Y, Li X, Xu R, Guo Y, Yin H, Tan R, Qi Z, Liu G, Liang J, Ya B. Oleuropein Improved Post Cerebral Stroke Cognitive Function by Promoting Histone Acetylation and Phosphorylation of cAMP Response Element-Binding Protein in MCAO Rats. Dose Response 2020; 18:1559325820950102. [PMID: 32922228 PMCID: PMC7448114 DOI: 10.1177/1559325820950102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Post-stroke cognitive impairment (PSCI) is commonest clinical disorder in which peripheral cholinergic activity is important. Oleuropein (OLP) is polyphenol is present in olive oil. Here we evaluated the effect of OLP in cognitive dysfunction rats in post cerebral stroke model. Methods: The post cerebral stroke cognitive dysfunction PSD rat model was created by occlusion of transient middle cerebral artery. The rats were divided into 6 groups named, Sham + Vehicle, Sham + OLP (50 mg/kg), PSD rats + Vehicle, PSD rats + OLP (20, 50 or 100 mg/kg). The spatial learning was assessed by Morris water maze (MWM). The expression of choline acetyltransferase (ChAT), acetylcholine (ACH), extent of histone acetylation and phosphorylation of cAMP response element-binding protein (CREB) were evaluated by Western blot assay and immunofluorescence staining. Results: Treatment of OLP at various doses showed higher number of spontaneous and rewarded alterations and lesser percentage bias compared to vehicle treated PSD rats. OLP resulted in decreased levels of ChAT and ACH, whereas the degree of histone acetylation and phosphorylation of CREB improved in dose dependent pattern. Conclusion: treatment of OLP improved PSCI via increasing the phosphorylation of CREB and histone acetylation, thus attenuating cholinergic activity.
Collapse
Affiliation(s)
- Yang Gao
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Xiaojin Li
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Rongjian Xu
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Yan Guo
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Haiyan Yin
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Ruifeng Tan
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Ze Qi
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Guangzhe Liu
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Jiahui Liang
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Bailiu Ya
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Pandey K, Sharma SK. Activity- and memory training-induced acetylation of α-tubulin in the hippocampus. Neurobiol Learn Mem 2020; 171:107226. [PMID: 32247664 DOI: 10.1016/j.nlm.2020.107226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
Posttranslational modifications play crucial roles in synaptic plasticity and memory formation. The important role of histone acetylation is well established in these processes. However, activity-dependent regulation of acetylation of non-histone proteins is not well understood. We previously showed that α-tubulin is acetylated in an activity-dependent manner. Here, we show that cyclin-dependent kinase 5 (CDK5) plays an important role in α-tubulin acetylation induced by KCl depolarization or N-methyl-D-aspartate stimulation of the hippocampal slices. In addition, KCl depolarization inhibits the activity of SIRT2, an α-tubulin deacetylase. The inhibitory effect of KCl on SIRT2 activity requires CDK5 activity. Furthermore, α-tubulin acetylation is enhanced by memory training in object recognition task. These results suggest that memory formation may involve α-tubulin acetylation.
Collapse
Affiliation(s)
- Kiran Pandey
- National Brain Research Centre, Manesar 122052, Haryana, India
| | - Shiv K Sharma
- National Brain Research Centre, Manesar 122052, Haryana, India.
| |
Collapse
|
12
|
Imoto T, Kawase A, Minoshima M, Yokoyama T, Bito H, Kikuchi K. Photolytic Release of a Caged Inhibitor of an Endogenous Transcription Factor Enables Optochemical Control of CREB-Mediated Gene Expression. Org Lett 2019; 22:22-25. [DOI: 10.1021/acs.orglett.9b03568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takuma Imoto
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Kawase
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Minoshima
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsushi Yokoyama
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Kikuchi
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Urban I, Kerimoglu C, Sakib MS, Wang H, Benito E, Thaller C, Zhou X, Yan J, Fischer A, Eichele G. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci Rep 2019; 9:16173. [PMID: 31700011 PMCID: PMC6838100 DOI: 10.1038/s41598-019-50927-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant histone acetylation contributes to age-dependent cognitive decline and neurodegenerative diseases. We analyze the function of lysine acetyltransferase TIP60/KAT5 in neurons of the hippocampus using an inducible mouse model. TIP60-deficiency in the adult forebrain leads within days to extensive transcriptional dysfunction characterized by the presence of a neurodegeneration-related signature in CA1. Cell cycle- and immunity-related genes are upregulated while learning- and neuronal plasticity-related genes are downregulated. The dysregulated genes seen under TIP60-deficiency overlap with those in the well-characterized CK-p25 neurodegeneration model. We found that H4K12 is hypoacetylated at the transcriptional start sites of those genes whose expression is dampened in TIP60-deficient mice. Transcriptional dysregulation is followed over a period of weeks by activation of Caspase 3 and fragmentation of β-actin in CA1 neurites, eventually leading to severe neuronal loss. TIP60-deficient mice also develop mild memory impairment. These phenotypes point to a central role of TIP60 in transcriptional networks that are critical for neuronal viability.
Collapse
Affiliation(s)
- Inga Urban
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - M Sadman Sakib
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eva Benito
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany.,European Molecular Biology Organization (EMBO), 69117, Heidelberg, Germany
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Xunlei Zhou
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - André Fischer
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany. .,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
14
|
Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation. Chin J Integr Med 2018; 24:366-371. [PMID: 29327125 DOI: 10.1007/s11655-018-2823-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. METHODS The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. RESULTS Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). CONCLUSION ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Collapse
|
15
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
16
|
Tu F, Pang Q, Huang T, Zhao Y, Liu M, Chen X. Apigenin Ameliorates Post-Stroke Cognitive Deficits in Rats Through Histone Acetylation-Mediated Neurochemical Alterations. Med Sci Monit 2017; 23:4004-4013. [PMID: 28821706 PMCID: PMC5572783 DOI: 10.12659/msm.902770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background To identify the effect of apigenin on cognitive deficits of rats after cerebral ischemia and reperfusion injury, and to investigate the potential molecular mechanisms. Material/Methods The rats were given sodium butyrate (NaB) or apigenin (20 or 40 mg/kg) for 28 days. Cognition was investigated by the Morris water maze (MWM) test. On day 28, the rats were euthanized and their hippocampal brain regions were used to identify biochemical and neurochemical alterations. The content of histone deacetylase (HDAC) was measured by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to determine the levels of BDNF, phosphorylated cAMP response element-binding protein (pCREB), acetylated H3, and acetylated H4. The mRNA expressions of brain-derived neurotrophic factor (BDNF) and synapsin-I (Syn-I) were examined by polymerase chain reaction (PCR). Results The rats with chronic administration of apigenin (20 and 40 mg/kg) showed better performance in the MWM task than the model rats; there was no significant difference between the apigenin-treated and NaB-treated rats. At the higher apigenin dose of 40 mg/kg, the HDAC content was decreased, the BDNF level was markedly increased, and acetylated H3 and acetylated H4 expressions and Syn-I expressions in the hippocampus was upregulated compared with the model group. Apigenin at 20 mg/kg did not show reversal of the neurochemical alterations. Conclusions The improvement effect of apigenin on cognitive impairments after cerebral ischemia and reperfusion injury may involve multiple mechanisms, such as the inhibition of HDAC, induction of BDNF and Syn-I expression, and regulation of histone acetylation.
Collapse
Affiliation(s)
- Fengxia Tu
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Qiongyi Pang
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Tingting Huang
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yun Zhao
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Meixia Liu
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xiang Chen
- Department of Physical Medicine and Rehabilitation, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
17
|
Jia M, Liu WX, Yang JJ, Xu N, Xie ZM, Ju LS, Ji MH, Martynyuk AE, Yang JJ. Role of histone acetylation in long-term neurobehavioral effects of neonatal Exposure to sevoflurane in rats. Neurobiol Dis 2016; 91:209-220. [PMID: 27001149 DOI: 10.1016/j.nbd.2016.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
Human studies, and especially laboratory studies, provide evidence that early life exposure to general anesthesia may affect neurocognitive development via largely unknown mechanisms. We explored whether hippocampal histone acetylation had a role in neurodevelopmental effects of sevoflurane administered to neonatal rats. Male Sprague-Dawley rats were exposed to 3% sevoflurane or were subjected to maternal separation only for 2h daily at postnatal days 6, 7, and 8. The histone deacetylase inhibitor, sodium butyrate (250mg/kg, intraperitoneally), or saline was administered starting 2h prior to anesthesia or maternal separation and continued daily until the end of behavioral tests, which were performed between postnatal days 33 and 50. Upon completion of the behavioral tests, the brain tissues were harvested for further analysis. Rats neonatally exposed to sevoflurane exhibited decreased freezing time in the fear conditioning contextual test and increased escape latency, decreased time in target quadrant, and number of platform crossings in the Morris water maze test. The sevoflurane-exposed rats had lower hippocampal density of dendritic spines, reduced levels of the brain-derived neurotrophic factor, c-fos protein, microtubule-associated protein 2, synapsin1, postsynaptic density protein 95, pCREB/CREB, CREB binding protein, and acetylated histones H3 and H4, and increased levels of histone deacetylases 3 and 8. These neurobehavioral abnormalities were normalized in the sevoflurane-exposed rats treated with sodium butyrate. Our findings provide evidence that neonatal exposure to sevoflurane induces neurobehavioral abnormalities and long-lasting alterations in histone acetylation; normalization of histone acetylation may alleviate the neurodevelopmental side effects of the anesthetic.
Collapse
Affiliation(s)
- Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wen-Xue Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiao-Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ning Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ze-Min Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ling-Sha Ju
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
18
|
Merschbaecher K, Hatko L, Folz J, Mueller U. Inhibition of different histone acetyltransferases (HATs) uncovers transcription-dependent and -independent acetylation-mediated mechanisms in memory formation. ACTA ACUST UNITED AC 2016; 23:83-9. [PMID: 26773101 PMCID: PMC4749833 DOI: 10.1101/lm.039438.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023]
Abstract
Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied garcinol, an inhibitor of the HATs of the p300 (EP300 binding protein)/CBP (CREB-binding protein) family, and the HATs of the PCAF (p300/CBP-associated factor) family. As comparative agent we applied C646, a specific inhibitor that selectively blocks HATS of the p300/CBP family. Immunochemical analysis reveals differences in histone H3 acetylation in the honeybee brain, in response to the injection of either C646 or garcinol. Behavioral assessment reveals that the two drugs cause memory impairment of different nature when injected after associative conditioning: processes disturbed by garcinol are annihilated by the established transcription blocker actinomycin D and thus seem to require transcription processes. Actions of C646 are unaltered by actinomycin D, and thus seem to be independent of transcription. The outcome of our different approaches as summarized suggests that distinct HATs contribute to different acetylation-mediated processes in memory formation. We further deduce that the acetylation-mediated processes in memory formation comprise transcription-dependent and transcription-independent mechanisms.
Collapse
Affiliation(s)
- Katja Merschbaecher
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Lucyna Hatko
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Jennifer Folz
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| | - Uli Mueller
- Department 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty 8 - Natural Science and Technology III, Saarland University, D-66041 Saarbrücken, Germany
| |
Collapse
|
19
|
Pandey K, Sharma KP, Sharma SK. Histone deacetylase inhibition facilitates massed pattern-induced synaptic plasticity and memory. Learn Mem 2015; 22:514-8. [PMID: 26373830 PMCID: PMC4579358 DOI: 10.1101/lm.039289.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 11/24/2022]
Abstract
Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well understood. Here we show that increasing the level of acetylation enhances long-term potentiation induced by massed pattern of high frequency stimulation. Furthermore, enhancing acetylation level facilitates long-term memory by massed training. Thus, increasing acetylation level facilitates synaptic plasticity and memory by massed patterns.
Collapse
Affiliation(s)
- Kiran Pandey
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Shiv K Sharma
- National Brain Research Centre, Manesar, Haryana 122051, India
| |
Collapse
|
20
|
Fortress AM, Frick KM. Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 2014; 35:530-49. [PMID: 24878494 PMCID: PMC4174980 DOI: 10.1016/j.yfrne.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/09/2023]
Abstract
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
21
|
Fortress AM, Kim J, Poole RL, Gould TJ, Frick KM. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice. ACTA ACUST UNITED AC 2014; 21:457-67. [PMID: 25128537 PMCID: PMC4138358 DOI: 10.1101/lm.034033.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Rachel L Poole
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
22
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
23
|
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des 2014; 19:5051-64. [PMID: 23448461 PMCID: PMC3722569 DOI: 10.2174/13816128113199990382] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 01/27/2023]
Abstract
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Av. Santiago Ramon y Cajal s/n. Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | |
Collapse
|
24
|
Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, Pani G, Podda MV, Grassi C. Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields. Mol Neurobiol 2014; 49:1472-86. [DOI: 10.1007/s12035-014-8650-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
25
|
Wang X, Li J, Qian L, Zang XF, Zhang SY, Wang XY, Jin JL, Zhu XL, Zhang XB, Wang ZY, Xu Y. Icariin promotes histone acetylation and attenuates post-stroke cognitive impairment in the central cholinergic circuits of mice. Neuroscience 2013; 236:281-288. [PMID: 23370322 DOI: 10.1016/j.neuroscience.2012.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/08/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022]
Abstract
Post-stroke dementia (PSD) is a common clinical disease and the central cholinergic circuits are important to cognitive function. Icariin (ICA), a flavonoid isolated from Herba Epimedii, was reported to improve cognitive function through modulating the cholinergic system. But there were no studies exploring the role of ICA in PSD animal models. In this study, we used transient middle cerebral artery occlusion mice with cognitive dysfunction in the PSD model. PSD mice were then randomly divided into six groups: Sham-operated+placebo group, Sham-operated+ICA group (60mg/kg), PSD model+placebo group, PSD model+ICA group (30, 60, or 120mg/kg). We observed spatial learning ability and memory by Morris water maze test. The levels of acetylcholine (ACH) and choline acetyltransferase (ChAT), the degree of histone acetylation and the cAMP response element-binding protein (CREB) phosphorylation in the central cholinergic circuits were investigated by Western blot and immunofluorescence. After the administration of various doses of ICA, the escape latency and searching distance of the PSD mice were reduced significantly compared with those without ICA treatment. While the levels of ACH and ChAT declined, the degree of histone acetylation and the CREB phosphorylation was improved in a dose-dependent manner in central cholinergic circuits. In conclusion, ICA can improve post-stroke dementia, and the mechanism is likely to enhance CREB phosphorylation in the central cholinergic circuits, thus improving the damage in cholinergic circuits histone acetylation homeostasis.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
HDAC inhibition facilitates the switch between memory systems in young but not aged mice. J Neurosci 2013; 33:1954-63. [PMID: 23365234 DOI: 10.1523/jneurosci.3453-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromatin modifications, especially histone acetylation, are critically involved in gene regulation required for long-term memory processes. Increasing histone acetylation via administration of histone deacetylase inhibitors before or after a learning experience enhances memory consolidation for hippocampus-dependent tasks and rescues age-related memory impairments. Whether acutely and locally enhancing histone acetylation during early consolidation processes can operate as a switch between multiple memory systems is less clear. This study examined the short- and long-term behavioral consequences of acute intra-CA1 administration of the histone deacetylase inhibitor Trichostatin A (TSA) on cue versus place learning strategy selection after a cue-guided water maze task and competition testing performed 1 or 24 h later in mice. Here, we show that intra-CA1 TSA infusion administrated immediately post-training biased young mice away from striatum-dependent cue strategy toward hippocampus-dependent place strategy under training condition that normally promotes cue strategy in vehicle controls. However, concomitant infusions of TSA with either PKA inhibitor, Rp-cAMPS, into CA1 or cAMP analog, 8Br-cAMP, into dorsal striatum failed to bias young mice to place strategy use. Behavioral and immunohistochemical analyses further indicated that post-training TSA infusion in aged mice rescued aging-associated deregulation of H4 acetylation in the CA1 but failed to reverse phosphorylated CREB deficits and to produce strategy bias on the 24 h probe test. These findings suggest that post-training intra-CA1 TSA infusion promotes dynamic shift from striatum toward the hippocampal system in young but not aged animals, and support the possibility of a role for CREB in the TSA-mediated switch between these two memory systems.
Collapse
|
27
|
Dagnas M, Mons N. Region- and age-specific patterns of histone acetylation related to spatial and cued learning in the water maze. Hippocampus 2013; 23:581-91. [PMID: 23436469 DOI: 10.1002/hipo.22116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic processes, such as histone acetylation, are critical regulators of learning and memory processes. In the present study, we investigated whether training in either a spatial or a cued water maze task undergoes selective changes of histone H3 and H4 acetylation within the hippocampus and the dorsal striatum of C57BL/6 mice. We also attempted to provide new insights into the relationships between deregulation in histone acetylation and age-associated memory deficits. In young mice, spatial training increased acetylation of histones H3 and H4 selectively in the dorsal hippocampal CA1 region and the dentate gyrus (DG) whereas cued training significantly enhanced acetylation of both histones selectively in the dorsal striatum. Our data also revealed age-related differences in histone acetylation within the hippocampus and striatum according to task demands. Specifically, age-related spatial memory deficits were associated with opposite changes of H3 (increase) and H4 (decrease) acetylation in CA1 and DG. After cued learning, both histone acetylation levels were reduced in the striatum of aged mice compared with corresponding young-adults but remained well above those of cage-controls. Collectively, our findings suggest an important role for histone acetylation in regulating the relative contributions of the hippocampus and striatum to learning spatial and cued memory tasks.
Collapse
Affiliation(s)
- Malorie Dagnas
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Avenue des Facultés, 33405 Talence, France
| | | |
Collapse
|
28
|
Bousiges O, Neidl R, Majchrzak M, Muller MA, Barbelivien A, Pereira de Vasconcelos A, Schneider A, Loeffler JP, Cassel JC, Boutillier AL. Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLoS One 2013; 8:e57816. [PMID: 23469244 PMCID: PMC3587615 DOI: 10.1371/journal.pone.0057816] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/26/2013] [Indexed: 12/21/2022] Open
Abstract
The recent literature provides evidence that epigenetic mechanisms such as DNA methylation and histone modification are crucial to gene transcription linked to synaptic plasticity in the mammalian brain--notably in the hippocampus--and memory formation. We measured global histone acetylation levels in the rat hippocampus at an early stage of spatial or fear memory formation. We found that H3, H4 and H2B underwent differential acetylation at specific sites depending on whether rats had been exposed to the context of a task without having to learn or had to learn about a place or fear therein: H3K9K14 acetylation was mostly responsive to any experimental conditions compared to naive animals, whereas H2B N-terminus and H4K12 acetylations were mostly associated with memory for either spatial or fear learning. Altogether, these data suggest that behavior/experience-dependent changes differently regulate specific acetylation modifications of histones in the hippocampus, depending on whether a memory trace is established or not: tagging of H3K9K14 could be associated with perception/processing of testing-related manipulations and context, thereby enhancing chromatin accessibility, while tagging of H2B N-terminus tail and H4K12 could be more closely associated with the formation of memories requiring an engagement of the hippocampus.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Romain Neidl
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Monique Majchrzak
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Marc-Antoine Muller
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Alexandra Barbelivien
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne Schneider
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Jean-Philippe Loeffler
- Inserm, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Université de Strasbourg, Faculté de Médecine, UMRS692, Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
29
|
Merschbaecher K, Haettig J, Mueller U. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation. PLoS One 2012; 7:e45131. [PMID: 23028801 PMCID: PMC3446950 DOI: 10.1371/journal.pone.0045131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/13/2012] [Indexed: 01/21/2023] Open
Abstract
Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.
Collapse
Affiliation(s)
- Katja Merschbaecher
- Dept. 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Saarbrücken, Germany
| | - Jakob Haettig
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
| | - Uli Mueller
- Dept. 8.3 Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Saarbrücken, Germany
| |
Collapse
|
30
|
Catarino T, Ribeiro L, Santos SD, Carvalho AL. Regulation of Synapse Composition by Protein Acetylation: The Role of Acetylated Cortactin. J Cell Sci 2012; 126:149-62. [DOI: 10.1242/jcs.110742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein acetylation affects synaptic plasticity and memory, but its effects on synapse composition have not been addressed. We found that protein acetylation promotes the dendritic clustering of the excitatory postsynaptic scaffold protein PSD95 in hippocampal neurons, without affecting the total levels of this protein. Cortactin, an F-actin-binding protein enriched in dendritic spines, is a substrate for acetylation and has a role in spine morphogenesis. Recent studies showed that cortactin acetylation changes its ability to bind F-actin and regulates cellular motility, but the function of cortactin acetylation in neuronal cells is so far unknown. We tested whether acetylation of cortactin influences its morphogenic function by overexpressing wild-type cortactin, or the mimetic mutants for acetylated or deacetylated cortactin, in hippocampal neurons, and found that cortactin acetylation has an impact on PSD95 clustering, independent from its function as actin dynamics regulator. Moreover, acetylated cortactin can rescue the reduction in PSD95 clustering mediated by knockdown of cortactin. We also found that acetylation of cortactin is correlated with decreased cortactin interaction with p140Cap and Shank1, and with lower cortactin phosphorylation at tyrosine 421. The neurotrophin BDNF promoted the acetylation of cortactin in hippocampal neurons, suggesting that BDNF may regulate excitatory synapses and PSD95 dendritic clustering at least in part by changing the acetylation level of cortactin. Our findings unravel an unsuspected role for cortactin acetylation in the regulation of PSD95 dendritic clustering, which may work in concert with cortactin's role in spine development.
Collapse
|
31
|
Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, Lei S, Ghribi O, Liu QY. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease. Neurobiol Dis 2011; 45:902-12. [PMID: 22186421 DOI: 10.1016/j.nbd.2011.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022] Open
Abstract
Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J Neurosci 2011; 31:7486-91. [PMID: 21593332 DOI: 10.1523/jneurosci.0133-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.
Collapse
|
33
|
Abstract
Dynamic chromatin remodeling is at the heart of most biological processes including gene transcription, DNA replication and repair, cell differentiation and apoptosis. Chromatin remodeling as a result of covalent histone modifications, including histone acetylation, methylation or SUMOylation, play important roles in these processes. Similarly, direct chemical modification of DNA, most notably DNA methylation, also plays a key role in controlling gene expression and basic aspects of cell biology. Memory, one of the most fundamental of all brain functions, is a complex process involving diverse cellular signaling cascades and coordinated regulation of entire networks of genes. Synaptic plasticity, which is defined as activity-dependent changes in synaptic strength between neurons, provides the cellular basis of memory. The role for covalent histone modifications in synaptic plasticity and in learning and memory has been now been firmly established. In contrast, much less had been known concerning DNA methylation in memory formation and storage. Emerging evidence now suggests that DNA methylation plays a central role in these processes, likely by directly influencing the expression of genes involved in synaptic plasticity.
Collapse
Affiliation(s)
- Purva Bali
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA
| | | | | |
Collapse
|
34
|
Abstract
Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.
Collapse
Affiliation(s)
- Farah D. Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Swati Gupta
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicola M. Grissom
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin L. Davis
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 2011; 96:68-78. [PMID: 21419233 DOI: 10.1016/j.nlm.2011.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.
Collapse
|
36
|
Pandey K, Sharma SK. Activity-Dependent Acetylation of Alpha Tubulin in the Hippocampus. J Mol Neurosci 2011; 45:1-4. [DOI: 10.1007/s12031-011-9506-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/01/2011] [Indexed: 01/23/2023]
|
37
|
Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 2011; 352:173-80. [DOI: 10.1007/s11010-011-0751-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
|
38
|
Oliveira AMM, Estévez MA, Hawk JD, Grimes S, Brindle PK, Abel T. Subregion-specific p300 conditional knock-out mice exhibit long-term memory impairments. Learn Mem 2011; 18:161-9. [PMID: 21345974 DOI: 10.1101/lm.1939811] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting proteins including transcription factors known to play a role in long-term memory formation. Thus, CBP and p300 constitute likely candidates for transcriptional coactivators in memory formation. In this study, we took a loss-of-function approach to evaluate the role of p300 in long-term memory formation. We used conditional knock-out mice in which the deletion of p300 is restricted to the postnatal phase and to subregions of the forebrain. We found that p300 is required for the formation of long-term recognition memory and long-term contextual fear memory in the CA1 area of the hippocampus and cortical areas.
Collapse
Affiliation(s)
- Ana M M Oliveira
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Valor LM, Barco A. Hippocampal gene profiling: toward a systems biology of the hippocampus. Hippocampus 2010; 22:929-41. [PMID: 21080408 DOI: 10.1002/hipo.20888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Transcriptomics and proteomics approaches give a unique perspective for understanding brain and hippocampal functions but also pose unique challenges because of the singular complexity of the nervous system. The proliferation of genome-wide expression studies during the last decade has provided important insight into the molecular underpinnings of brain anatomy, neural plasticity, and neurological diseases. Microarray technology has dominated transcriptomics research, but this situation is rapidly changing with the recent technological advances in high-throughput sequencing. The full potential of transcriptomics in the neurosciences will be achieved as a result of its integration with other "-omics" disciplines as well as the development of novel analytical bioinformatics and systems biology tools for meta-analysis. Here, we review some of the most relevant advances in the gene profiling of the hippocampus, its relationship with proteomics approaches, and the promising perspectives for the future.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de Sant Joan, Apt. 18, Sant Joan d'Alacant, 03550, Alicante, Spain
| | | |
Collapse
|